Ca 15 центральные и вписанные углы. Центральные и вписанные углы

Инструкция

Если известны радиус (R) круга и длина дуги (L), соответствующая искомому центральному углу (θ), рассчитать его можно как в градусах, так и в радианах. Полная определяется формулой 2*π*R и соответствует центральному углу в 360° или двум числам Пи, если вместо градусов использовать радианы. Поэтому исходите из пропорции 2*π*R/L = 360°/θ = 2*π/θ. Выразите из нее центральный угол в радианах θ = 2*π/(2*π*R/L) = L/R или градусах θ = 360°/(2*π*R/L) = 180*L/(π*R) и рассчитайте по полученной формуле.

По длине хорды (m), соединяющей точки , которые определяет центральный угол (θ), его величину тоже можно рассчитать, если известен радиус (R) круга. Для этого рассмотрите треугольник, образованный двумя радиусами и . Это равнобедренный треугольник, все известны, а найти нужно угол, лежащий напротив основания. Синус его половины равен отношению длины основания - хорды - к удвоенной длине боковой стороны - радиуса. Поэтому используйте для вычислений обратную синусу функцию - арксинус: θ = 2*arcsin(½*m/R).

Центральный угол может быть задан и в долях оборота или от развернутого угла. Например, если нужно найти центральный угол, соответствующей четверти полного оборота, разделите 360° на четверку: θ = 360°/4 = 90°. Эта же величина в радианах должна быть 2*π/4 ≈ 3,14/2 ≈ 1,57. Развернутый угол равен половине полного оборота, поэтому, например, центральный угол, соответствующий четверти от него будет вдвое меньше рассчитанных выше значений как в градусах, так и в радианах.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

Одной из распространенных геометрических задач является вычисление площади кругового сегмента - части круга, ограниченной хордой и соответствующей хорде дугой окружности.

Площадь кругового сегмента равна разности площади соответствующего кругового сектора и площади треугольника, образованного радиусами соответствующего сегменту сектора и хордой, ограничивающей сегмент.

Пример 1

Длина хорды, стягивающей окружность равна величине а. Градусная мера дуги, соответствующей хорде, равна 60°. Найти площадь кругового сегмента.

Решение

Треугольник, образованный двумя радиусами и хордой, является равнобедренным, поэтому высота, проведенная из вершины центрального угла на сторону треугольника, образованную хордой, будет также являться биссектрисой центрального угла, поделив его пополам и медианой, поделив пополам хорду. Зная, что синус угла в равен отношению противолежащего катета к гипотенузе, можно вычислить величину радиуса:

Sin 30°= a/2:R = 1/2;

Sc = πR²/360°*60° = πa²/6

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(R²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

Площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a²

Подставив числовое значение вместо величины a, можно с легкостью вычислить числовое значение площади сегмента.

Пример 2

Радиус окружности равен величине а. Градусная мера дуги, соответствующей сегменту, равна 60°. Найти площадь кругового сегмента.

Решение:

Площадь сектора, соответствующего заданному углу можно вычислить по следующей формуле:

Sc = πа²/360°*60° = πa²/6,

Площадь соответствующего сектору треугольника вычисляется следующим образом:

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(a²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

И, наконец, площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a².

Решения в обоих случаях практически идентичны. Таким образом можно сделать вывод, что для вычисления площади сегмента в простейшем случае достаточно знать величину угла, соответствующего дуге сегмента и один из двух параметров - либо радиус окружности, либо длину хорды, стягивающей дугу окружности, образующую сегмент.

Источники:

  • Сегмент - геометрия

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Треугольник \(AOB\) – равнобедренный, \(AO = OB\) , \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\) , откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\) .

Теперь рассмотрим произвольный вписанный угол \(ABC\) . Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).


Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :


Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\) .

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\) , образованного двумя касательными, проведенными из одной точки \(K\) .

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) .

\(\angle DAB\) – внешний угол треугольника \(MAD\) , тогда \(\angle DAB = \angle DMB + \angle MDA\) , откуда \(\angle DMB = \angle DAB - \angle MDA\) , но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB - \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} - \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} - \buildrel\smile\over{CA})\) , что и требовалось доказать.

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


Из треугольника \(AMD\) : \(\angle AMD = 180^\circ - \angle BDA - \angle CAD = 180^\circ - \frac12\buildrel\smile\over{AB} - \frac12\buildrel\smile\over{CD}\) .

Но \(\angle AMD = 180^\circ - \angle CMD\) , откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\) , \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\) , пересекает \(a\) в точке \(M\) . Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\) .


Обозначим \(\angle OAB = \alpha\) . Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\) . Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ - 2\alpha = 2(90^\circ - \alpha)\) .

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\) , то есть \(\angle OAM = 90^\circ\) , следовательно, \(\angle BAM = 90^\circ - \angle OAB = 90^\circ - \alpha = \frac12\cdot\buildrel\smile\over{AB}\) .

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

1) Пусть \(AB=CD\) . Докажем, что меньшие полуокружности дуги .


По трем сторонам, следовательно, \(\angle AOB=\angle COD\) . Но т.к. \(\angle AOB, \angle COD\) - центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) .

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\) , то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\) . Следовательно, и \(AB=CD\) .

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


Доказательство

1) Пусть \(AN=NB\) . Докажем, что \(OQ\perp AB\) .

Рассмотрим \(\triangle AOB\) : он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\) .

2) Пусть \(OQ\perp AB\) . Докажем, что \(AN=NB\) .

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\) .

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\) .

Рассмотрим треугольники \(ADE\) и \(CBE\) . В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\) , а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\) , откуда \(AE\cdot BE = CE\cdot DE\) .

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\) . Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\) . Покажем, что \(MB\cdot MC = MA^2\) .


Рассмотрим треугольники \(MBA\) и \(MCA\) : \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\) . По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\) . Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\) , что равносильно \(MB\cdot MC = MA^2\) .

Следствие

Произведение секущей, проведённой из точки \(O\) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\) .

Понятие вписанного и центрально угла

Введем сначала понятие центрального угла.

Замечание 1

Отметим, что градусная мера центрального угла равна градусной мере дуги, на которую он опирается .

Введем теперь понятие вписанного угла.

Определение 2

Угол, вершина которого лежит на окружности и стороны которого пересекают эту же окружность, называется вписанным углом (рис. 2).

Рисунок 2. Вписанный угол

Теорема о вписанном угле

Теорема 1

Градусная мера вписанного угла равняется половине градусной меры дуги, на которую он опирается.

Доказательство.

Пусть нам дана окружность с центром в точке $O$. Обозначим вписанный угол $ACB$ (рис. 2). Возможны три следующих случая:

  • Луч $CO$ совпадает с какой либо стороной угла. Пусть это будет сторона $CB$ (рис. 3).

Рисунок 3.

В этом случае дуга $AB$ меньше ${180}^{{}^\circ }$, следовательно, центральный угол $AOB$ равен дуге $AB$. Так как $AO=OC=r$, то треугольник $AOC$ равнобедренный. Значит, углы при основании $CAO$ и $ACO$ равны между собой. По теореме о внешнем угле треугольника, имеем:

  • Луч $CO$ делит внутренний угол на два угла. Пусть он пересекает окружность в точке $D$ (рис. 4).

Рисунок 4.

Получаем

  • Луч $CO$ не делит внутренний угол на два угла и не совпадает ни с одной его стороной (Рис. 5).

Рисунок 5.

Рассмотрим отдельно углы $ACD$ и $DCB$. По доказанному в пункте 1, получим

Получаем

Теорема доказана.

Приведем следствия из данной теоремы.

Следствие 1: Вписанные углы, которые опираются на одну и туже дугу равны между собой.

Следствие 2: Вписанный угол, который опирается на диаметр -- прямой.

Понятие вписанного и центрально угла

Введем сначала понятие центрального угла.

Замечание 1

Отметим, что градусная мера центрального угла равна градусной мере дуги, на которую он опирается .

Введем теперь понятие вписанного угла.

Определение 2

Угол, вершина которого лежит на окружности и стороны которого пересекают эту же окружность, называется вписанным углом (рис. 2).

Рисунок 2. Вписанный угол

Теорема о вписанном угле

Теорема 1

Градусная мера вписанного угла равняется половине градусной меры дуги, на которую он опирается.

Доказательство.

Пусть нам дана окружность с центром в точке $O$. Обозначим вписанный угол $ACB$ (рис. 2). Возможны три следующих случая:

  • Луч $CO$ совпадает с какой либо стороной угла. Пусть это будет сторона $CB$ (рис. 3).

Рисунок 3.

В этом случае дуга $AB$ меньше ${180}^{{}^\circ }$, следовательно, центральный угол $AOB$ равен дуге $AB$. Так как $AO=OC=r$, то треугольник $AOC$ равнобедренный. Значит, углы при основании $CAO$ и $ACO$ равны между собой. По теореме о внешнем угле треугольника, имеем:

  • Луч $CO$ делит внутренний угол на два угла. Пусть он пересекает окружность в точке $D$ (рис. 4).

Рисунок 4.

Получаем

  • Луч $CO$ не делит внутренний угол на два угла и не совпадает ни с одной его стороной (Рис. 5).

Рисунок 5.

Рассмотрим отдельно углы $ACD$ и $DCB$. По доказанному в пункте 1, получим

Получаем

Теорема доказана.

Приведем следствия из данной теоремы.

Следствие 1: Вписанные углы, которые опираются на одну и туже дугу равны между собой.

Следствие 2: Вписанный угол, который опирается на диаметр -- прямой.

Средний уровень

Окружность и вписанный угол. Визуальный гид (2019)

Основные термины.

Хорошо ли ты помнишь все названия, связанные с окружностью? На всякий случай напомним - смотри на картинки - освежай знания.

Ну, во-первых - центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых - радиус - отрезок, соединяющий центр и точку на окружности.

Радиусов очень много (столько же, сколько и точек на окружности), но длина у всех радиусов - одинаковая.

Иногда для краткости радиусом называют именно длину отрезка «центр - точка на окружности», а не сам отрезок.

А вот что получится, если соединить две точки на окружности ? Тоже отрезок?

Так вот, этот отрезок называется «хорда» .

Так же, как и в случае с радиусом, диаметром часто называют длину отрезка, соединяющего две точки на окружности и проходящего через центр. Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же, радиус равен половине диаметра.

Кроме хорд бывают еще и секущие.

Вспомнили самое простое?

Центральный угол - угол между двумя радиусами.

А теперь - вписанный угол

Вписанный угол - угол между двумя хордами, которые пересекаются в точке на окружности .

При этом говорят, что вписанный угол опирается на дугу (или на хорду) .

Смотри на картинку:

Измерения дуг и углов.

Длина окружности. Дуги и углы измеряются в градусах и радианах. Сперва о градусах. Для углов проблем нет - нужно научиться измерить дугу в градусах.

Градусная мера (величина дуги) - это величина (в градусах) соответствующего центрального угла

Что здесь значит слово «соответствующего»? Смотрим внимательно:

Видишь две дуги и два центральных угла? Ну вот, большей дуге соответствует больший угол (и ничего страшного, что он больше), а меньшей дуге соответствует меньший угол.

Итак, договорились: в дуге содержится столько же градусов, сколько в соответствующем центральном угле.

А теперь о страшном - о радианах!

Что же это за зверь такой «радиан»?

Представь себе: радианы - это способ измерения угла … в радиусах!

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Тогда возникает вопрос - а сколько же радиан в развёрнутом угле?

Иными словами: сколько радиусов «помещается» в половине окружности? Или ещё по-другому: во сколько раз длина половины окружности больше радиуса?

Этим вопросом задавались учёные ещё в Древней Греции.

И вот, после долгих поисков они обнаружили, что отношение длины окружности к радиусу никак не хочет выражаться «человеческими» числами вроде и т.п.

И даже не получается выразить это отношение через корни. То есть, оказывается, нельзя сказать, что половина окружности в раза или в раз больше радиуса! Представляешь, как удивительно это было обнаружить людям впервые?! Для отношения длины половины окружности к радиусу на хватило «нормальных» чисел. Пришлось вводить букву.

Итак, - это число, выражающее отношение длины полуокружности к радиусу.

Теперь мы можем ответить на вопрос: сколько радиан в развёрнутом угле? В нём радиан. Именно оттого, что половина окружности в раз больше радиуса.

Древние (и не очень) люди на протяжении веков (!) попытались поточнее подсчитать это загадочное число, получше выразить его (хоть приблизительно) через «обыкновенные» числа. А мы сейчас до невозможности ленивы - нам достаточно двух знаков после занятой, мы привыкли, что

Задумайся, это значит, например, что y окружности с радиусом единица длина приблизительно равна, а точно эту длину просто невозможно записать «человеческим» числом - нужна буква. И тогда эта длина окружности окажется равной. И конечно, длина окружности радиуса равна.

Вернёмся к радианам.

Мы выяснили уже, что в развёрнутом угле содержится радиан.

Что имеем:

Значит, рад., то есть рад. Таким же образом получается табличка с наиболее популярными углами.

Соотношение между величинами вписанного и центрального углов.

Имеет место удивительный факт:

Величина вписанного угла вдвое меньше, чем величина соответствующего центрального угла.

Посмотри, как это утверждение выглядит на картинке. «Соответствующий» центральный угол такой, у которого концы совпадают с концами вписанного угла, а вершина в центре. И при этом «соответствующий» центральный угол должен «смотреть» на ту же хорду (), что и вписанный угол.

Почему же так? Давай разберёмся сначала на простом случае. Пусть одна из хорд проходит через центр. Ведь бывает же так иногда, верно?

Что же тут получается? Рассмотрим. Он равнобедренный - ведь и - радиусы. Значит, (обозначили их).

Теперь посмотрим на. Это же внешний угол для! Вспоминаем, что внешний угол равен сумм двух внутренних, не смежных с ним, и записываем:

То есть! Неожиданный эффект. Но и есть центральный угол для вписанного.

Значит, для этого случая доказали, что центральный угол вдвое больше вписанного. Но уж больно частный случай: правда ведь, далеко не всегда хорда проходит прямиком через центр? Но ничего, сейчас этот частный случай нам здорово поможет. Смотри: второй случай: пусть центр лежит внутри.

Давай сделаем вот что: проведём диаметр. И тогда … видим две картинки, которые уже разбирали в первом случае. Поэтому уже имеем, что

Значит, (на чертеже, а)

Ну вот, и остался последний случай: центр вне угла.

Делаем то же самое: проводим диаметр через точку. Все то же самое, но вместо суммы - разность.

Вот и всё!

Давай теперь сформируем два главных и очень важных следствия из утверждения о том, что вписанный угол вдвое меньше центрального.

Следствие 1

Все вписанные углы, опирающиеся на одну дугу, равны между собой.

Иллюстрируем:

Вписанных углов, опирающихся на одну и ту же дугу (у нас эта дуга) - бесчисленное множество, они могут выглядеть совсем по-разному, но у них у всех один и тот же центральный угол (), а значит, все эти вписанные углы равны между собой.

Следствие 2

Угол, опирающийся на диаметр - прямой.

Смотри: какой угол является центральным для?

Конечно, . Но он равен! Ну вот, поэтому (а так же ещё множество вписанных углов, опирающихся на) и равен.

Угол между двумя хордами и секущими

А что, если интересующий нас угол НЕ вписанный и НЕ центральный, а, например, такой:

или такой?

Можно ли его как-то выразить всё-таки через какие-то центральные углы? Оказывается, можно. Смотри: нас интересует.

a) (как внешний угол для). Но - вписанный, опирается на дугу - . - вписанный, опирается на дугу - .

Для красоты говорят:

Угол между хордами равен полусумме угловых величин дуг, заключённых в этот угол.

Так пишут для краткости, но конечно, при использовании этой формулы нужно иметь в виду центральные углы

b) А теперь - «снаружи»! Как же быть? Да почти так же! Только теперь (снова применяем свойство внешнего угла для). То есть теперь.

И значит, . Наведём красоту и краткость в записях и формулировках:

Угол между секущими равен полуразности угловых величин дуг, заключённых в этот угол.

Ну вот, теперь ты вооружён всеми основными знаниями об углах, связанных с окружностью. Вперёд, на штурм задач!

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. СРЕДНИЙ УРОВЕНЬ

Что такое окружность, знает и пятилетний ребёнок, не правда ли? У математиков, как всегда, на этот счёт есть заумное определение, но мы его приводить не будем (смотри ), а лучше вспомним, как называются точки, линии и углы, связанные с окружностью.

Важные термины

Ну, во-первых:

центр окружности - такая точка, расстояния от которой до всех точек окружности одинаковые.

Во-вторых:

Тут есть ещё одно принятое выражение: «хорда стягивает дугу». Вот, здесь на рисунке, например, хорда стягивает дугу. А если хорда вдруг проходит через центр, то у неё есть специальное название: «диаметр».

Кстати, а как связаны диаметр и радиус? Посмотри внимательно. Конечно же,

А теперь - названия для углов.

Естественно, не правда ли? Стороны угла выходят из центра - значит, угол - центральный.

Вот здесь иногда возникают сложности. Обрати внимание - НЕ ЛЮБОЙ угол внутри окружности - вписанный, а только такой, у которого вершина «сидит» на самой окружности.

Давай увидим разницу на картинках:

По-другому ещё говорят:

Тут есть один хитрый момент. Что такое «соответствующий» или «свой» центральный угол? Просто угол с вершиной в центре окружности и концами в концах дуги? Не совсем так. Посмотри-ка на рисунок.

Один из них, правда, и на угол-то не похож - он больше. Но это в треугольнике не может быть углов больше, а в окружности - вполне может! Так вот: меньшей дуге AB соответствует меньший угол (оранжевый), а большей - больший. Просто как, не правда ли?

Соотношение между величинами вписанного и центрального угла

Запомни очень важное утверждение:

В учебниках этот же факт любят записывать так:

Правда, с центральным углом формулировка проще?

Но всё же давай найдём соответствие между двумя формулировками, а заодно научимся находить на рисунках «соответствующий» центральный угол и дугу, на которую «опирается» вписанный угол.

Смотри: вот окружность и вписанный угол:

Где же его «соответствующий» центральный угол?

Снова смотрим:

Какое же правило?

Но! При этом важно, чтобы вписанный и центральный угол «смотрели» с одной стороны на дугу. Вот, например:

Как ни странно, голубой! Потому что дуга-то длинная, длиннее половины окружности! Вот и не путай никогда!

Какое же следствие можно вывести из «половинчатости» вписанного угла?

А вот, например:

Угол, опирающийся на диаметр

Ты уже успел заметить, что математики очень любят об одном и том же говорить разными словами? Зачем это им? Понимаешь, язык математики хоть и формальный, но живой, а поэтому, как и в обычном языке, каждый раз хочется сказать так, как удобнее. Ну вот, что такое «угол опирается на дугу» мы уже видели. И представь себе, та же самая картина называется «угол опирается на хорду». На какую? Да конечно на ту, которая стягивает эту дугу!

Когда же опираться на хорду удобнее, чем на дугу?

Ну, в частности, когда эта хорда - диаметр.

Для такой ситуации есть удивительно простое, красивое и полезное утверждение!

Смотри: вот окружность, диаметр и угол, который на него опирается.

ОКРУЖНОСТЬ И ВПИСАННЫЙ УГОЛ. КОРОТКО О ГЛАВНОМ

1. Основные понятия.

3. Измерения дуг и углов.

Угол величиной радиан - такой центральный угол, длина дуги которого равна радиусу окружности.

Это число, выражающее отношение длины полуокружности к радиусу.

Длина окружности радиуса равна.

4. Соотношение между величинами вписанного и центрального углов.