Чистая линия селекция. Линия (в генетике)


Для улучшения племенных и продуктивных качеств животных необходимо знать генотипы не только отдельных индивидуумов, но и генетическую структуру всего стада или даже породы в целом. Важное значение для селекции имеют знания закономерностей наследственности и изменчивости в отсутствие и с учетом искусственного отбора и подбора животных, факторов, их определяющие. Исследования генетических процессов, протекающих в естественных условиях размножения животных, имеют большое значение для дальнейшего познания эволюции с целью управления этими процессами при разведении сельскохозяйственных животных.

По Н.В. Тимофееву-Ресовскому, популяция - это совокупность особей данного вида, в течение длительного времени (большого числа поколений) населяющая определенное пространство, состоящая из особей, могущих свободно скрещиваться друг с другом, и отделенная от таких же соседних совокупностей одной из форм изоляции (пространственной, сезонной, физиологической, генетической). Например, олени острова Колгуев изолированы от оленей, разводимых на материковой части Крайнего Севера, широкой полосой моря

В результате сформировалась особая популяция колгуевских оленей, отличающаяся от другой части этого вида генотипическими и фенотипическими признаками - они более крупные и обладают лучшей жизнеспособностью.

В животноводстве под популяцией понимают группу животных одного вида, характеризующихся определенной численностью и ареалом распространения. Такая группа отличается от других популяций генетической структурой, экстерьерными, интерьерными и продуктивными качествами. Популяцией в животноводстве может быть отдельное стадо животных, порода или отродье. Обычно популяция - замкнутая группа. Ввоз в нее или вывоз из нее животных из других популяций ограничен, поэтому размножение в популяции осуществляется за счет подбора самцов и самок, принадлежащих к данной популяции. В Ярославской области, например, разводится популяция крупного рогатого скота ярославской породы.

Каждая популяция характеризуется определенным генофондом, т. е. совокупностью аллелей, входящих в ее состав.

Наряду с популяцией в генетике существует понятие «чистая линия» - это потомство, полученное только от одного родителя и имеющее с ним полное сходство по генотипу

Чистые линии могут быть созданы в растениеводстве у самоопыляющихся растений. В отличие от популяций они характеризуются полной гомозиготностью. Вследствие полной гомозиготности отбор в чистой линии невозможен, так как все особи, входящие в нее, имеют идентичный набор генов. Высокогомозиготных линейных мышей, крыс и других лабораторных животных создают в целях проведения различных экспериментов, например для проверки на мутагенность тех или иных препаратов, оценки вакцин и т. д.

Популяция состоит из животных разных генотипов. Эффективность отбора в ней зависит от степени генетической изменчивости - соотношения доминантных и рецессивных генов. Харди и Вайнберг провели математический анализ распределения генов в больших популяциях, где нет отбора, мутаций и смешивания популяций.

В соответствии с этим был сформулирован закон, или правило, Харди - Вайнберга, согласно которому при отсутствии факторов, изменяющих частоты генов, популяции при любом соотношении аллелей от поколения к поколению сохраняют эти частоты аллелей постоянными. Несмотря на известные ограничения, по формуле Харди - Вайнберга можно рассчитать структуру популяции и определить частоты гетерозигот (например, по летальным или сублетальным генам, зная частоты гомозигот по рецессивным признакам и частоты особей с доминантным признаком), проанализировать сдвиги в генных частотах по конкретным признакам в результате отбора, мутаций и других факторов.

Популяция находится в равновесии только тогда, когда в ней не происходит отбора. При выбраковке же отдельных животных в такой популяции изменяется соотношение гамет, что влияет на генетическую структуру следующего поколения. Однако К. Пирсон показал, что, как только возникает состояние панмиксии (свободное скрещивание), соотношение генотипов и фенотипов в популяции в следующем поколении возвращается к тому, которое соответствует формуле Харда - Вайнберга, но уже при другом их соотношении. Скрещивание, восстанавливающее соотношение генотипов в популяции, в соответствии с формулой Харди - Вайнберга получило название стабилизирующего. Из этого следует вывод: при использовании в популяции случайных, неотобранных производителей или маток наблюдается стабилизация признаков продуктивности на одном уровне, и повышение продуктивности животных в такой ситуации невозможно. Точно так же при отсутствии браковки гетерозиготных носителей рецессивных аномалий частота проявления аномальных животных в популяции остается неизменной.

В популяциях сельскохозяйственных животных постоянно изменяются частоты генов, что можно наблюдать при анализе смежных поколений. Такие изменения составляют суть генетической эволюции. Основные факторы эволюции: мутации, естественный и искусственный отбор, миграции, дрейф генов.

Одна из основных причин генетической изменчивости в популяции - мутации. Спонтанные мутации каждого гена происходят с низкой частотой, однако общая частота мутаций всех генов, которые содержат популяции, очень велика. Мутации, возникающие в половых клетках родительского поколения, приводят к изменению генетической структуры у потомства. В популяции постоянной численности в отсутствие отбора большинство возникших мутаций быстро утрачивается, однако некоторые из них могут сохраниться в ряде поколений. Исчезновению мутантных генов из популяции противостоит действие мутационного процесса, в результате которого образуются повторные мутации.

Генетическая структура популяций формируется и изменяется под действием естественного и искусственного отбора. Действие естественного отбора состоит в том, что преимущественное размножение имеют особи с высокой жизнепособностью, скороспелостью, плодовитостью и т. д., т. е. более приспособленные к условиям окружающей среды. При искусственном отборе определяющее значение имеют признаки продуктивности.

В.И. Власов отмечает, что естественный отбор идет на всех этапах онтогенеза популяции - от образования гамет до взрослого организма. При этом он существенно влияет на темпы искусственного отбора вследствие противоположного действия при селекции на высокий уровень развития продуктивных признаков, несвойственный видовым биологическим границам. Исходя из этого, при отборе животных необходимо учитывать не только продуктивные признаки, но и признаки приспособленности к условиям окружающей среды.

По С.М. Гершензону, критерием интенсивности естественного отбора служит разность приспособленности сравниваемых групп, называемая коэффициентом отбора и выражаемая в долях единицы. Например, если вероятность оставления потомства особями с генотипом аа на 10% меньше, чем особями с генотипом АА или Аа, то приспособленность этих групп для особей АА и Аа равна 1, для особей аа - 0,9.

С точки зрения ветеринарной генетики имеет значение эффективность отбора против вредных мутаций, прежде всего рецессивного типа. Анализ показывает, что высокие частоты рецессивного мутантного гена путем отбора могут быть быстро снижены до низких значений. Чтобы снизить частоту летального гена, например с 0,3 до 0,2 достаточно двух поколений.

Частота гомозигот (аа) по мутантному гену зависит от частоты гетерозиготных животных в популяции. Выявление этих гетерозигот и элиминация их соответственно будут снижать частоту генетических аномалий, обусловленных мутантным геном, что особенно важно при высокой частоте мутаций.

Генетическая структура популяции может изменяться в силу случайных генетико-автоматических процессов (по Н.П. Дубинину) или дрейфа генов (по С. Райту). Наблюдения показывают, что наиболее интенсивно дрейф генов протекает в малых популяциях. Например, известны случаи высокой концентрации редких мутаций в малочисленных изолированных популяциях крупного рогатого скота и других видов животных, связанные, очевидно, с генетико-автоматическими процессами. Распространение мутаций в разных популяциях животных может произойти в результате миграций.

Спаривание животных, находящихся в родственных отношениях, называют инбридингом. Родственное спаривание, или инбридинг, - метод подбора, используемый в племенном животноводстве для закрепления ценных наследственных признаков того или иного животного в последующих поколениях. У родственных между собой животных наблюдается сходство по определенным парам аллелей, которые они получили от общего предка. Это сходство тем больше, чем ближе степень родства.

Каждое животное в генотипе имеет аллельные гены, как в гомозиготном, так и в гетерозиготном состоянии. В гетерозиготе обычно находятся вредные мутантные рецессивные гены. При инбридинге возрастает вероятность слияния тождественных гамет, несущих мутантные гены в гетерозиготном состоянии, и перехода их в гомозиготное состояние. Эта вероятность пропорциональна степени родства спариваемых животных.

Таким образом, в результате применения инбридинга происходит изменение генных частот, возрастает вероятность выщепления рецессивных гомозигот, что является причиной инбредной депрессии, выражающейся в снижении жизнеспособности, плодовитости животных, рождении аномальных особей.

Инбридинг, как правило, был комплексным - одновременно на двух (1-я цифра) или на трех (2-я цифра) предков.

Имбредная депрессия по показателям, характеризующим продуктивность и жизнеспособность животных, не является фатальным спутником родственного спаривания.

Имеется множество примеров того, когда при инбридинге разных степеней, в том числе и близких, отрицательных последствий не наблюдали.

Н.П. Дубинин в этой связи отмечает, что «линия ухудшается, пока в ней идут процессы последовательного накопления вредных рецессивных генов, переходящих в гомозиготное состояние. Когда же наступает более или менее выраженное завершение этого процесса, линии по своим свойствам становятся относительно константными и могут в таком устойчивом состоянии сохраняться длительно. Изменить генотип таких линий могут лишь новые накапливающиеся в них мутации». Однако, подчеркивает академик, «многие линии при инбридинге, конечно, гибнут, ибо в них в гомозиготное состояние переходят летальные и полулетальные гены». Поэтому инбридинг применяется как метод индивидуальной селекции для перевода в гомозиготное состояние ценных генов выдающихся животных.

В ходе длительной эволюции животных наряду с полезными мутациями, подхватываемыми отбором, в популяциях или породах накопился определенный спектр генных и хромосомных мутаций. Каждое поколение популяции наследует этот груз мутаций, и в каждом из них возникают новые мутации, часть которых передается последующим поколениям.

Очевидно, что большая часть вредных мутаций отметается естественным отбором или элиминируется в процессе селекции. Это прежде всего доминантные генные мутации, фенотипически проявляющиеся в гетерозиготном состоянии, и количественные изменения наборов хромосом. Рецессивно действующие генные мутации в гетерозиготном состоянии и структурные перестройки хромосом, заметно не влияющие на жизнеспособность их носителей, могут проходить сквозь сито селекции. Они формируют генетический груз популяции. Таким образом, под генетическим грузом популяции понимают совокупность вредных генных и хромосомных мутаций. Различают мутационный и сегрегационный генетический груз. Первый формируется вследствие новых мутаций, второй - в результате расщепления и перекомбинирования аллелей при скрещивании гетерозиготных носителей «старых» мутаций.

Частота летальных, полулетальных и субвитальных мутантных генов, передающихся из поколения в поколение в форме мутационного генетического груза, из-за трудности идентификации носителей не поддается точному учету. Мортон и Кроу предложили форму расчета уровня генетического груза в количестве летальных эквивалентов. Один летальный эквивалент соответствует одному летальному гену, обусловливающему смертность с 10%-ной вероятностью, двум летальным генам при 50%-ной вероятности смерти и т. д. Величина генетического груза по формуле Мортона:

log eS = A + BF,

где S- часть потомства, оставшаяся в живых;

А - смертность, измеряемая летальным эквивалентом в популяции при условии случайных спариваний (F= 0), плюс смертность, обусловленная внешними факторами;

В - ожидаемое увеличение смертности, когда популяция становится полностью гомозиготной (F= 1);

F - коэффициент инбридинга.

Уровень генетического груза можно определять на основании фенотипического проявления мутаций (уродства, врожденные аномалии обмена и т. д.), анализа типа их наследования, частоты в популяции.

Н.П. Дубинин предлагает определять генетический груз популяции путем сравнения частот мертворожденных в родственных и неродственных подборах родительских пар. При этом следует иметь в виду, что при высокой частоте гетерозигот по рецессивным летальным и полулетальным мутантным генам рождение животных с аномалиями необязательно должно быть связано с инбридингом близких и умеренных степеней. Общий предок (источник мутации) может находиться и в отдаленных рядах родословной. К примеру, бык Трувор 2918 - гетерозиготный носитель мутантного рецессивного гена, находился в V, VI, VII рядах предков в совхозе «Красная Балтика», но при использовании его праправнука Автомата 1597 на родственных ему коровах наблюдались массовые случаи рождения бесшерстных телят.

Эти данные в определенной мере характеризуют уровни генетического груза по отдельным мутантным генам в конкретных популяциях крупного рогатого скота.

Хромосомные мутации являются составной частью генетического груза. Учет их ведется прямым цитологическим методом. По результатам многочисленных исследований основной компонентой груза аберраций хромосом у крупного рогатого скота являются робертсоновские транслокации, а у свиней - реципрокные. Наиболее распространенной мутацией у крупного рогатого скота оказалась транслокация 1/29 хромосомы. Размах изменчивости частоты этой аберрации, по нашим данным, в популяциях палево-пестрого скота составлял от 5 до 26 %.

Таким образом, концепция генетического груза в свете современных достижений цитогенетики должна быть расширена. Сейчас, когда известен широкий спектр аберраций хромосом и установлено строгое наследование отдельных из них (транслокации и инверсии), представляется целесообразным учитывать их наряду с вредными мутациями генов как составляющую часть генетического груза.

Существование в популяциях наследственной изменчивости, прежде всего мутаций в гетерозиготном состоянии, позволяет им быстро приспосабливаться к новым условиям среды за счет изменения генетической структуры. Мутационный процесс ведет также к образованию в популяциях генетического полиморфизма - разнообразия частот аллелей, гомозигот по доминантным, гетерозигот или гомозигот по рецессивным генам. Полиморфизм является механизмом, поддерживающим существование популяций. Если, например, гетерозиготность обеспечивает лучшую приспособляемость к изменившимся условиям среды, то идет отбор в пользу гетерозигот, что приводит к сбалансированному полиморфизму - воспроизведению в популяции из поколения в поколение определенного соотношения различных генотипов и фенотипов. Процессы, обеспечивающие способность популяции сохранять свою генетическую структуру, называют генетическим гомеостазом.

В генетике выделяют два класса признаков - качественные и количественные. Они различаются по характеру изменчивости и особенности наследования. Качественные признаки характеризуются прерывистой, а количественные - непрерывной изменчивостью. Первые из них дают четкие границы при расщеплении на доминантные или рецессивные признаки. Это связано с тем, что каждый из них обычно контролируется одним аллельным геном. Количественные признаки не дают четких границ расщепления при разных вариантах скрещивания, хотя отличаются от качественных более высокой степенью изменчивости. Особенностью количественных признаков является сложный характер наследования. Каждый из них детерминируется не одним, а множеством локусов в хромосомах. Такой тип наследования, когда один признак обусловливается многими генами, носит название полигенного. Уровень развития количественного признака зависит от соотношения доминантных и рецессивных генов, других генетических факторов и степени модифицирующего действия факторов внешней среды. Изменчивость по количественному признаку в популяции складывается из генетической и паралогической (внешнесредовой) изменчивости.

Понятие о наследуемости признаков и коэффициенте наследуемости. Разные количественные признаки имеют неодинаковую степень генетической изменчивости, и условия внешней среды оказывают различное воздействие на уровень фенотипического проявления того или иного признака. При отборе животных важнейшее значение имеет знание того, в какой степени будет совпадение уровней развития количественного признака у родителей и потомства или в какой степени потомки унаследуют количественные хозяйственно полезные признаки или патологические признаки родителей.

К хозяйственно полезным признакам относят молочность, содержание жира и белка в молоке коров, настриг шерсти у овец, яйценоскость у кур, прирост живой массы, плодовитость и др. Повышение уровня развития хозяйственно полезных признаков достигается постоянным отбором лучших индивидуумов для воспроизводства. Эффективность отбора по этим признакам зависит от степени их наследуемости, взаимосвязи между ними, разности между средним значением признака отобранной группы и средним по стаду (селекционный дифференциал) и интервала между поколениями.

Величины коэффициентов наследуемости зависят от природы признака. Так, среднее значение А2 по удою равно 0,25, жирномолочности - 0,38, живой массе у овец - 0,35, выходу чистой шерсти - 0,55, плодовитости у крупного рогатого скота - 0,08 и т. д.

Селекционной практикой и специальными исследованиями накоплены данные, свидетельствующие о том, что в некоторых случаях уровень развития одного или нескольких признаков у потомства превосходит степень выраженности этих признаков у лучшего из родителей. Такое явление, названное гетерозисом, не вписывается в обычные рамки наследования признаков. Для его объяснения предложены разные гипотезы:

1) гетерозиготного состояния по многим генам;

2) взаимодействия доминантных благоприятных генов;

3) сверхдоминирования, когда гетерозиготы превосходят гомозиготы.

Н.В. Турбин предложил теорию генетического баланса, в основе которой лежит сложный характер причинно-следственных связей между наследственными факторами и признаками.

Н.Г. Дмитриев и И.JI. Гальперин отмечают, что главную причину возникновения гетерозиса надо искать в особенностях эволюции вида, породы, линии. При этом следует иметь в виду, что все в природе направлено на сохранение жизни. Проявление гетерозиса зависит от генетической природы признака. Так, при межпородном или межлинейном скрещивании гетерозис в большей степени проявляется в отношении признаков, имеющих Низкую степень наследуемости

Что касается признаков, имеющих среднюю или высокую наследуемость, то гетерозис по ним Чаще всего проявляется слабо, и гибриды занимают обычно промежуточное положение.

При наличии истинного гетерозиса величина индекса или больше 100 %. Если же величина гетерозиса меньше 100 % или имеет знак «минус», то правильнее говорить о лучшей или худшей комбинационной способности линий. Скрещивание последних по определенной схеме обеспечивает в гибридном потомстве лучшее развитие одного признака от отца, а другого от матери, хотя этот признак у гибрида по своему развитию не превосходит лучшую родительскую форму.



Чистые линии [синоним инбредные линии; линии (у высших организмов); чистые культуры, штаммы и клоны (у микроорганизмов)] - это ограниченная совокупность наследственно однородных организмов, происходящих от одного общего предка. Чистые линии играют большую роль в различных областях экспериментальной медицины и биологии, таких как онкология, генетика тканевой совместимости, иммуногенетика, химиотерапия, радиология, лечение , генетика человека, вирусология и т. д.

Практическое значение чистых линий заключается в возможности контроля за генетической изменчивостью отдельных признаков или их совокупности, представляющих интерес с научной или практической стороны.

В экспериментальной практике используют сотни инбредных линий мышей, десятки линий крыс и хомячков, а также морских свинок, кроликов, кур и других животных (см. Лабораторные животные). Генетически чистые линии являются также штаммы бактерий, актиномицетов - продуцентов антибиотиков, штаммы микроорганизмов, применяемые в производстве сывороток, вакцин и т. д.

Чистые линии (синоним инбредные линии) - ограниченная совокупность наследственно однородных организмов, происходящих в каждом поколении от одного общего предка или от одной пары близкородственных особей (брата и сестры). Входящие в состав чистых линий организмы называются инбредными, чистолинейными или линейными.

Инбридинг - буквально значит разведение в себе, т. е. спаривание особей, находящихся в близком родстве друг с другом.

Цель рациональных систем разведения животных или растений, и в том числе инбридинга, заключается в контроле генетической изменчивости того признака или совокупности признаков, которые представляют интерес о научной или практической (нередко с любительской) точки зрения.

Любая естественная популяция (см.) животных или растений состоит из наследственно разнородных генотипов. Концентрация (частота) составляющих популяцию генотипов остается в ней постоянной при следующих условиях: 1) популяция неограниченно велика; 2) составляющие ее особи (генотипы) одинаково жизнеспособны, плодовиты и, не будучи стеснены пространственными или какими-либо другими барьерами, могут свободно перемещаться на территории популяции и свободно скрещиваться между собой; 3) в популяции отсутствуют естественный отбор и мутационные изменения. Поскольку такие идеальные условия в природе никогда не осуществляются, в популяции всегда происходят то медленные, то более быстрые изменения в концентрации (частоте) составляющих ее генотипов в ту или иную сторону. Постепенная трансформация популяции носит название генного дрейфа или генетико-автоматического процесса.

В противоположность этому инбридинг имеет своим результатом расчленение популяции на составляющие ее биотипы, или чистые линии, и уменьшает их генетическую изменчивость. Скорость накопления в инбридируемой линии гомозигот зависит от степени родства спариваемых особей в каждом поколении. Этот критерий лежит в основе разных систем инбридинга.

Гомозиготность линии быстрее всего достигается у самооплодотворяющихся организмов: в этом случае уже после восьми поколений процент гомозигот в линии достигает 100. Несколько менее эффективен метод скрещивания братьев с сестрами; при этой системе инбридинга почти 100% гомозиготность достигается после 20 поколений. С уменьшением степени родства спариваемых особей (двоюродных братьев и сестер, троюродных и т. д.) падает и скорость приближения линии к 100% гомозиготности.

В практическом инбридинге, особенно в применении к лабораторным животным (см.), наибольшее распространение получила система братско-сестринских спариваний, как наиболее простых в техническом отношении и в отношении простоты документации. Для того чтобы генетическую изменчивость в линии свести к минимуму, принимается, что она должна пройти 40 поколений инбридинга. Чистолинейные животные играют важную роль в медико-биологических исследованиях. В сельскохозяйственной практике чистолинейные животные и растения являются источником повышения продуктивности в результате использования явления гетерозиса у межлинейных гибридов. См. также Генетика, Изменчивость.

чистая линия

генотипически однородное потомство, получаемое от одной самоопыляющейся (растения) или самооплодотворяющейся (животные) особи с помощью отбора и дальнейшего самоопыления или самооплодотворения. Представляет собой группу организмов гомозиготных по большинству генов. Изучение наследования признаков в чистой линии - важный метод экспериментальной генетики. Чистыми линиями иногда называют линии лабораторных животных (напр., мышей), полученных в результате близкородственных скрещиваний.

Чистая линия

генотипически однородное потомство постоянно самоопыляющихся растений или самооплодотворяющихся животных, большая часть генов которого находится в гомозиготном состоянии. Термин введён в 1903 датским генетиком В. Иогансеном, который в опытах на бобовых растениях доказал, что в Ч. л. при одинаковых условиях проявляется сходный фенотип . Ч. л. получают от одного предка и поддерживают с помощью принудительного самоопыления и отбора. Особи в Ч. л. воспроизводят в ряду поколений одни и те же наследственно закрепленные признаки. Ч. л. имеют важное значение в с.-х. производстве, являясь основными структурными элементами сортов растений. Гибридизация двух Ч. л. в ряде случаев приводит к эффекту гетерозиса в первом гибридном поколении (так получают некоторые гибридные формы кукурузы). Иногда термин Ч. л. неправильно применяют к т. н. инбредным линиям, которые представляют собой потомство животных или растений (перекрёстноопыляющихся), получаемое от одной пары предков и поддерживаемое в ряду поколений с помощью постоянных близкородственных скрещиваний и отбора. Такие линии используют в подавляющем большинстве генетических исследований на высших организмах. Например, механизмы канцерогенеза и методы лечения раковых заболеваний изучаются на т. н. «Ч. л.» лабораторных мышей.

Чистые линии у животных с перекрестным оплодотворением получают путём близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

Чистая линия

Чистая линия - группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей , все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена.

Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство.

Аналогом чистой линии у микроорганизмов является штамм .

Чистые (инбредные) линии у животных с перекрестным оплодотворением получают путем близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.

Использование чистых линий в научных исследованиях

Чистые линии гороха использовал для скрещивания в своих опытах первооткрыватель законов наследственности, Грегор Мендель . В 1903 г. генетик В. Иогансен показал неэффективность отбора в чистых линиях, что сыграло важную роль в развитии эволюционной теории и практики селекции.

В настоящее время чистые линии животных (а первую очередь крыс и мышей) и растений играют важнейшую роль в проведении биологических и медицинских исследований. Генетическая однородность используемых учеными организмов повышает воспроизводимость результатов и снижает вероятность воздействия на результат исследования генетических различий между особями (например, в контрольной и опытной группе). С помощью традиционной селекции и методов генной инженерии получено множество чистых линий с заданными свойствами (например, повышенной склонностью к потреблению алкоголя, высокими уровнем заболеваемости разными формами рака и т.п.), используемые для конкретных исследований.

Использование чистых (инбредных) линий в селекции


Wikimedia Foundation . 2010 .

Смотреть что такое "Чистая линия" в других словарях:

    Генотипическое однородное потомство, происходящее от одной самоопыляющейся или самооплодотворяющейся особи, подвергающееся искусственному отбору и дальнейшему самоопылению или самооплодотворению. Чистая линия, как результат инбридинга,… … Финансовый словарь

    Генотипически однородное потомство, получаемое от одной самоопыляющейся (растения) или самооплодотворяющейся (животные) особи с помощью отбора и дальнейшего самоопыления или самооплодотворения. Представляет собой группу организмов гомозиготных по … Большой Энциклопедический словарь

    Генотипически однородное потомство, получаемое исходно от одной самоопыляющейся или самооплодотворяющейся особи с помощью отбора и дальнейшего самоопыления (самооплодотворения). Термин введён в 1903 В. Иогансеном. Поскольку самоопыление… … Биологический энциклопедический словарь

    чистая линия - Потомство, получаемое в ряду поколений от 1 особи (при наличии возможности самооплодотворения, используемого и в дальнейшем, максимально тесный инбридинг); также понятие «Ч.л.» используется для обозначения линий, полученных исходно от … Справочник технического переводчика

    Генотипически однородное потомство, получаемое исходно от одной самоопыляющейся (растения) или самооплодотворяющейся (животные) особи с помощью отбора и дальнейшего самоопыления или самооплодотворения. Представляет собой группу организмов,… … Энциклопедический словарь

    Pure line чистая линия. Потомство, получаемое в ряду поколений от 1 особи (при наличии возможности самооплодотворения, используемого и в дальнейшем, максимально тесный инбридинг ); также понятие “Ч.л.” используется для… … Молекулярная биология и генетика. Толковый словарь.

    чистая линия - ЭМБРИОЛОГИЯ РАСТЕНИЙ ЧИСТАЯ ЛИНИЯ – группа организмов, гомозиготных по большинству генов, полученная в результате самоопыления или самооплодотворения. Растения, в потомстве которых не наблюдается разнообразия по изучаемому признаку … Общая эмбриология: Терминологический словарь

    чистая линия - grynoji linija statusas T sritis augalininkystė apibrėžtis Genotipiškai vienodi palikuonys, gauti iš homozigotinio savidulkio individo. atitikmenys: angl. pure line rus. чистая линия … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    Чистая линия - генотипически однородное потомство, получаемое в результате самоопыления или самооплодотворения от одной особи. Ч.л. представляет собой группу организмов, гомозиготных по большинству генов. Иногда Ч.л. называют инбредные линии. (См. также… … Словарь по психогенетике

    Генотипически однородное потомство постоянно самоопыляющихся растений или самооплодотворяющихся животных, большая часть генов которого находится в гомозиготном состоянии. Термин введён в 1903 датским генетиком В. Иогансеном, который в… … Большая советская энциклопедия

В наше время активно развиваются биотехнологии и генетика. В России генетику и кибернетику в конце тридцатых годов прошлого века постигла плачевная судьба. "Народный" академик Трофим Денисович Лысенко, обласканный Советской властью, объявил генетику "продажной девкой империализма". Все разработки были прекращены, ученые, занимающиеся этой наукой, репрессированы. После 1956 года исследования были возобновлены. Для получения точных результатов опытов для генетических экспериментов необходимы генетически чистые линии животных и растений. Так что такое чистая линия в биологии?

Основное понятие о чистой линии

Чистая линия в генетике - это группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. (Из свободной энциклопедии).

Таково определение чистой линии в биологии.

Эти организмы однородны, поскольку их генетический код идентичен. Они происходят от одного предка, либо у растений получены в результате самоопыления.

Выведением чистых линий селекционеры занимались задолго до появления генетики и понятии о генетическом коде. Например, знаменитая линия орловских рысаков. Изначально все они являлись потомками знаменитого Сметанки, рысака графа Орлова.

С помощью искусственного отбора в потомстве отбирались признаки, которые представляли интерес. Сейчас существует 11 чистых линий рысаков.

Так же выводились чистые линии кур с повышенной яйценоскостью и чистые линии коров, коз и других сельскохозяйственных животных. Что такое чистые линии и какое значение они имеют для сельского хозяйства? Это позволяет улучшать требуемые свойства животных, увеличивать их поголовье, получать продукцию нужного качества.

Естественный отбор в чистых линиях

Грегор Мендель, основоположник современной генетики, тоже интересовался, что такое чистые линии, и занимался их выведением у растений. Мендель использовал 22 подобные линии гороха. Исследуя изменчивость в организмах, он сформулировал свои знаменитые законы. Кроме того, он заметил, что чистые линии при естественном отборе часто нежизнеспособны.

В дикой природе при изменении внешних условий популяция с определенным набором генов часто не может быстро измениться.

Лабораторные мыши

Трудно переоценить, какое значение для науки имеют лабораторные мыши. Их используют и в клинических исследованиях, и как подопытных животных. Мыши заинтересовали исследователей, так как очень быстро размножаются. Лабораторные мыши были выведены в 19-м веке путем близкородственных скрещиваний (инбридинга). Через 18-20 поколений получаются абсолютно идентичные.

Их используют при исследованиях и в медицине. Поскольку они абсолютно идентичны, есть возможность сравнить группу, получающую определенный препарат, и контрольную. Причем результаты объективны и повторяются, чего невозможно достигнуть, используя обычных животных.

Правда, некоторые ученые считают, что называть лабораторных мышей чистой линией - это неправильно.

Особи одной группы могут внешне отличаться друг от друга. Это описывает понятие "норма реакции", т. е. возможный диапазон различия внешних признаков.

Так, что такое чистая линия, хорошо понятно также на примере самоопыления растений.

Использование в селекции чистых линий растений и животных совместно с современными методами генной инженерии обещают фантастические результаты. Может быть, отпадет необходимость убивать животных для получения мяса? Как в фантастических произведениях, животные будут давать мясо с живого тела? (Причем безболезненно?) Или мы будем иметь растения, не боящиеся вредителей и с повышенной урожайностью?