Основные причины и формы наследственной патологии. Механизмы развития наследственных болезней

Передача осуществляется с помощью генов – материальных единиц наследственности. От родителей потомкам передаются не признаки в готовом виде, а информация (код) о синтезе белка (фермента), детерминирующего этот признак.

Элементарными дискретными единицами наследственности являются гены, представляющие собой отрезки молекулы ДНК. Гены состоят из кодонов. Каждый кодон представляет собой группу из 3 нуклеотидов (нуклеотидный триплет). Каждый кодон кодирует информацию о структуре аминокислоты и местоположении ее в белковой молекуле. Каждый ген определяет последовательность аминокислот в одном из белков, что, в конечном счете, приводит к реализации тех или иных признаков в онтогенезе особи. Гены собираются в блоки, а последние в ДНК-нити, которые образуют хромосому.

Основная догма генетики : ген – белок – фенотипический признак.

Число хромосом и характерные особенности их строения видовой признак (правило постоянства числа хромосом ) . Так, у человека в ядрах всех клеток находится по 46 хромосом . Число хромосом у всех видов четное, это связано с тем, что хромосомы составляют пары (правило парности хромосом ). У человека 23 пары хромосом.

Хромосомы, которые относятся к одной паре, называют гомологичными . Негомологичные хромосомы всегда имеют отличия в строении. Каждая пара хромосом характеризуется своими особенностями (правило индивидуальности хромосом ).

В последовательных генерациях клеток сохраняется постоянное число хромосом и их индивидуальность вследствие того, что хромосомы обладают способностью к авторепродукции при делении клеток (правило непрерывности хромосом ).

В ядрах клеток тела (т.е. соматических клетках) содержится полный двойной набор хромосом. В нем каждая хромосома имеет партнера. Такой набор называется диплоидным и обозначается 2n . В ядрах половых клеток в отличие от соматических из каждой пары гомологичных хромосом присутствует лишь одна хромосома. Так, в ядрах половых клеток человека присутствует 23 хромосомы. Все они различны, негомологичны. Такой одинарный набор хромосом называетсягаплоидным и обозначается n . При оплодотворении происходит слияние половых клеток, каждая из которых вносит в зиготу гаплоидный набор хромосом и восстанавливается диплоидный набор: n +n=2n.



При сравнении хромосомных наборов из соматических клеток мужских и женских особей, принадлежащих одному виду, обнаруживалось отличие в одной паре хромосом. Эта пара получила название половых хромосом , или гетерохромосом . Все остальные пары хромосом, одинаковые у обоих полов, имеют общее название аутосом .

Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом . Иными словами, кариотип – совокупность особенностей (количественных и качественных) полного хромосомного набора. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и 1 пара – половых хромосом (гетерохромсом).

Гены расположены в хромосомах. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у каждого вида равно гаплоидному числу хромосом. Каждый ген в хромосоме занимает определенное местолокус . Гены в хромомомах расположены линейно. Гены, определяющие развитие альтернативных признаков, принято называть аллельными парами , они расположены в одних и тех же локусах гомологичных хромосом. Если в обеих гомологичных хромосомах находятся одинаковые аллельные (изоаллельные) гены, такой организма называется гомозиготным и дает только один тип гамет. Если же аллельные гены различны, то такой организм носит название гетерозиготного по данному признаку, он образует два типа гамет.

Все болезни в зависимости от того, связаны ли они с изменением наследственной информации или возникают под действием внешних факторов в процессе онтогенеза, можно разделить на 2 варианта – наследственные и приобретенные .

Наследственные болезни – заболевания, обусловленные хромосомными и генными мутациями. Основой выделения наследственных болезней является не факт наследования (хотя это может иметь место), а нарушение в наследственном (генетическом) аппарате половой клетки одного или обоих из родителей.

Приобретенные болезни возникают под действием факторов внешней среды. Если приобретенные болезни по проявлениям сходны с наследственными, их называют фенокопиями данных наследственных болезней.

Фенокопия – наличие у индивида таких фенотипических признаков, которые обычно возникают при наследственных болезнях. В отличие от наследственных болезней характерные изменения фенотипа при фенокопиях приобретаются организмом в процессе онтогенеза в результате воздействия патогенных факторов на эмбрион, плод в критические периоды их развития, а также и в постнатальном периоде, а не являются результатом генных или хромосомных мутаций в родительских гаметах. Например, спонтанно возникают и иногда передаются по наследству генные мутации, приводящие к незаращению верхней челюсти. Развивающаяся в этом случае патология является наследственным заболеванием. Однако, сходное по фенотипическому проявлению состояние может развиваться и при нормальном генотипе – в результате воздействия разнообразных патогенных факторов на эмбрион в период формирования лицевого скелета. Очень часто данная патология является следствием тератогенного эффекта глюкокортикоидных гормонов, применяемых по жизненным показаниям в 1-ой половине беременности.

Генотипом называется совокупность всех генов, следовательно, и генетических признаков. Генотип обладает двумя противоречивыми качествами: стабильностью и изменчивостью

Фенотипом называется совокупность проявившихся признаков организма в результате взаимодействия генотипа с окружающей средой.

Этиология наследственных заболеваний

Причинные факторы, вызывающие наследственные болезни, называют мутагенами , т.к. они реализуют свое действие посредством мутаций.

1. Мутагены (по происхождению)

Экзогенные эндогенные

2. Мутагены (по природе)

Физические химические биологические

1. Экзогенные химические мутагены:

Пестициды,

§ промышленные соединения (формальдегид, ацетальдегид, уретан, бензол),

§ пищевые добавки (ароматические углеводороды, цикламаты),

§ лекарственные вещества (цитостатики, ртутные соединения, кофеин, мышьяк).

2. Эндогенные химические мутагены:

§ некоторые метаболиты, образующиеся в процессе обмена веществ (перекись водорода, липидные перекиси),

§ свободные радикалы (оксигенные, гидроксильные, липидные).

3. Экзогенные физические мутагены:

§ все виды ионизирующей радиации (α, β, γ, рентгеновские лучи, поток нейтронов),

§ ультрафиолетовые лучи.

4. Эндогенные физические мутагены:

§ эндогенная ионизирующая радиация, обусловленная наличием в составе тканей радиоактивных элементов: 40 К, 14 С, радона.

5. Биологические мутагены:

§ вирусы и токсины ряда микроорганизмов.

Патогенез наследственных болезней

Мутация – начальное звено патогенеза наследственных болезней .

Мутация – это изменение структуры гена, хромосомы или их числа. Мутации ведут к появлению гена, который обусловливает новые наследственные признаки.

Мутации

(по характеру изменений генетического аппарата )

геномные хромосомные аберрации генные (точечные)

(обусловленные (обусловленные изменением обусловленные изменением

изменением структуры хромосом ) молекулярной

числа хромосом ): структуры гена )

-полиплоидии – кратное

увеличение полного

набора хромосом

(ди-, три-, тетраплоидии),

- анеуплоидии – изменение

числа хромосом в одной или

нескольких парах

Мутации

(в зависимости от типа клеток )

соматические гаметические (генеративные)

возникают в соматических клетках , появляются в клетках, из которых

не передаются при половом размножении; развиваются гаметы или в половых клетках ;

могут влиять на судьбу только данного организма эти мутации могут сказываться на судьбе

(развитие мозаицизма определенных признаков, потомства или передаваться по наследству.

опухолевый рост клона потомков мутировавшей клетки и др.).

Мутации

(в зависимости от действующих мутагенных факторов )

Спонтанные индуцированные

Возникают под влиянием естественных природных Вызываются известными факторами или

факторов , в том числе при случайных ошибках специально направленными воздействиями ,

в процессе репликации ДНК. повреждающими ДНК и/или нарушающими

процессы ее репликации или репарации.

Мутации

(с точки зрения биологической целесообразности )

полезные (биологически целесообразные) вредные (биологически нецелесообразные):

Увеличивают адаптационные и репродуктивные - нелетальные (совместимые с жизнью),

способности особи и способствуют оставлению - летальные (не совместимые с жизнью).

большего числа потомков.

5. Мутации - по механизму изменения генетического материала (гена или хромосомы):

§ делеции – выпадение какого-либо участка гена или хромосомы,

§ транслокации – перемещение участка,

§ инверсии – поворот участка на 180 0 ,

§ дупликации – удвоение хромосом.

Необходимым условием для возникновения мутации является недостаточная активность систем обнаружения и устранения повреждений ДНК, называемых системами репарации.

В результате мутации образуется аномальный ген с измененным кодом.

Благодаря естественному отбору организмы-мутанты из популяции постоянно удаляются, т.е. патологические гены элиминируются:

§ 15% плодов погибают до рождения,

§ 5% - во время родов или сразу после рождения,

§ 3% - не достигают половой зрелости,

§ 20% - не вступают в брак,

§ у 10% - брак бесплоден.

Однако в популяции устанавливается равновесие частот генотипов (закон Харди-Вайнберга), другими словами, сколько мутантов из популяции исчезает, столько же появляется вновь, благодаря новым мутациям. Это означает, что количество различных форм наследственных заболеваний должно быть постоянным. Но закон Харди-Вайнберга могут нарушать несколько факторов:

¨ близкородственые браки (инбридинг) увеличивают вероятность возникновения гомозигот с патологическим рецессивным геном;

¨ «мутационное давление» – появление необычно сильного мутагенного фактора (например, последствия аварии на ЧАЭС, синтез и использование химического мутагена – лекарства, пищевого консерванта, экологические нарушения);

¨ «давление отбора» – благодаря симптоматическому и патогенетическому лечению наследственного заболевания (устранять причину, исправлять генотип медицина сегодня не может) человек доживает до детородного возраста и передает патологический ген потомству. При этом нарушается естественный отбор, происходит, по выражению генетиков, «засорение генофонда» и увеличение числа наследственных болезней;

¨ «дрейф генов» – генетико-автоматический процесс, случайные изменения частоты аллеля, при которых в зависимости от адаптированности одни гены элиминируются, а другие закрепляются в популяции.

На основании возникающих мутаций вся патология наследственности делится на.

Инициальным звеном патогенеза наследственных болезней являются мутации - внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генотипов не признает наличия специфических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации. Сторонниками существования специфических мутаций являются И.П. Дубинин, Е.Ф. Давыденкова, Н.П. Бочков.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации - в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутация или амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные иди точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные абберации, в свою очередь подразделяются на следующие виды:

делеция (нехватка) - вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующие им гены хромосомы. Если последовательность генов в хромосоме изобразить рядом цифр 1, 2, 3, 4, 5, 6, 7, 8 . 10000, то при делеции участка 3-6 хромосома укорачивается, а последовательность в ней генов меняется (1, 2, 7, 8 10000). Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция сегмента р1 - p-eг (короткого плеча) 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Нв - генов связано развитие одной из форм наследственных гемоглобинопатий - α-талассемии (см. раздел «Патофизиология системы крови»);

дупликация - вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. При принятой выше нумерации генов в хромосоме и дупликации на уровне 3-6 генов последовательность генов в такой хромосоме будет выглядеть следующим образом - 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8 - 10000. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко.

инверсия - вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180° - 1, 2, 6, 5, 4, 3, 7, 8 10000;

транслокация - вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами), миелоцитарный лейкоз - реципрокная транслокация между 9-й и 22-ой хромосомами (подробнее см. в разделе «Опухоли»).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с Х хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

Мутация - начальное звено патогенеза. Под мутацией (от лат. mutatio - изменение) в широком смысле слова понимают изменение структуры гена, хромосомы или их числа. В результате мутаций образуется аномальный ген с измененным кодом.
Мутации могут быть благоприятными и неблагоприятными (патогенными). Патогенные мутации подразделяются по причине возникновения, по «масштабу» изменений генетического материала, по механизму его изменения.
По причине возникновения мутации делятся на спонтанные и индуцированные.
По «масштабу» изменений генетического материала мутации делятся на генные («точечные»), хромосомные, геномные.
По механизму изменения генетического материала (гена или хромосомы) мутации делятся на делеции - выпадение какого либо участка гена или хромосомы; транслокации - перемещения участка; инверсии - поворота участка на 180 градусов и др.
Необходимым условием для возникновения мутации является недостаточная активность систем обнаружения и устранения повреждения ДНК, называемых системами репарации.

Мутации как источник наследственных болезней

Мутация - устойчивое наследуемое изменение дезоксирибонуклеино-вой кислоты (ДНК). Мутацию характеризует изменение первичной нуклеотидной последовательности ДНК.
Дети наследуют мутации в половых клетках родителей, то есть гаметические мутации.
Мутации могут быть масштабными изменениями структуры хромосом, которые затрагивают миллионы нуклеотидов. К таким мутациям относятся дупликация (удвоение), делеция (удаление, потеря) и транслокация (перемещение из одного участка хромосомы в другой или другую хромосому) фрагментов хромосом.

Мутации в одном или нескольких нуклеотидах называют точечными.
Делеция или вставка одного или двух нуклеотидов в кодирующей части гена вызывают мутацию со сдвигом рамки считывания. В результате информационная рибонуклеиновая кислота (мРНК) разбивается на кодоны таким образом, что каждый следующий кодон мутантного гена считывается неправильно. Такие мутации меняют аминокислотную последовательность белка, что может обусловить потерю протеином функциональных свойств или извращение физиологической активности белка. Кроме того, сдвиг рамки может вызвать патологическое кодирование мутантным геном белка с абортивной (неполной) структурой. Такое происходит вследствие преждевременного формирования в последовательности кодонов гена терминирующего кодона, который кодирует сигнал к прекращению транскрипции.
При мутации, не меняющей смысла, изменение ДНК не меняет информацию об аминокислотной последовательности и структуру белка, кодируемую геном.
Пример - замена кодона УУУ на кодон УУЦ.
Оба этих кодона кодируют одну и ту же аминокислоту фенилаланин.
При мутации, искажающей смысл, появление одного кодона вместо другого последовательности ДНК приводит к замене одной из аминокислот в аминокислотной последовательности белка. Пример - появление кодона УУА лейцина вместо кодона УУУ фенилаланина.
При мутации, не затрагивающей смысл, замена нуклеотида превращает один из кодонов в терминирующий кодон, кодирующий сигнал к прекращению транскрипции. Такая мутация может быть причиной экспрессии геном абортивной аминокислотной последовательности белка. Пример - появление терминирующего кодона УУА вместо кодона УАУ тирозина.

Сплайсинг - это процесс удаления интронных последовательностей инфор мационной РНК. Интрон - участок ДНК между двумя экзонами (кодирующим последовательностями), который транскрибируется, но не кодирует аминокис лотную последовательность белка.
Иногда замена нуклеотида в экзоне меняет сплайсинг транскрипта, или образуя скрытый сайт сплайсинга, или нарушая функцию нормального сайта. Сай сплайсинга - участок ДНК, кодирующий сигнал к сплайсингу. В результате об разования скрытого сайта сплайсинга образуется белок с аномальной аминокис лотной последовательностью, лишенный какого-либо своего фрагмента. При на рушении функции нормального сайта сплайсинг не происходит, аминокислотная последовательность начинает содержать продукт трансляции интрона.

Крупная деления захватывает часть гена, весь ген или группу соседних генов В результате кодирующая часть гена теряется в такой степени, что синтеза белк: не происходит. Крупная делеция может быть причиной болезни Дюшенна (про грессирующего бульбарного паралича). Болезнь встречается в позднем возраст как прогрессирующие атрофия и паралич мышц языка, губ, нёба, глотки и горта ни. Заболевание связано с атрофической дегенерацией нейронов, иннервирую щих данные мышцы.

Атрофическая дегенерация в данном случае вторична относительно патологи ческих изменений мышц. Причиной миопатии Дюшенна является дефект дистро фина, то есть белка с молекулярной массой 427 000, который находится на внут ренней поверхности сарколеммы. Ген дистрофина - один из самых крупны генов человека; его длина - 2 млн нуклеотидов. Делеция захватывает ген неравномерно, чаще в его начале и середине. Недостаточность дистрофина ослабляет сарколемму, вызывает разрыв мембраны и причинно-следственный ряд, который завершается некрозом мышечных волокон.

Делеция может также привести к слиянию кодирующих последовательносте двух генов и образованию химерного белка. Такие мутации являются весьма нередкими при неравномерном кроссинговере между парными повторами гомологичных генов. Напомним, что кроссинговер - это реципрокный обмен между двумя парными хромосомами в мейозе, приводящий к переносу кластеру генов от каждой хромосомы к ее гомологу. Известен «ген-химера» альдостеронсинтетазы и 11-В-гидролазы. Обычно альдостеронсинтетазу содержат клетки поверхностной клубочковой зоны коры надпочечников. В результате мутации альдостерон-синтетаза появляется в их средней пучковой зоне. Клетки пучковой зоны под влиянием кортикотропина начинают усиленно секретировать не только корти-зол, но и альдостерон. Это обуславливает альдостеронизм как причину артериальной гипертензии.

При определяемом полом наследовании болезни она проявляется специфическим фенотипом только у субъектов определенного пола. Следует отличать данный вид наследования моногенных заболеваний от наследования болезней, кодируемых генами Х-хромосом. Во многом данный вид наследственной патологии определяется действием половых гормонов и другими отличиями мужского и женского организмов. Например, облысение до полового созревания наследуется по аутосомно-доминантному типу и редко составляет фенотип мужчины.

Рецессивное наследование, связанное с Х-хромосомой

При данном виде наследования:
1) почти все больные являются мужчинами;
2) если носителем патогенного аллеля является мать, то она, как правило, здорова;
3) фенотип болезни может быть следствием новой мутации в сегменте Х-хро-мосомы матери, не имеющей гомолога в Y-хромосоме;
4) больной мужчина никогда не передает свою болезнь по наследству сыновьям;
5) все дочери больного мужчины являются носителями патогенного аллеля (переносчиками болезни);
6) женщина-переносчик болезни передает ее 50% процентам своих сыновей;
7) никто из дочерей женщины-переносчика не страдает от моногенной болезни.

Для того, чтобы при рецессивном, связанном с Х-хромосомой наследовании моногенной болезни родилась больная девочка, необходимы следующие условия:
1) больной отец;
2) мать гетерозиготная или гомозиготная по мутантному аллелю.

У мужчин все гены на сегменте Х-хромосоме, не имеющем гомолога на Y-хромосоме, экспрессируются в фенотипе дискретным наследственным признаком. Так как моногенные болезни, наследуемые в связи с Х-хромосомой и по рецессивному типу, - это редкие заболевания, то женщина с такой моногенной болезнью - это большая редкость. Примерно половина братьев матери пробанда больны моногенной болезнью, передаваемой в связи с Х-хромосомой и по рецессивному типу.

Мозаицизм - это присутствие в организме не менее двух клеточных линий, которые отличаются по генотипу и кариотипу, но происходят из одной зиготы.
Деление клеток в многоклеточном организме всегда сопровождается рядом мутаций (одно деление клетки - 4-5 соматических мутаций). Соматические мутации такого генеза обычно устраняются действием многих механизмов коррекции ошибок воспроизведения генетического материала при репликации. Можно считать, что в организме вследствие мутаций при репликации на ранних стадиях формирования многоклеточного организма всегда существует вероятность возникновения новых клеточных линий, отличных по строению своего генетического материала от исходной клеточной линии. При реализации такой возможности органы начинают отчасти составляться клетками новой линии, отличающейся от основной линии своим генетическим материалом.

Клетки новой линии разбросаны в различных органах в виде скоплений, островков. Если бы все регуляторные и исполнительные аппараты состояли из клеток новой линии, то организм был бы обречен на гибель. Например, при синдроме Мак-Куна-Альбрихта скопления клеток новой линии мозаично составляют костную ткань, многие эндокринные железы формируют пигментные пятна кожи, обуславливают аномалии сердца и печени.

Если мутация, лежащая в основе мозаицизма, характеризует генотип гамет, то наследственная патология у детей больного с мозаицизмом всегда тяжелее наследственных аномалий без мозаицизма. Дело в том, что все клетки организма больного ребенка содержат болезнетворный аллель. Иными словами, весь многоклеточный организм больного состоит из клеток одной линии с аномальным генотипом. Иногда мозаицизм обуславливает внутриутробную гибель плода. Иногда репликация клеток нормальных линий компенсирует последствия мозаицизма, и рождается ребенок с патологией, обусловленной существованием в организме клеток патологических линий.

Импринтинг (запечатление) - это различие в экспрессии генетического материала в зависимости от того, кто передал его потомству, отец или мать. Выделяют тканеспецифичный импринтинг и импринтинг, зависящий от времени развития (периода онтогенеза). В одних тканях при тканеспецифичном импринтинге происходит экспрессия двух родительских аллелей, а в других только одной альтернативной формы гена.
В основе синдрома Прадера-Вилли лежит делеция части хромосомы 15. На данной хромосоме локализованы в тесной близости друг к другу определенные гены, которые экспрессируются только при условии, если их наследуют от матери или от отца. В зависимости от того, кто передает хромосому, подвергшуюся делеции, вследствие импринтинга развиваются разные фенотипы наследственных синдромов.
На нескольких хромосомах есть участки, которые содержат гены, экспрессия которых зависит от того, кто передал их по наследству, отец или мать. Некоторые из таких генов определяют процессы роста тела и формирование поведенческих навыков в ранние периоды онтогенеза. Другие гены такого рода вовлечены в канцерогенез. Импринтинг следует заподозрить в том случае, если наследственная болезнь возникает в ряду поколений через раз.

Причинами возникновения наследственных болезней и аномалий развития являются факторы, способные изменить качественную или количественную характеристику генотипа (структуру отдельных генов, хромосом, их число), то есть вызвать мутации. Такого рода факторы называют мутагенами. Мутагены классифицируют на экзогенные и эндогенные. Экзогенные мутагены могут быть химической, физической и биологической природы. Кхимическим экзогенным мутагенам относятся многие вещества промышленного производства (бензпирен, альдегиды, кетоны, эпоксид, бензол, асбест, фенол, формалин, ксилол и др.), пестициды. Выраженной мутагенной активностью обладает алкоголь. В клетках крови алкоголиков число дефектов в генетическом аппарате встречаются в 12-16 раз чаще, чем у непьющихили мало пьющих людей. Намного чаще в семьях алкоголиков рождаются дети с синдромами Дауна, Клайнфельтера, Патау, Эдвардса и другими хромосомными болезнями. Мутагенные свойства присущи и некоторым лекарственным препаратам (цитостатикам, акрихину, клофелину, соединениям ртути и др.), веществам, применяемым с пищей (сильный мутаген гидразин содержится в больших количествах в съедобных грибах, эстрагон и пиперин в черном перце; множество веществ, обладающих генотоксическими свойствами, образуется при кулинарной обработке жира и т.д.). Значительный генетический риск возникает при длительном употреблении человеком молока и мяса животных, в кормах которых преобладают травы, содержащие много мутагенов (например, люпин). Группу экзогенных физических мутагенов составляют все виды ионизирующей радиации (α-, β-, γ-, рентгеновские лучи), ультрафиолетовое излучение. Продуцентами биологических экзогенных мутагенов являются вирусыкори, краснухи, гепатита.

Эндогенные мутагены также могут быть химической (Н 2 О 2 , перекиси липидов, свободные радикалы) и физической (К 40 , С 14 , родон) природы.

Различают также истинные и косвенные мутагены. К числу последних относятся соединения, которыесами в обычном состоянии не оказывают повреждающего действия на генетический аппарат, однако, попав в организм, в процессе метаболизма приобретают мутагенные свойства. Например, некоторые широко распространенные азотсодержащие вещества, (нитраты азотистых удобрений), преобразуются в организме в весьма активные мутагены и канцерогены (нитриты).

Роль дополнительных условий в этиологии наследственных заболеваний в одних случаях весьма существенна (если развитие наследственной болезни, клиническое ее проявление сопряжено с действием определенных «проявляющих» факторов среды), в других менее значима, ограничивается лишь влиянием на экспрессивность болезни, не связанной с действием каких-либо специфических факторов среды.

6. Общие закономерности патогенеза наследственных болезней

Инициальным звеном патогенеза наследственных болезней являются мутации – внезапное скачкообразное изменение наследственности, обусловленное изменением структуры гена, хромосом или их числа, то есть характера или объема наследственной информации.

С учетом различных критериев предложено несколько классификаций мутаций. Согласно одной из них различают спонтанные и индуцированные мутации. Первые возникают в условиях естественного фона окружающей и внутренней среды организма, без каких-либо специальных воздействий. Причиной их может быть внешняя и внутренняя естественная радиация, действие эндогенных химических мутагенов и т.п. Индуцированные мутации вызываются специальным целенаправленным воздействием, например, в условиях эксперимента.

По другой классификации выделяют специфические и неспецифические мутации. Оговоримся, что большинство генотипов не признаетналичия специфических мутаций, полагая, что характер мутаций не зависит от качества мутагена, что одинаковые мутации могут быть вызваны разными мутагенами, а один и тот же мутаген может индуцировать разные мутации. Сторонниками существования специфических мутаций являются И.П. Дубинин, Е.Ф. Давыденкова, Н.П. Бочков.

По виду клеток, поврежденных мутацией, различают соматические, возникающие в клетках тела, и гаметные мутации – в половых клетках организма. Последствия тех и других неоднозначны. При соматических мутациях болезнь развивается у носителя мутаций, потомство от такого рода мутации не страдает. Например, точечная мутацияили амплификация (умножение) протоонкогена в соматической клетке может послужить началом опухолевого роста у данного организма, но не у его детей. При гаметных мутациях, наоборот, организм-носитель мутации не болеет. Страдает от такой мутации потомство.

По объему, затронутого мутацией, генетического материала мутации делят на генные иди точечные (изменения в пределах одного гена, нарушается последовательность или состав нуклеотидов), хромосомные абберации или перестройки, изменяющие структуру отдельных хромосом, и геномные мутации, характеризующиеся изменением числа хромосом.

Хромосомные абберации, в свою очередь подразделяются на следующие виды:

Делеция (нехватка) – вид хромосомной перестройки, при которой выпадают отдельные участки и соответствующиеим гены хромосомы. Если последовательность генов в хромосоме изобразить рядом цифр 1, 2, 3, 4, 5, 6, 7, 8....... 10000, то при делеции участка 3-6 хромосома укорачивается, а последовательность в ней генов меняется (1, 2, 7, 8...... 10000). Примерами врожденной патологии, связанной с делецией является синдром «кошачьего крика», в основе которого лежит делеция сегмента р1 – p-eг (короткого плеча) 5-ой хромосомы. Болезнь проявляется рядом дефектов развития: лунообразное лицо, антимонголоидный разрез глаз, микроцефалия, вялый надгортанник, своеобразное расположение голосовых связок, в результате чего плач ребенка напоминает крик кошки. С делецией от одной до четырех копий Н в – генов связано развитие одной из форм наследственных гемоглобинопатий – α-талассемии (см. раздел «Патофизиология системы крови»);

Дупликация – вид хромосомной перестройки, при которой участок хромосомы и соответствующий блок генов удваивается. При принятой выше нумерации генов в хромосоме и дупликации на уровне 3-6 генов последовательность генов в такой хромосоме будет выглядеть следующим образом – 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8 - 10000. Сегодня известны различные варианты дупликаций (частичные трисомии) практически для всех аутосом. Встречаются они сравнительно редко.

Инверсия – вид хромосомной перестройки, при которой участок хромосомы (например, на уровне генов 3-6) поворачивается на 180° – 1, 2, 6, 5, 4,3, 7, 8 .... 10000;

Транслокация – вид хромосомной перестройки, характеризующийся перемещением участка хромосомы на другое место той же или другой хромосомы. В последнем случае гены транслоцированного участка попадают в другую группу сцепления, другое окружение, что может способствовать активации «молчавших» генов или, наоборот, подавлять активность в норме «работающих» генов. Примерами серьезной патологии, в основе которой лежат явления транслокации в соматических клетках, могут быть лимфома Беркитта (реципрокная транслокация между 8-й и 14-ой хромосомами), миелоцитарный лейкоз – реципрокная транслокация между 9-й и 22-ой хромосомами (подробнее см. в разделе «Опухоли»).

Заключительным звеном патогенеза наследственных болезней является реализация действия аномального гена (генов). Различают 3 основных ее варианта:

1. Если аномальный ген утратил код программы синтеза структурного или функционально важного белка нарушается синтез соответствующих информационной РНК и белка. В отсутствии или при недостаточном количестве такого белка нарушаются процессы, в осуществлении которых на определенном этапе данному белку принадлежит ключевая роль. Так, нарушение синтеза антигемофильного глобулина А (фактора VIII), В (фактора IX), плазменного предшественника тромбопластина (фактора XI), которым принадлежит исключительно важное значение в осуществлении различных этапов внутреннего механизма I фазы свертывания крови, ведет к развитию гемофилии (соответственно: А, В и С). Клинически болезнь проявляется гематомным типом кровоточивости с поражением опорно-двигательного аппарата. Преобладают кровоизлияния в крупные суставы конечностей, обильные кровотечения даже при легких травмах, гематурия. Гемофилия А и В наследуются сцеплено с Х хромосомой, рецессивно. Гемофилия С наследуется по доминантному или полудоминантному типу, аутосомно.

В основе развития гепато-церебральной дистрофии лежит дефицит белка – церрулоплазмина, что сопряжено с увеличением всасывания, нарушением метаболизма и выведения меди, избыточным ее накоплением в тканях. Токсическое действие меди сказывается особенно сильно на состоянии и функции нервной системы и печени (процесс который завершается циррозом). Первые симптомы болезни проявляются в возрасте 10-20 лет, быстро прогрессируют и заканчиваются смертельным исходом. Наследование аутосомно-рецессивное.

2. Утрата мутантным геном кода программы синтеза того или иного фермента завершается уменьшением или прекращением его синтеза, дефицитом его в крови и тканях и нарушением катализируемых им процессов. В качестве примеров развития по такому пути наследственных форм патологии можно назвать ряд болезней аминокислотного, углеводного обмена и др. Фенилпировиноградная олигофрения, например, связана с нарушением синтеза фенилаланингидроксилазы, катализирующей в норме превращение потребляемого с пищей фенилаланина в тирозин. Дефицит фермента ведет к избыточному содержанию в крови фенилаланина, многообразным изменениям в обмене тирозина, продукции значительных количеств фенилпировиноградной кислоты, повреждению мозга с развитием микроцефалии и умственной отсталости. Заболевание наследуется аутосомно-рецессивно. Диагноз его может быть поставлен в первые дни после рождения ребенка, еще до проявления выраженных симптомов болезни по обнаружению в моче фенилпировиноградной кислоты и фенил-аланинемии. Ранняя диагностика и своевременно начатое лечение (диета с низким содержанием фенилаланина) позволяет избежать развития болезни, наиболее тяжелого ее проявления – умственной неполноценности.

Отсутствие оксидазы гомогентизиновой кислоты, участвующей в обмене тирозина, ведет к накоплению промежуточного продукта тирозинового обмена – гомогентизиновой кислоты, которая не окисляется в малеилацетоуксусную кислоту, а откладывается в суставах, хрящах, соединительной ткани, вызывая с возрастом (обычно уже после 40 лет) развитие тяжелых артритов. Диагноз и в этом случае может быть поставлен очень рано: на воздухе моча таких детей из-за наличия в ней гомогентизиновой кислоты чернеет. Наследуется аутосомно-рецессивно.

3. Нередко в результате мутации формируется ген с патологическим кодом, вследствие чего синтезируется аномальная РНК и аномальный белок с измененными свойствами. Наиболее ярким примером патологии такого типа является серповидно-клеточная анемия, при которой в 6-ом положении β-цепи гемоглобина глутаниновая аминокислота заменена на валин, образуется нестабильный Н в S. В восстановленном состоянии растворимость его резко уменьшается, повышается его способность к полимеризации. Образуются кристаллы, нарушающие форму эритроцитов, которые легко гемолизируются, особенно в условиях гипоксии и ацидоза, приводя к развитию анемии. Наследование аутосомно-рециссивное или полудоминантное (более подробные сведения в разделе «Патология системы крови»).

Важным условием для возникновения и реализации действия мутаций является несостоятельность системы репарации ДНК, что может быть детерминировано генетически или развиться в процессе жизни, под влиянием неблагоприятных факторов внешнейили внутренней среды организма.

Так, в генотипе здоровых людей есть ген с кодом программы синтеза фермента экзонуклеазы, обеспечивающей «вырезание» пиримидиновых димеров, которые образуются под влиянием ультрафиолетового излучения. Аномалия данного гена, выражающаяся в утрате кода программы синтеза экзонуклеазы, повышает чувствительность кожи к солнечному свету. Под влиянием даже непродолжительной инголяции возникает сухость кожи, хроническое ее воспаление, патологическая пигментация, позже появляются новообразования, подвергающиеся злокачественному перерождению. Две трети больных умирают в возрасте до 15 лет. Заболевание – пигментная ксеродерма – наследуется аутосомно-рецессивно.

Функциональные потенции системы репарации ДНК ослабевают с возрастом.

Определенная роль в патогенезе наследственных форм патологии может принадлежать, по-видимому, стойким нарушениям регуляции генной активности, что, как уже отмечалось, может быть одной из возможных причин проявления наследственной болезни лишь спустя много лет после рождения.

Итак, основные механизмы развития наследственной патологии связаны с:

1) мутациями, в результате которых возникает

а) выпадение нормальной наследственной информации,

б) увеличение объема нормальной наследственной информации,

в) замена нормальной наследственной информации на патологическую;

2) нарушением репарации поврежденной ДНК;

3) стойкими изменениями регуляции генной активности.

Дисциплина: «Патофизиология»
Автор: Герасимова Людмила Ивановна,
к.м.н., доцент
:
Роль наследственности
в патологии
Этиология и патогенез
наследственных болезней

Ключевые понятия темы

Наследственность
Генотип, фенотип
Мутации, мутагенные факторы
Наследственные болезни
2007
аутосомно-доминантные,
аутосомно-рецессивные,
сцепленные с полом
Хромосомные болезни
Врождённые болезни, фенокопии
Диагностика, лечение и профилактика
наследственных заболеваний человека
Copyright L. Gerasimova
2

Происхождение болезней

Врождённые
Болезни, проявляющиеся, в основном,
при рождении
Наследственные
Приобретённые
Болезни, возникающие
в постнатальном периоде
Ненаследственные
Связаны с перестройкой Являются результатом
наследственного
воздействий патогенных
материала
факторов на организм в
Генно-молекулярные
антенатальный
болезни
и перинатальный
Хромосомные болезни
периоды развития
(врожденный сифилис,
токсоплазмоз, СПИД,
гемолитическая болезнь
новорожденного и др.)
2007
Copyright L. Gerasimova
3

Наследственность – свойство организмов сохранять и обеспечивать передачу наследственных признаков потомкам, а также

программировать особенности их
индивидуального развития в конкретных условиях среды.
Нормальные и патологические признаки организма являются
результатом взаимодействия наследственных (внутренних) и
средовых (внешних) факторов.
2007
Copyright L. Gerasimova
4

Генотип – совокупность всех генов в организме

стабильность
изменчивость
Основа стабильности генотипа:
дублированность (диплоидность) его структурных
элементов;
доминирование нормального аллеля над
патологическим рецессивным геном, благодаря чему
огромное количество заболеваний, передающихся по
рецессивному типу, не проявляется в гетерозиготном
организме;
система оперона, обеспечивающая репрессию
(блокирование) патологического гена (например,
онкогена);
механизмы репарации ДНК, позволяющие с помощью
набора ферментов (инсертаза, экзо- и эндонуклеаза,
ДНК-полимераза, лигаза) быстро исправлять
возникающие в ней повреждения.
2007
Copyright L. Gerasimova
5

Изменчивость
Генотипическая
(наследуемая)
Фенотипическая
(ненаследуемая)
Фенокопии
Соматическая
(в соматических клетках)
Наследуемый признак – результат
мутаций – устойчивое изменение
генетического материала
Результат случайной
перекомбинации аллелей
независимое расхождение
хромосом при мейозе
кроссинговер
случайная встреча гамет
2007
Copyright L. Gerasimova
Генеративная
(в половых клетках)
Мутационная
Комбинативная
6

Мутация - это главная причина возникновения наследственного заболевания.

Мутации – количественные или
качественные изменения генотипа,
передающихся в процессе репликации
генома от клетки к клетке,
из поколения в поколение.
2007
Copyright L. Gerasimova
7

Причины мутаций

Спонтанные мутации
Индуцированные мутации
Мутагенные факторы – мутагены
Экзогенные
Эндогенные
2007
Ионизирующие излучения, УФЛ, электромагнитные поля,
температурный фактор
Химические вещества (окислители: нитраты, нитриты,
активные формы кислорода; производные фенола,
алкилирующие вещества, пестициды, ПАУ …)
Вирусы
и др.
Антимутагенные факторы
Возраст родителей
Хронический стресс
Гормональные нарушения
Вит. С, А, Е, фолиевая кислота
Антиоксиданты (ионол, соли селена …)
Ферменты (пероксидаза, НАДФоксидаза, глутатион-пероксидаза,
каталаза...)
Аминокислоты (аргинин, гистидин,
метионин цистамин …)
Copyright L. Gerasimova
8

Генные мутации
изменение структуры гена –
выпадение, замена или вставка
новых нуклеотидов в цепи ДНК
«точечные» мутации
изменение рамки считывания ДНК
2007
Copyright L. Gerasimova
9

Делеция
Транслокация
Хромосомные
мутации
Структурные перестройки хромосом:
делеции,
дупликации,
транслокации,
инверсии.
Делеция короткого плеча
хромосомы 5 – с-м кошачего крика
Трисомия короткого плеча хромосомы 9
– микроцефалия, умственная
отсталость, ВПР
Инверсия
Транслокация Робертсона
Ломкая Х-хромосома
с-м Мартина-Белла
2007
Copyright L. Gerasimova
10

Геномные мутации
изменение числа хромосом
Результат комбинативной изменчивости
Нарушение мейоза
Неправильное расхождение хромосом
в мейозе
полиплоидии -
кратное увеличение полного набора хромосом
Триплоидия
Тетраплоидия
У человека – несовместимы с жизнью –
спонтанный аборт.
анеуплоидии -
изменение числа хромосом в одной или
нескольких парах
Моносомия
С-м Шерешевского-Тернера (ХО)
Трисомия
2007
С-м Дауна – 21 пара
С-м Эдвардса – 18 пара
С-м Патау – 13 пара
Трисомия Х
С-м Клайнфельтера – XXY
Copyright L. Gerasimova
11

Общий патогенез генно-молекулярных болезней

Ген
Локализация
гена
Белок
(структурный б.
или фермент)
Признак
Аутосомы
Половые хромосомы
(Х-хромосома)
доминантный
Аутосомно-доминантные
Сцепленные с Х-хромосомой
доминантные
рецессивный
Аутосомно-рецессивные
Сцепленные с Х-хромосомой
рецессивные
Тип
наследования
2007
Copyright L. Gerasimova
12

Ген локализован в аутосоме
Генотип: гомо- и гетерозигота
Не зависят от пола
«Вертикальный» характер распределения болезни
Здоровые лица не передают заболевания
последующим поколениям
Не ограничивают репродуктивные возможности
Родители
Возможный
2007
генотип детей
Copyright L. Gerasimova
Больные – гетерозиготы
13

Аутосомно-доминантные болезни

Ахондроплазия
Б-нь Геттингтона
Врожденная телеангиоэктазия (с-м Ослера-Вебера-Рандю)
Дефицит антитромбина
Наследственный сфероцитоз
Нейрофиброматоз
Непереносимость лактозы
Несовершенный остеогенез
Поликистоз почек
Прогрессирующая оссифицирующая фибродисплазия
Семейная гиперхолестеринемия
Семейный полипоз кишечника
С-м Марфана
С-м Шарко-Мари-Тутта
Челюстно-лицевой дизостоз
2007
Copyright L. Gerasimova
Арахнодактилия Брахидактилия Полидактилия Синдактилия
14

Ген локализован в аутосоме
Генотип: гомозигота
Не зависят от пола
«Горизонтальный» характер распределения
болезни
Здоровые лица (гетерозиготы) передают
заболевания последующим поколениям
Сокращают продолжительность жизни,
ограничивают репродуктивные
возможности
«носитель»
- отец
Гомозиготы – больные
Гетерозиготы – носители
2007
Copyright L. Gerasimova
15

Аутосомно-рецессивные болезни
Адрено-генитальный синдром
Альбинизм
Анемия Фанкони
Атаксия Фредериксена
Болезнь Вильсона-Коновалова
Галактоземия
Гемохроматоз
Гликигенозы
Гомоцистинурия
Дефицит альфа-1-антитрипсина

(гемолитическая анемия)
Муковисцидоз (кистозный фиброз)
Мукополисахаридозы
Пигментная ксеродерма
Семейная средиземноморская лихорадка
Синдром Ротора (желтуха)
С-м Дабина-Джонсона
Спинальные мышечные атрофии
Талассемия
Фенилкетонурия
2007
Муковисцидоз
Дефект CFTR → повышенная вязкость
секрета → обтурация протоков желёз
→ кистозно-фиброзное перерождение
Copyright L. Gerasimova
16

Аутосомно-рецессивные болезни

Фенилкетонурия
(фенилпировироградная олигофрения)
Фенилаланин
Накопление
фенилпировиноградной
кислоты → интоксикация
Нарушение образования
катехоламинов →
снижение функции ЦНС →
олигофрения
Волосы новорождённого
с фенилкетонурией
2007
Copyright L. Gerasimova
Нарушение синтеза
меланина →
депигментация
17

Х-сцепленные болезни

Агаммаглобулинемия
Адренолейкодистрофия
Гемофилия
Дальтонизм
Дефицит глюкозо-6-фосфатдегидрогеназы
(гемолитическая анемия)
Ихтиоз
Ломкая Х-хромосома
Мышечная дистрофия Беккера
Мышечная дистрофия Дюшенна
Нечувствительность к андрогенам
С-м Вискотта-Олдрича
2007
Copyright L. Gerasimova
здоровый
больной
носитель
18

Хромосомные болезни

Возраст
матери
15 - 19
20 - 24
25 - 29
30 - 34
35 - 39
40 - 44
45 - 49
1:1600
1:1400
1:1100
1:700
1:240
1:70
1:20
Болезнь Дауна
2007
Трисомия
13
1:17000
1:33000
1:14000
1:25000
1:11000
1:20000
1:7100
1:14000
1:2400
1:4800
1:700
1:1600
1:650
1:1500
Широкое лицо
Увеличенный язык
Эпикант
Раскосые глаза
Плоская переносица
Короткая, широкая ладонь,
с единственной поперечной складкой
Мизинец укорочен и загнут внутрь
Отставание физического развития
Умственная отсталость
Пороки сердца, ЖКТ, почек
Иммунодефицит
С-м Дауна Трисомия 18
Copyright L. Gerasimova
поперечная
складка
19

Хромосомные болезни
Синдром Клайнфельтера (47 XXY, 48 XXXY)
Высокий рост
Телосложение по женскому
типу
Гипоплазия яичек
Евнухоидизм
Нарушение сперматогенеза
Гинекомастия
Склонность к ожирению
Психические нарушения
Умственная отсталость
2007
Copyright L. Gerasimova
20

Хромосомные болезни
Синдром Шерешевского-Тернера (45 XO)
Низкий рост, нарушение
окостенения скелета
(кифоз, сколиоз…)
Дисгенезия гонад
(недоразвитие вторичных
половых признаков,
бесплодие)
Внешний вид старше паспортного возраста
Крыловидная складка на шее
Низкий рост волос
Деформированные ушные раковины
Широкое расположение сосков
Множественные родимые пятна на коже
Умственная отсталость (редко)
2007
Copyright L. Gerasimova
21

Врождённые болезни

Фетальный
алкогольный синдром
Талидомидовый
синдром
2007
Copyright L. Gerasimova
22

Диагностика врождённых и наследственных заболеваний

Клинико-синдромологический
метод
Генеалогический метод
Цито-генетический метод
Кариотип
половой хроматин
(количество Х-хромосом)
Биохимический метод
Молекулярная диагностика
(анализ ДНК)
2007
Copyright L. Gerasimova
23

Профилактика врождённых и наследственных заболеваний

2007
Исключение действия мутагенов
(в т.ч. лекарственных)
Медико-генетическое консультирование
– определение риска
Пренатальная диагностика
УЗИ
Биопсия хориона
Амниоцентез
α-фетопротеин

Copyright L. Gerasimova
24

Лечение врождённых и наследственных
заболеваний
Этиотропное – генная инженерия
Патогенетическое
Заместительная терапия
гормоны при их недостатке
(инсулин, АДГ…)
криоглобулин при гемофилии
Ig при агаммаглобулинемии

Исключение веществ при нарушении
их метаболизма
(фенилаланина при ФКУ, лактозы при
непереносимости лактозы)
Симптоматическое
2007
Copyright L. Gerasimova