Радиотелескоп в китае. Обсерватория FAST

Радиотелескоп FAST — сферический радиотелескоп с пятиcотметровой апертурой, что есть дословным переводом с английского фразы: «Five hundred meter Aperture Spherical Telescope», сокращенно «FAST». Неофициальное китайское название телескопа, расположенного в провинции Гуйчжоу, Небесный глаз (天眼). Помимо перспективных научных исследований, данный научный проект должен продемонстрировать амбиции Китая в сфере освоения космоса.

Строительство данного телескопа было окончено в июле 2016-го года, и потребовало пяти лет и 180 млн. долларов. С момента окончания строительства обсерватория FAST получает почетное звание радиотелескопа с заполненной апертурой самого большого диаметра, а именно 500 метров. Тем самым FAST обошел другой гигантский радиотелескоп, который в течение 53-х лет оставался самым большим, с диаметром апертуры — 304,8 метров.

Говоря о наибольших радиотелескопах с незаполненной апертурой, то эту нишу по-прежнему занимает российский РАТАН-600 (576 м.).

Конструкция

Конструкция телескопа FAST во многом схожа с обсерваторией Аресибо. Его апертура состоит из 4 450 перфорированных алюминиевых пластин треугольной формы стороной в 11 метров. Эти пластины располагаются в виде геодезического купола на стальных подвешенных тросах, образующих сетку. Вся апертура находится в естественном природном углублении – карстовой воронке. Примечательно, что само углубление образовано в горах, на высоте около 1 км над уровнем моря, что также положительно влияет на качество наблюдений, проводимых FAST в будущем.

В отличие от статической апертуры обсерватории Аресибо, каждая панель радиотелескопа FAST способна изменить свое положение при помощи гидравлических приводов, которые приводят в движение сетку из тросов.

Над тарелкообразным рефлектором располагается подвижная кабина, которая перемещается с помощью кабельных роботов. Находящиеся же в центре «тарелки» приемные антенны также являются подвижными, так как установлены на подвижной платформе (Гью - Стюарта).

Характеристики

Согласно информации, полученной от китайских СМИ, телескоп FAST имеет вдвое большую чувствительность, нежели радиотелескоп Аресибо, а также более чем в пять раз высокую скорость исследование небосвода.

Частотный диапазон, который охватывает радиотелескоп составляет от 70 МГц – 3 ГГц. Радиотелескоп FAST может быть сфокусирован по направлению, которое вместе с зенитом образует угол не меньше 40°.

Хотя FAST называют сферическим радиотелескопом с 500-метровой апертурой, однозначно он не имеет сферической формы, а эффективный диаметр его отражателя (радиус кривизны) – 300 метров. И хотя Аресибо может использовать в полной мере свою 305-метровую апертуру, проводя наблюдения в зените, зачастую наблюдение объектов проводится под наклоном, где эффективная апертура составляет всего 221 метр. Т. к., отражатель радиотелескопа FAST намного глубже, нежели у Аресибо, это расширяет поле зрения для ведения наблюдений.

Все же несмотря на более высокие характеристики FAST, в некоторых видах исследований обсерватория Аресибо остается ведущий. К примеру, изучение земной ионосферы, изучение внутренних планет Солнечной системы, а также проведение точных измерений орбит астероидов в окрестностях Земли. Подобные исследования доступны обсерватории Аресибо по причине наличия передатчиков и другого специального оборудования, которого нет на радиотелескопе FAST. Помимо этого, последний расположен на 7.5° севернее обсерватории Аресибо. При таком более близком расположении обсерватории к экватору в ее поле обзора попадает несколько больше космических тел, нежели в поле зрения FAST.

Значение для науки и общественности

Научное сообщество намерено использовать радиотелескоп FAST для поиска , поимки радиоизлучения от , а также с целью обнаружение внеземных сигналов искусственного происхождения.

Первые пару лет данный телескоп доступен лишь китайским ученым и специалистам, после чего станет открыт для международного научного сообщества.

Несмотря на то, что ради предотвращения радиопомех в радиусе пяти километров власти отселили более 9 тыс. жителей с последующими выплатами компенсаций, недалеко от обсерватории были построены различные туристические, которые позволят заинтересованным лицам посещать экскурсии на самый большой радиотелескоп в мире. К примеру, обсерваторию Аресибо ежегодно посещает около 200 ученых и 90 тыс. туристов со всего мира.

В моем далеком уже детстве попалась мне хрестоматия по астрономии с тех ещё более далёких лет, которых я не застал, когда эта астрономия была предметом в школе. Читал её до дыр и мечтал о телескопе, чтобы хоть одним глазком посмотреть в ночное небо, но не сложилось. Рос в деревне, где ни знаний, ни наставника для этого не было. Так и ушло это увлечение. Но с возрастом обнаружил, что желание то осталось. Прошерстил интернет, оказывается людей, увлеченных телескопостроением и собирающих телескопы, да ещё какие, и с нуля - масса. Из профильных форумов набрался информации, теории, и решил построить небольшой телескоп для начинающего.

Спроси меня ранее, что такое телескоп, сказал бы - труба, с одной стороны смотришь, вторую направляешь на предмет наблюдения, одним словом подзорная труба, но побольше размером. Но оказывается для телескопостроения используют в основном другую конструкцию, которую ещё называют ньютоновским телескопом. При массе достоинств она имеет не так много недостатков, по сравнению с другими конструкциями телескопов. Принцип его работы понятен из рисунка - свет далёких планет падает на зеркало, имеющее в идеале параболическую форму, далее свет фокусируется и выносится за пределы трубы с помощью второго, установленного под 45 градусами по отношению к оси, по диагонали, зеркала, которое так и называют - диагональное. Далее свет попадает в окуляр и в глаз наблюдающего.


Телескоп это точный оптический прибор, поэтому при изготовлении необходимо соблюдать аккуратность. Перед этим необходимо произвести расчёты конструкции и мест установки элементов. В интернете существуют онлайн калькуляторы расчёта телескопов и грех этим не воспользоваться, но азы оптики знать тоже не помешает. Мне понравился калькулятор.

Для изготовления телескопа в принципе ничего сверхестественного не надо, я думаю что у любого хозяйственного человека в подсобке есть небольшой токарный станочек хотя бы по дереву, а то и по металлу. А если есть ещё и фрезеровочный станок - завидую белой завистью. И уж совсем не редкость теперь домашние лазерные станочки с ЧПУ для вырезания по фанере и 3D печатающий станок. К сожалению, у меня в хозяйстве из всего выше перечисленного ничего нет, окромя молотка, дрели, ножовки, электролобзика, тисков и мелкого ручного инструмента, плюс куча банок, ванночек с россыпью трубок, болтиков, гаечек, шайбочек и прочего гаражного металлолома, который вроде и выкинуть надо, но жалко.

При выборе размера зеркала (диаметр 114мм) мне кажется выбрал золотую середину, с одной стороны такой размер ходовой и уже не совсем маленький, с другой стороны стоимость не такая огромная, чтобы в случае фатальной неудачи пострадать финансово. Тем более главная задача была пощупать, разобраться и научиться на ошибках. Хотя, как говорят на всех форумах, самый хороший телескоп это тот, в которой наблюдают.

И так, для своего первого, надеюсь не последнего, телескопа я выбрал сферическое главное зеркало с диаметром 114мм и алюминиевым покрытием, фокусом 900мм и диагональным зеркалом, имеющего форму овала с малой диагональю в один дюйм. При таких размерах зеркала и фокусного расстояния различия форм сферы и параболы ничтожны, поэтому можно использовать недорогое сферическое зеркало.

Внутренний диаметр трубы по книге Навашина, Телескоп астронома-любителя (1979), для такого зеркала должен быть не менее 130мм. Конечно, лучше побольше. Трубу можно делать и самому из бумаги и эпоксидки, или из жести, но грех не воспользоваться готовым дешёвым материалом - в этот раз метровая канализационная PVH труба DN160, купленная за 4.46 евро в строймагазине. Толщина стенок 4мм мне показалась достаточной, с точки зрения прочности. Пилится и обрабатывается легко. Хотя есть и с 6мм толщины стенкой, но мне показалась тяжеловатой. Для того, чтобы распилить, пришлось на неё брутально сесть, никаких остаточных деформаций на глаз не наблюдается. Конечно, эстеты скажут фи, как можно в трубу для овна звёзды смотреть. Но для настоящих рукопоповцев это не преграда.

Вот она, красавица


Зная параметры зеркала, можно делать расчёт телескопа на вышеупомянутом калькуляторе. Сразу не всё понятно, но по мере создания всё становится на свои места, главное, как всегда, не зацикливаться на теории, а совмещать её с практикой.

С чего начать? Я начал, по моему мнению, с самого сложного - узла крепления диагонального зеркала. Как уже писал, изготовление телескопа требует точности, но которая не отменяет наличие возможности регулировки положения того же диагонального зеркала. Без тонкой регулировки - никак. Схем крепления диагонального зеркала несколько, на одной стойке, на трёх растяжках, на четырёх и прочие. У каждого есть свои плюсы и минусы. Так как размеры, вес моего диагонального зеркала, а значит и его крепления, скажем прямо, малы, я выбрал трёхлучевую систему крепления. В качестве растяжек использовал найденный регулировочный лист нержавейки толщиной 0.2мм. В качестве арматуры использовал медные муфты под 22мм трубу с наружным диаметром 24мм, чуть меньшим размера моей диагоналки, а также болт М5 и болты М3. Центральный болт М5 имеет конусную головку, которая просунутая в шайбу М8 работает как шаровая опора, и позволяет наклонять регулировочными болтами М3 диагональное зеркало при регулировке. Сначала припаял шайбу, потом обрезал грубо под углом и подогнал под 45 градусов на листе грубой наждачки. На обе детали (одна залита полностью, вторая 5мм через отверстие) ушло меньше 14мл пятиминутного двухкомпонентного эпоксидного клея Момент. Так как размеры узла малы, очень трудно всё разместить и чтобы всё это нормально работало, плечо регулировки маловато. Но получилось очень и очень не плохо, диагональное зеркало регулируется достаточно плавно. Болты с гайками макал в горячий воск, чтобы не прилипла смола при заливке. Только после изготовки этого узла этого заказал зеркала. Само диагональное зеркало клеил на двухсторонний вспененный скотч.


Под спойлером некоторые фото этого процесса.

Узел диагонального зеркала















Манипуляции с трубой были следующие: отпилил лишнее, ну и так как труба имеет раструб большего диаметра, использовал его для усиления района крепления растяжек диагоналки. Вырезал кольцо и на эпоксидку посадил на трубу. Хотя жесткость трубы и достаточна, на мой взгляд лишним не будет. Далее по мере поступления комплектующих сверлил и вырезал в ней отверстия, снаружи обклеил декоративной плёнкой. Очень важный момент - окраска трубы изнутри. Она должна быть такая, чтобы как можно больше поглощала свет. К сожалению продающиеся краски, даже матовые, совсем не подходят. Есть спец. краски для этого, но они дорогие. Я сделал так - по совету из одного форума покрыл изнутри краской из баллончика, потом засыпал в трубу ржаной муки, закрыл два конца плёнкой, хорошо покрутил - потряс, вытряхнул то, что не прилипло и опять задул краской. Получилось очень прилично, смотришь как в печную трубу.


Крепление главного зеркала делал из двух дисков фанеры толщиной 12мм. Один с диаметром под трубу 152мм, второй с диаметром главного зеркала 114мм. Зеркало ложится на три кружка приклеенных к диску кожи. Главное, чтобы зеркало не было жёстко зажато, я прикрутил уголки, обматал их изолентой. Само зеркало удерживается штрапсами. Два диска имеют возможность двигаться друг относительно друга для регулировки основного зеркала с помощью трёх регулировочных болта М6 с пружинами и тремя стопорными болтами, тоже М6. По правилам в дисках должны быть отверстия, для охлаждения зеркала. Но так как у меня телескоп дома храниться не будет (будет в гараже), то и температурное выравнивание не актуально. Второй диск в таком случае заодно играет роль пылезащитной задней крышки.

На фото крепление уже с зеркалом, но без заднего диска.


Фото самого процесса изготовления.

Крепление основного зеркала



В качестве опоры использовал монтировку Добсона. В интернете масса различных модификаций, в зависимости от наличия инструмента и материалов. Состоит из трёх частей, первая в которой зажимается сама труба телескопа -


Оранжевые круги это отпиленные кругляки трубы, в которые вставлены круги из 18мм фанеры и залитые эпоксидной смолой. Получилась составная часть подшипника скольжения.


Вторая - куда ставится первая, позволяет двигаться трубе телескопа по вертикали. И третья - круг с осью и ножками, на который ставится вторая деталь, позволяющая вращать её.


В местах опирания деталей прикручены кусочки тефлона, позволяющие легко и без рывков перемещать детали одну относительно другой.

После сборки и примитивной настройки прошли первые испытания.


Сразу же появилась проблема. Я пренебрёг советами умных людей не сверлить отверстия под крепления основного зеркала без испытания. Хорошо ещё, что пилил трубу с запасом. Фокусное расстояние зеркала оказалось не 900мм, а около 930мм. Пришлось сверлить новые отверстия (старые заклеены изолентой) и отодвигать дальше основное зеркало. Просто не смог поймать в фокус ничего, приходилось поднимать сам окуляр из фокусёра. Минус этого решения - крепёжные и регулировочные болты с торца не прячутся в трубе. а торчат. В принципе не трагедия.

Снимал с руки мобильником. На тот момент был только один 6мм окуляр, степень увеличения это отношение фокусных расстояний зеркала и окуляра. В данном случае получается 930/6=155 раз.
Испытание номер 1. До объекта 1км.




Номер два. 3км.



Главный результат достигнут - телескоп работает. Понятно, что для наблюдения планет и Луны нужна более качественная юстировка. Для неё был заказан коллиматор, ну и ещё один 20мм окуляр, и фильтр для Луны в полнолуние. После этого все элементы с трубы были сняты и поставлены обратно уже тщательней, прочнее и точнее.

Ну и наконец цель всего этого - наблюдения. К сожалению звёздных ночей в ноябре практически не было. Из объектов, что успел понаблюдать всего два, Луна и Юпитер. Луна выглядит не диском, а величаво проплывающим ландшафтом. С 6мм окуляром вмещается только её часть. А Юпитер с его спутниками просто сказка, принимая во внимание расстояние, которое нас отделяет. Выглядит он как полосатый шарик со звёздочками-спутниками на линии. Цвета этих линий различить не получается, тут нужен телескоп с другим зеркалом. Но всё равно - завораживает. Для фотографирования объектов нужно как дополнительное оборудование, так и другой тип телескопа - светосильный с малым фокусным расстоянием. Поэтому здесь только фото с просторов интернета, точно иллюстрирующая то, что видно с таким телескопом.

К сожалению для наблюдения Сатурна придётся ждать весны, а пока в ближайшем будущем Марс, Венера.

Понятно, что зеркала далеко не все расходы на постройку. Вот далее список того, что было куплено кроме этого.

Тарелка радиотелескопа FAST

FAST (кит. 五百米口径球面射电望远镜 , англ. Five hundred meter Aperture Spherical Telescope - «Сферический радиотелескоп с пятисотметровой апертурой») - на юге Китая в провинции Гуйчжоу. На строительство радиотелескопа было затрачено более 185 миллионов долларов.

После окончания строительства в 2016 году и сдачи в эксплуатацию FAST стал самым большим в мире радиотелескопом с заполненной апертурой, его диаметр - 500 метров . Существует радиотелескоп с незаполненной апертурой большего диаметра - российский 576-метровый радиотелескоп РАТАН-600.

Радиотелескоп позволит учёным изучать формирование и эволюцию , исследовать объекты эпохи реионизации и решать другие научные задачи.

История создания

  • Июль 1994 года - начало разработки концепта радиотелескопа.
  • Октябрь 2008 года - начало проектирования радиотелескопа.
  • В 2011 году начато строительство телескопа.
  • С марта 2011 года учёные, инженеры и строители временно поселились в одном из отдалённых горных ущелий уезда Пинтан Цяньнань-Буи-Мяоского автономного округа провинции Гуйчжоу, (Юго-Западный Китай).
  • Июль 2015 года - начат монтаж отражающих элементов. По конструкции он схож с и также располагается в естественном углублении.
  • 3 июля 2016 года специалисты установили последний из 4450 треугольных отражателей, из которых состоит радиотелескоп. Это ознаменовало завершение основного сооружения гигантского астрономического прибора.
  • Непосредственные наблюдения при помощи телескопа должны начаться в конце сентября 2016 года, после настройки сетей и вспомогательного оборудования. На расстоянии 10 км от телескопа вводится запрет строительства и режим радиомолчания, переселены около 8-9 тысяч человек, проживавших на расстоянии менее 5 км от .
  • 25 сентября 2016 года - начало работы радиотелескопа FAST. Как ожидается, китайские астрономы получат приоритет для работы на FAST в первые два-три года его существования, затем объект будет открыт для учёных по всему миру.

Характеристики

Одна из шести опорных мачт

Телескоп FAST использует фиксированный основной рефлектор, размещённый в естественном карстовом углублении, который отражает радиоволны на приёмник, подвешенный на высоте 140 метров над ним. Рефлектор изготовлен из перфорированных алюминиевых панелей, поддерживаемых сеткой из стальных тросов, свисающих с обода.

Поверхность рефлектора FAST образована из 4450 треугольных панелей, каждая размером 11 метров , размещённых в форме геодезического купола. Актуаторы, размещённые под ними, позволяют сформировать активную оптическую поверхность.

Над рефлектором на тросах установлена легкая кабина, перемещаемая кабельными роботами, расположенными на шести опорных мачтах. Приёмные антенны установлены под ней на платформе Гью - Стюарта, которая позволяет более точно их позиционировать и компенсировать различные возмущающие воздействия, например от ветра. Точность позиционирования антенн запланирована на уровне 8 угловых секунд.

FAST может фокусироваться на направлениях, составляющих угол до ±40° от зенита. Из-за виньетирования эффективная апертура сохраняется лишь при углах не более ±30°.

Несмотря на общий диаметр отражателя в 500 метров , эффективный диаметр отражателя, используемый в каждый момент времени при наблюдениях, составляет лишь 300 метров . В этом диаметре при помощи актуаторов поддерживается параболическая форма. Несмотря на отсутствие единого 500-метрового отражателя и его асферичность, проект сохранил оригинальное название «Радиотелескоп с пятисотметровой сферической апертурой».

Частоты работы - от 70 МГц до 3 ГГц , обеспечиваемые 9 приёмниками. Полоса 1,23 -1,53 ГГц вблизи линии нейтрального водорода (21 см ) обеспечивается 19-лучевым приёмником, созданным CSIRO в рамках коллаборации ACAMAR между Австралийской и Китайской академиями наук.

Сравнение с Аресибо

Отражатели Аресибо (сверху) и FAST (снизу) в одном масштабе

Телескоп FAST по своей конструкции похож на радио-обсерваторию Аресибо, расположенную в Пуэрто-Рико. Оба телескопа расположены в естественных углублениях, составлены из перфорированных алюминиевых панелей и используют движущийся над ними комплект приёмного оборудования. Кроме размера (отражатель Аресибо имеет диаметр 1000 футов - 305 м ) между ними есть ряд различий.

Отражатель Аресибо имеет фиксированную сферическую форму. Несмотря на то, что панели также подвешены на стальных кабелях, их натяжение изменяется вручную для точной настройки формы. Форма отражателя зафиксирована, и над ним подвешено два дополнительных рефлектора для коррекции сферических аббераций.

Приёмная платформа Аресибо находится в фиксированном положении над отражателем. Для удержания тяжёлых дополнительных отражателей основная система кабельных подвесов выполнена статической. Имеется лишь небольшой участок, позволяющий компенсировать температурное расширение. Антенны закреплены на вращающейся площадке под приёмной платформой. Уменьшенный диапазон передвижения приёмников позволяет наблюдать за объектами, располагающимися не далее 19,7° от зенита.

Отражатель FAST значительно более глубокий, чем у Аресибо, что также способствует большему полю обзора. При диаметре на 64% больше у отражателя FAST 300-метровый радиус кривизны, тогда как у Аресибо - 870 футов (265 метров), и в FAST формируется дуга в 113°-120° градусов, по сравнению с 70° для Аресибо. Хотя Аресибо способен использовать полную 305-метровую апертуру при наблюдении объектов в зените, чаще используются наблюдения под наклоном с эффективной апертурой в 725 футов (221 метр).

Платформа с оборудованием на телескопе Аресибо больше и на ней установлено несколько передатчиков, что делает его одним из двух крупных радиотелескопов, которые можно использовать в радиолокационной астрономии. Система NASA «Planetary Radar System» позволяет Аресибо изучать ионосферу, внутренние планеты и выполнять точные измерения орбит околоземных астероидов. Платформа на телескопе FAST значительно меньше и не содержит передающего оборудования.

Обсерватория Аресибо находится ближе к экватору, благодаря чему при вращении большая часть неба попадает в поле обзора. Аресибо расположен на широте 18,35° N, а FAST - примерно на 7,5° севернее, на 25,80° N.

Телескоп FAST

В Китае введен в строй 500-метровый радиотелескоп FAST - крупнейший в мире телескоп с заполненной апертурой. По своему диаметру он уступает лишь РАТАН-600, расположенному в Карачаево-Черкесии, который, однако, не обладает заполненной апертурой. Ближайшим аналогом FAST является 300-метровый радиотелескоп обсерватории Аресибо. Об этом сообщает агентство «Синьхуа».

Размеры телескопа определяют его рабочие характеристики - чувствительность, разрешение и так далее. Чем больше радиотелескоп, тем меньшие по размеру или более удаленные объекты он может различить. С точки зрения разрешения, абсолютным рекордсменом является «РадиоАстрон». Это система для наблюдения за космическими объектами с помощью интерферометрии со сверхдлинными базами, состоящая из космического радиотелескопа «Спектр-Р» и различных наземных радиотелескопов. Вместе они образуют прибор, эквивалентный радиотелескопу с диаметром порядка ста тысяч километров.

Однако подобные системы обладают невысокой чувствительностью из-за малой эффективной площади. Общая чувствительность определяется как среднее геометрическое из чувствительности 10-метрового «Спектра-Р» и наземного радиотелескопа, работающего с ним в паре. Поэтому для таких наблюдений необходимы наземные приборы высокой чувствительности. Кроме того, новые радиотелескопы расширяют инструментарий, доступный астрономам со всего мира.

Новый радиотелескоп располагается в провинции Гуйчжоу и обладает площадью порядка 30 футбольных полей. Несмотря на 500-метровый диаметр, при наблюдениях будут использоваться фрагменты отражателя диаметром около 300 метров - это эффективный диаметр телескопа. По этому показателю FAST лишь ненамного лучше обсерватории Аресибо (221 метров). 500-метровый отражатель позволит телескопу иметь гораздо большее поле зрения.

После ввода в строй на телескопе уже были проведены первые пробные наблюдения. По словам Цянь Леи, исследователя из Национальной астрономической лаборатории (Китай), телескоп успешно зафиксировал сигнал от одного из пульсаров, расположенного в 1351 световом году от Земли.

В задачи FAST войдет слежение за пульсарами, исследование межзвездного газа, поиск сложных молекул и анализ объектов эпохи реионизации. Ученые ожидают, что радиотелескоп удвоит количество пульсаров, известных науке. Это может помочь в поисках сигналов гравитационных волн в «сбоях» излучения пульсаров (такими наблюдениями , например, консорциум NANOGrav). Представители проекта «РадиоАстрон» ранее , что FAST сможет работать в паре с «Спектром-Р». Первые два-три года после ввода в эксплуатацию радиотелескоп будет настраиваться, после чего станет доступен международному сообществу.

Интересно, что для постройки телескопа властям Китая пришлось переселить около 9000 местных жителей за пределы пятикилометровой зоны вокруг телескопа. Строительство было в июле 2016 года. Рядом с телескопом находится обзорная площадка, на которую будет организован доступ туристических групп - до двух тысяч человек в день. Стоимость билета на нее составит около 3,5 тысячи рублей в пересчете на российские деньги.

Владимир Королёв

Чуть больше года назад в Китае начал свою работу самый большой в мире радиотелескоп FAST - сферический радиотелескоп с пятисотметровой апертурой. Его строили с целью изучения истоков и эволюции нашей вселенной. Кроме того, ожидается, что телескоп сможет изучать формирование и движение галактик, гравитационные волны и темную материю, а также молекулы межзвездного пространства.

Первое открытие

Несмотря на огромное количество противоречивой информации, включая то, что тысячи людей потеряли свою землю из-за строительства телескопа и то, что в Китае не хватает специалистов для успешного его запуска, FAST проработал целый год. Совсем недавно руководители лаборатории опубликовали его первые находки. Ими стали пульсары - нейтронные звезды, которые вращаются вокруг своей (немного наклоненной) оси с огромной скоростью.

Значение телескопа для науки

Согласно китайской газете China Daily, телескопу удалось обнаружить несколько десятков ранее неизвестных пульсаров. Существование и местонахождение некоторых из них подтвердила радиообсерватория в Австралии.

По словам директора радиотелескопа FAST, подобные результаты являются яркой демонстрацией удачной работы обсерватории и специалистов. Подобные открытия говорят о том, что FAST окажется крайне полезен глобальному научному сообществу, поскольку он достаточно мощен для восприятия сигналов пульсаров далеко за пределами нашей галактики.

Кроме того, чувствительность радиотелескопа гарантирует, что он окажется важным инструментом в изучении эволюции вселенной и ее таинственного состава (темная материя и темная энергия).

Чувствительность телескопа к радиоволнам, испускаемым пульсарами, также демонстрирует вероятность того, что FAST окажется востребованным в дальнейшем изучении гравитационных волн.

Ожидание будущих открытий

Ожидается, что китайский радиотелескоп FAST сможет удвоить количество известных нам пульсаров в галактике Млечный путь. На сегодня в пределах нашей галактике нам известны 2700 пульсаров, первый из которых был обнаружен в 1967 году.

Кроме поиска радиоволн, издаваемых пульсарами при их вращении, телескоп занимается поисками сигналов инопланетных форм жизни. Специалисты не возлагают огромных надежд на обнаружение внеземной цивилизации, вместо этого они стремятся найти как можно больше возможностей и областей, в которых FAST смог бы пригодиться современной астрофизике.

К примеру, совсем скоро радиотелескоп начнет поиск и изучение сложных межзвездных молекул, а также нейтрального водорода, находящегося на просторах вселенной.