Основные состояния газовой межзвездной среды. Межзвёздная среда: газ и пыль

Газ, газ везде! Собранные в гигантские горячие шары, он образует бесчисленные звезды – они сосредоточили большую часть массы Вселенной. Межзвездный газ. Холодный газ заполняет огромные пространства Вселенной в виде газовых туманностей, которые обволакивают десятки звезд. Из газа в атмосферах планет! И все это в безвоздушном пространстве. Но действительно ли оно безвоздушное?
Наши концепции вакуума являются относительными. Будем говорить, что в лампочке нет воздуха. По сравнению с воздухом есть вакуум. Но физики с современными насосами могут высасывать воздух из стеклянной трубки так, что в пространстве лампочки будет вакуум.


Газ туманности плотность 10-19 г/см3 находится в вакууме. Но тогда как мы видим, не совсем пустая. Он также имеет газ. Действительно с незначительной плотностью газа.
Что это за газы? Хартман изучал спектрально-двойные звезды Дельта Ориона. Для того, чтобы было можно с большой точностью определить его радиальную скорость, он измерил положение темных линий в спектре. Ибо если звезда движется в целом по своей орбите вокруг центра системы, все линии в спектре должны быть перенесены равномерно, т. е. в пределах ошибки измерения перемещений каждой линии должны соответствовать той же скорости, приближается или удаляется от нас.

Теперь мы знаем, что такое периодическое движение орбитальной линии в спектре. Все линии в спектре Delta Orion ведут себя правильно за исключением линий, кто знает почему, не участвовали в общих периодических колебаниях в положение линий в спектре и упорно стояли на том же месте в нем. Если звезда приближается к нам и отходит – это не влияет на линии кальция.

Как мы уже говорили, линии принадлежали атомам кальция и Хартману не остается ничего, кроме как заключить, что кальций по каким-либо причинам не будет участвовать в орбитальном движении звезды. Как только линии кальция поглощают видимый свет от звезды, проходит и поглощается ею, но этот элемент не является в атмосфере звезды, которая приводит к появлению других линий в спектре. Атмосфера звезды движется со звездой и кальций не двигается с ними. Может быть, наша звезда погружается в обширное облако разреженного кальция?

Этот тип кальция линии называется стационарным, т.е. неизменен, фиксирован. Со временем стационарные линии кальция были обнаружены в спектрах многих других спектрально-двойных звезд, но все относятся только к случаям звезд раннего спектрального класса C.

Скорее всего линии кальция для формирования не в облаках, куда звезда погружена, который находится по пути световых лучей от звезды к нам. Другими словами, кальция околозвездного и межзвездного газа. Эта точка зрения была подтверждена. И тогда вместо наземных линий, начал говорить межзвездные линии.


Когда стало известно, что температура атмосферы звезды, которая определяет тип в спектре звезды, теоретически можно определить интенсивность различных линий образующихся в атмосфере звезды с определенным химическим составом и определенной температурой. Было разъяснено, что эти горячие звезды такие, как спектральный класс не найден в ее атмосфере ионизированных атомов кальция. Для них это слишком жарко. Весь кальций в этой температуре уже ионизированный, а затем дважды линии одного ионизированного кальция может не иметь спектр звезды класса С. Поэтому только ионизированный кальций, который вызывает фиксированные линии в спектрах горячих звезд, должны быть расположены вдали где не так жарко и он не может существовать.

Позже было обнаружено, что эти линии далеко от них только в спектрах спектрально-двойных звезд – они существуют в спектрах большинства одиноких горячих звезд. Но пока эти линии можно назвать стационарными, так как ни одна звезда не имеет орбитального движения. Он движется с постоянной скоростью по отношению к нам наблюдателям так, что все линии в спектре смещаются в равной степени, что соответствует постоянной скорости в соответствии с принципом Доплера. Оказалось однако, что перенос линии ионизованного кальция в спектрах этих горячих звезд соответствует другой скорости, чем скорость с которой движется звезда.

Как мы видим в специальной линии пути, должна наблюдаться в спектрах звезд любого типа. К сожалению более холодные звезды содержат в себе атмосферу ионизированного кальция и следовательно его линии в спектре. Эти линии широкие и сильные с тонкой маской слабых линий межзвездного кальция. Однако в некоторых случаях, становится возможным обнаружить эти маленькие “звезды” линии, наложенные на широкие линии звезды.

Составляющий ок. 99% её массы и ок. 2% массы Галактики. М. г. весьма равномерно перемешан с межзвёздной пылью,к-рая часто своим поглощением или рассеянием света делает газово-пылевые структуры наблюдаемыми (см. ). Диапазон изменения осн. параметров, описывающих М. г., очень широк. Темп-ра М. г. колеблется от 4-6 К до 10 6 К (в межзвёздных ионная темп-ра М. г. иногда превышает 10 9 К), концентрация изменяется от 10 -3 -10 -4 до 10 8 -10 12 частиц в 1 см 3 . Для излучения М. г. характерен широкий диапазон - от длинных радиоволн до жёсткого гамма-излучения.

Существуют области, где М. г. находится преимущественно в молекулярном состоянии (молекулярные облака) - это наиболее плотные и холодные части М. г.; есть области, где М. г. состоит гл. обр. из нейтральных атомов водорода (области HI),- это менее плотные и в среднем более тёплые области; существуют области ионизованного водорода (зоны НII), к-рыми явл. светлые эмиссионные туманности вокруг горячих звёзд, и области разреженного горячего газа (корональный газ). М. г., как и вещество звёзд, состоит гл. обр. из водорода и гелия с небольшой добавкой других хим. элементов (см. ). В среднем в М. г. атомы водорода составляют ок. 90% числа всех атомов (70% по массе). На атомы гелия приходится ок. 10% числа атомов (ок. 28% по массе). Остальные 2% массы составляют все последующие хим. элементы (т.н. тяжёлые элементы). Из них наиболее обильны О, С, N, Ne, S, Ar, Fe. Все они вместе составляют прибл. 1/1000 от числа атомов М. г. Однако роль их в npoцeccax, протекающих в М. г., очень велика. По сравнению с составом Солнца в М. г. наблюдается дефицит ряда тяжёлых элементов, особенно Аl, Са, Ti, Fe, Ni, к-рых в десятки и сотни раз меньше, чем на Солнце. В разных участках М. г. Галактики величина дефицита неодинакова. Возникновение дефицита связано с тем, что значит. часть указанных элементов входит в состав пылинок и почти отсутствует в газообразной фазе.

Вне галактич. диска М. г. очень мало. В осн. части гало Галактики газ, по-видимому, горячий (~ 10 o К) и очень разреженный ( на высоте 5 кпк над плоскостью симметрии диска). Наиболее заметны самые плотные газовые образования гало - . По-видимому, небольшое количество газа имеется в нек-рых, наиболее плотных, . Кроме того, на высоких галактич. широтах обнаружены водорода.

3. Методы наблюдении межзвёздного газа

Сильная разреженность М. г. и широкий диапазон темп-р, при к-рых он может находиться, определяют разнообразие методов его исследования.

Наиболее доступны для наблюдений газовые и газово-пылевые светлые туманности. По оптич. и в меньшей степени ИК-спектрам излучения эмиссионных туманностей удалось установить плотность, темп-ру, состав и состояние ионизации вещества зон НII. Богатую информацию о М. г. в эмиссионных туманностях получают по водорода, гелия и др. элементов, а также по непрерывному радиоизлучению.

Состояние М. г. вне туманностей исследуют по межзвёздным оптич. и УФ-линиям поглощения в спектрах звёзд. По ним удалось установить, что М. г. состоит из отдельных облаков, а вещество в них находится преимущественно в нейтральном атомарном состоянии. По линиям поглощения в оптич. диапазоне были открыты (1938 г.) первые . Линии поглощения большинства атомов, ионов и молекул лежат в УФ-области спектра (рис. 3). Наблюдения их, проводимые на ИСЗ, позволили изучить распространённость элементов и ионизац. состояние М. г. и обнаружить в нём дефицит ряда тяжёлых элементов. По линиям поглощения ионов NV (1238 и 1242 ) и OVI (1032 и 1038 ) были обнаружены коридоры горячего газа. По изучают крупномасштабную и тонкую структуру областей HI в Галактике и др. галактиках, плотность и темп-ру межзвёздных облаков, их строение, движение, а также вращение вокруг центров галактик.

Исследовать распределение Н 2 труднее. Для этого чаще всего пользуются косвенным методом: исследуют пространственное распределение молекулы СО, концентрация к-рой пропорциональна концентрации молекул H 2 (молекул Н 2 примерно в 10 5 раз больше, чем СО). Радиоизлучение молекулы СО с = 2,6 мм практически не поглощается межзвёздной пылью и позволяет изучать распределение молекул СО и Н 2 , а также исследовать условия в наиболее холодной и плотной части М. г.- в молекулярных облаках и газово-пылевых комплексах. Молекулы H 2 непосредственно наблюдаются только по полосам поглощения, лежащим в далёкой УФ-области спектра ( 1108 ), и в неск. случаях по ИК-линиям излучения (= 2 мкм и 4 мкм). Однако из-за межзвёздного поглощения света пылью этот метод не позволяет исследовать Н 2 в плотных непрозрачных молекулярных облаках, где эти молекулы в основном сосредоточены. Отдельные, наиболее плотные конденсации молекулярного газа, расположенные рядом с сильными источниками возбуждения (напр., ИК-звёздами), наблюдаются в виде мощных космических мазеров (см. ).

Высокое спектр. разрешение, достигнутое в радиодиапазоне, позволяет изучать молекулы, содержащие различные изотопы атомов, напр. 1 H и 2 D (дейтерий), 12 С и 13 С, 14 N и 15 N, 16 О, 17 О, 18 О и т.д., т.е. изотопный состав М. г. и его вариации. Сравнение изотопного состава совр. М. г. с изотопным составом Солнечной системы, образовавшейся из межзвёздной среды ок. лет назад, даёт возможность судить об изменениях изотопного состава, связанных с эволюцией М. г.

По поглощению рентг. лучей в межзвёздном пространстве можно судить о полном количестве межзвёздного вещества, находящегося в атомарном и молекулярном виде, а также в виде пылинок. В дальнейшем по флюоресценции атомов в рентгеновских -линиях различных элементов (см. ) можно будет получить достаточно полную информацию о распространённости элементов в межзвёздном веществе независимо от того, в каком состоянии оно находится. Наиболее горячие участки М. г. (остатки сверхновых звёзд и коридоры горячего газа) излучают в рентг. диапазоне, что позволяет методами изучить их пространственное расположение и физ. св-ва.

Межзвездная среда излучает также в -лучах. Энергичные -фотоны (с энергией 50 МэВ) возникают в М. г. за счёт того, что при столкновении протонов с протонами М. г. образуются - , которые распадаются на 2 -фотона. Вклад 50% даёт релятивистских электронов космич. лучей при соударениях с ядрами атомов М. г. Кроме того, при взаимодействии частиц космич. лучей низких энергий с ядрами атомов М. г. и пыли появляются -линии в диапазоне 1-6 МэВ. Сильная линия, с энергией фотонов 0,511 МэВ, может образовываться при аннигиляции позитронов, возникающих при взаимодействии космич. лучей с М. г.

Состояние газа в непосредств. окрестности Солнечной системы установлено по параметрам , обусловленного относительно межзвёздной среды.

Ещё одним тонким методом исследований М. г. оказались наблюдения мерцаний радиоизлучения пульсаров на мелких неоднородностях межзвездной плазмы (см. ). С его помощью удалось установить, что концентрация электронов т у в М. г. флуктуирует слабо. Среднее по лучу зрения значение (здесь - отклонение концентрации электронов от ср. значения по лучу зрения). Размеры неоднородностей могут быть различными, но при наблюдениях пульсаров осн. вклад в мерцания дают неоднородности размером ~ 10 10 -10 13 см, порождённые, по-видимому, .

4. Процессы, формирующие состояние межзвёздного газа

Тепловое и ионизационное состояния М. г.

Разреженность М. г. приводит к тому, что он прозрачен для большинства видов излучения. Поэтому условия в нём очень далеки от . Однако распределение энергии между частицами М. г. в большинстве случаев (за исключением гл. обр. ударных волн в М. г., где нет равнораспределения энергии между электронами и ионами) подчиняется , благодаря чему можно говорить о темп-ре М. г.

Для определения равновесных св-в М. г. (степени ионизации, интенсивности излучения и др.) рассматривается баланс процессов возбуждения ионов, атомов и молекул (соударений, поглощения излучения и др.) и процессов снятия возбуждения (рекомбинаций, испускания фотонов), протекающих в к.-л. выделенном объёме в конечный интервал времени.

Зоны НII М. г. нагреваются УФ-излучением звёзд, расположенных внутри них (атомы водорода активно поглощают излучение с ). Области HI и молекулярные облака нагреваются проникающей радиацией: частицами космич. лучей низких энергий (~ 1-10 МэВ/нуклон), а также УФ- и мягким рентг. излучением. Роль более энергичных фотонов и частиц невелика, т.к. их меньше, а взаимодействуют они с М. г. слабее (см. ). В нек-рых местах М. г. существенны и др. механизмы нагрева, напр. ударные волны, возникающие при столкновениях облаков или при вспышках сверхновых звёзд.

Охлаждение М. г. происходит за счёт излучения в спектральных линиях чаще в ИК- и оптич. областях спектра, реже в УФ- и рентг. диапазонах или в радиодиапазоне (см. ). Излучение в непрерывном спектре играет, как правило, второстепенную роль. В целом механизм охлаждения почти всех областей М. г. подобен охлаждению зон НII, но в областях HI повышенную роль в охлаждении играет излучение в ИК-диапазоне, а в холодных молекулярных областях - в радиодиапазоне.

Ионизуется М. г. теми же видами излучений, что и нагревается. Ионизац. равновесие достигается при равенстве скорости ионизации и скорости гл. обр. радиац. рекомбинации. В отдельных случаях, напр. для иона ОН в областях HI, определённую роль играют реакции обмена зарядом (реакции перезарядки) с водородом и реже с гелием.

Формирование структуры М. г.

Анализ, проведённый С.Б. Пикельнером (1967 г.), показал, что ур-ние состояния газа в областях HI подобно ур-нию состояния Ван-дер-Ваальса для неидеального газа, т.е. давление p имеет минимум и максимум (рис. 4). В областях HI спиральных ветвей Галактики определённому давлению М. г. могут соответствовать три значения концентрации частиц (или плотности) газа n . Состояние при среднем значении концентрации неустойчиво, из этого состояния М. г. за ~ 10 6 лет перейдёт в состояние с большей (n 1) или меньшей (n 2) концентрацией. В результате М. г. разбивается на области с 10 см -3 и см -3 , между к-рыми устанавливается равенство давлений: сгущения с 10 см -3 и K (облака) находятся в динамич. равновесии с областями, где см -3 при темп-ре К (см. кривую T на рис. 4). Процесс расслоения М. г. на две термически устойчивые фазы (как следствие тепловой неустойчивости М. г.) приводит к тому, что в областях НI существуют "холодные" облака и более "горячая" межоблачная среда.

Другим, ещё более сильным фактором, влияющим на структуру М. г. в S-галактиках, явл. спиральные ударные волны. Они возникают при соударении М. г., уже накопленного в спиральных ветвях, с газом, к-рый при круговом движении вокруг центра галактики догоняет спиральные ветви и входит в них со сверхзвуковой скоростью (спиральные ветви вращаются вокруг центра Галактики в ту же сторону, что газ и звезды, но с меньшей скоростью). На фронте ударной волны набегающий газ тормозится и уплотняется. За счет повысившегося давления почти весь газ оказывается в плотной фазе. Так образуются газово-пылевые комплексы, наблюдаемые на внутр. сторонах спиральных ветвей.

Газово-пылевые комплексы могут возникать не только под действием спиральных ударных волн, но и вследствие т.н. газового диска галактик. В результате развития неустойчивости возникают компактные (10-30 пк) газово-пылевые сгустки, становящиеся затем очагами образования звёздных скоплений. В S-галактиках неустойчивость Рэлея-Тейлора играет, вероятно, меньшую роль, чем спиральные ударные волны, но в Ir-галактиках она, видимо, явл. осн. причиной образования комплексов М. г.

Наблюдения показывают, что межзвёздные облака имеют помимо упорядоченного движения вокруг центра Галактики хаотич. скорости со ср. значением ок. 10 км/с. В среднем через 30-100 млн. лет облако сталкивается с др. облаком, что приводит к диссипации (уменьшению) этих случайных движений, частичному слипанию облаков и формированию степенного (~ ) спектра их масс. Хаотич. движения поддерживаются взрывами сверхновых: сброшенная при взрыве М. г. оболочка звезды тормозится в М. г. и передает облакам часть своего импульса.

Из области М. г., по к-рой прошла ударная волна, вызванная вспышкой, почти весь газ оказывается выметенным. Возникшая область разреженного газа (каверна размером в десятки пк с n ~ 10 -2 см -3 и T ~ 10 6 K) может существовать ~10 7 лет. Если за это время поблизости вспыхнет ещё одна сверхцо-вая, то новая каверна, сомкнувшись с предыдущей, может образовать обширныи коридор горячего разреженного сильно ионизованного газа. Излучение горячего газа может нагревать до 300-5000 К газовые облака, находящиеся на расстоянии многих пк от коридоров (существование облаков с такой темп-рой невозможно в описанной выше простой двухфазной модели М. г.).

Вспышки сверхновых звёзд, "пробурившие" газовый диск галактики насквозь, вызывают отток газа от плоскости галактики в межгалактич. среду и нагрев его там вплоть до 10 7 -10 8 K. В результате в межгалактич. среду попадает обогащённый тяжёлыми элементами газ. Возможно, что именно благодаря этим процессам межгалактич. газ в скоплениях галактик имеет почти такое же содержание железа, как атмосфера Солнца. Часть газа, видимо, падает назад к галактич. плоскости в виде высокоширотных и высокоскоростных облаков водорода.

5. Процессы, протекающие в газово-пылевых комплексах

Вещество в газово-пылевых комплексах достаточно плотно для того, чтобы не пропускать на большую глубину осн. часть проникающей радиации. Поэтому М. г. внутри комплексов оказывается холоднее, чем в межзвёздных облаках, и существует преимущественно в молекулярной форме. Молекулы образуются гл. обр. в ион-молекулярных реакциях, а также на поверхности пылинок (молекулы Н 2 и нек-рые др., см. ). Ионизация, необходимая для протекания ион-молекулярных реакций, поддерживается УФ-излучением звёзд (в областях, где межзвёздное поглощение света ) и, по-видимому, космич. лучами низких энергий (4-12 К) сгустков. Совместно с эти процессы в холодных фрагментах молекулярных облаков ведут к возникновению самогравитирующих сгустков газово-пылевого вещества звёздной массы - протозвёзд, из к-рых впоследствии образуются звёзды.

Т.о., молекулярные облака должны быстро (за ~ 10 6 лет) превратиться в звёзды. Т.к. они существуют гораздо дольше, должны действовать факторы, замедляющие образование звёзд (напр., магн. давление, турбулентность, нагрев газа возникшими звёздами, см. ).

6. Эволюция межзвёздного газа

М. г. постоянно обменивается веществом со звёздами. Согласно оценкам, в настоящее время в Галактике в звёзды переходит газ в количестве в год. Одновременно с этим звёзды, гл. обр. на поздних стадиях эволюции, теряют вещество (см. ) и пополняют М. г.

Часть выбрасываемого вещества участвовала в термоядерных реакциях в недрах звёзд и обогатилась там тяжёлыми элементами. Поэтому со временем состав (распространённость элементов) в М. г. изменяется. В разных галактиках и в различных частях каждой галактики эти процессы идут с различными скоростями. В результате в хим. и изотопном составе М. г. появляются неоднородности, и прежде всего градиент хим. состава вдоль радиусов галактик. Ближе к центру галактик М. г. несколько более обогащён тяжёлыми элементами.

Пока неизвестно, когда и как произошло обогащение первичного газа (имевшего состав 75% Н и 25% Не по массе, см. ) тяжёлыми элементами: было ли это ещё до образования галактик или в самом начале их эволюции. Но ясно, что на первых этапах истории галактик этот процесс шёл много активнее, чем в настоящее время.

В галактиках с большим уд. моментом количества движения за время ~ 10 9 лет после их образования М. г. осел в диск, также обогатившись тяжёлыми элементами. Дальнейшее звездообразование шло в диске. В S-галактиках звездообразование в диске стимулируется спиральной ударной волной. При каждом прохождении сквозь спиральную ударную волну элементы газа тормозятся, теряют энергию и с каждым оборотом приближаются к центру галактики.

В Ir-галактиках спиральные волны не сформировались, газ исчерпывался медленно. Поэтому в настоящее время они наиболее богаты газом (ср. содержание атомарного водорода 18% от массы галактики). В линзовидных (SO) галактиках осн. часть газа была, вероятно, выметена в межгалактич. пространство при взаимодеиствии их с др. галактиками, а оставшегося газа оказалось недостаточно для активного звездообразования.

Итак, в процессе эволкщии галактик происходит круговорот вещества: М. г. звёзды М. г., приводящий к постепенному увеличению содержания тяжёлых элементов в М. г. и звёздах и уменьшению количества М. г. в каждой из галактик. В разных типах галактик исчерпание М. г. идёт существенно различающимися темпами. Не исключена возможность, что процессы формирования звёзд и обогащения газа тяжёлыми элементами шли в Галактике немонотонно, т.е. неск. раз в истории Галактики могли происходить задержки звездообразования на миллиарды дет. Это, в принципе, должно было бы сказаться на распространённости элементов в различных типах звёздного населения.


Даже из приведенного краткого обзора видно, как сложна структура межзвездной среды. Перечислим компоненты, из которых она должна состоять.

Компактные области с Те Такими характеристиками обладают облака, которые изучаются по их молекулярным радиолиниям. Для них характерен широкий диапазон плотностей, многие из них связаны с районами недавнего звездообразования. В табл. 17.2, заимствованной из обзора , приведены значения плотностей, размеров, степени ионизации и среднеквадратичных дисперсий скорости, характерных для этих областей.

Диффузный нейтральный водород. Ббльшая часть показанного на рис. 17.1 нейтрального водорода является диффузной, т. е. он не входит в облака. Ясно, что плотность меняется от точки к точке, но в среднем с разумной степенью точности можно пользоваться значением Часть этого газа может быть горячей, но, конечно, неионизованной.

Ионизованный газ. Области являющиеся одним из самых интересных астрономических объектов в Галактике, непосредственно связаны с молодыми, яркими, горячими звездами спектральных классов конечно, не типичны для межзвездной среды. Многие описанные выше методы используются для комплексного изучения этих объектов. В качестве примера на рис. 17.3 показаны результаты наблюдений источника в разных диапазонах. В целом он представляет собой источник диффузного теплового тормозного радиоизлучения. При большем разрешении видны отдельные области некоторые из них обладают оболочечной структурой, означающей, что они возникли в результате недавней вспышки

(кликните для просмотра скана)

(см. скан)

звездообразования. Еще более компактны области связанные с мощными инфракрасными источниками. Наконец, наименьшие размеры имеют источники мазерного излучения на молекулах и Соответствующие физические параметры приведены на рис. 17.3.

Существует также ионизованная составляющая диффузного межзвездного газа. Лучше всего ее плотность определяется по мерам дисперсии пульсаров. Найденные таким образом значения имеют большой разброс, что неудивительно, поскольку физические условия в межзвездной среде меняются в широких пределах. Разумным средним значением плотности межзвездного газа является

Горячая фаза Те Наблюдения высоко ионизованных элементов, например и показывают, что в межзвездном газе должна присутствовать гораздо более горячая фаза. Примечательно, что ее температура не сильно отличается от температур старых остатков сверхновых. Как можно показать, значительная часть межзвездного газа постоянно нагревается ударными волнами, возникающими на границах старых остатков сверхновых. Это дает довольно привлекательное объяснение горячей фазы.

Ясно, что структура межзвездной среды очень сложна. Тем не менее для расчетов полезно иметь простую модель. Области сосредоточены вблизи плоскости Галактики. Полутолщина слоя нейтрального водорода (т. е. расстояние между уровнями половинной плотности) составляет примерно С другой стороны, судя по мерам вращения, тормозному поглощению на низких частотах и мерам дисперсии пульсаров, полутолщина слоя значительно больше, около Точность этих значений низка, но они дают правильное по порядку величины представление о распределении различных составляющих газового диска Галактики. Эти значения относятся к окрестностям Солнца. Ближе к центру Галактики ситуация существенно меняется и в радиусе от центра большая часть водорода находится в молекулярном состоянии.

Наконец, мы даже не пытались разобраться в механизмах нагрева и ионизации межзвездного газа. Многие из них детально разработаны. Среди них: нагрев и ионизация космическими лучами, т. е. ионизационные потери, которые подробно обсуждались в гл. 2; нагрев при столкновениях облаков; нагрев жестким ультрафиолетовым и мягким рентгеновским излучением; нагрев при вспышках сверхновых. В силу большого разнообразия структур в межзвездной среде было бы удивительно, если бы для каждого из перечисленных механизмов не нашлась бы точка в Галактике, где он преобладает.

Механизм нагрева вспышками сверхновых дает привлекательное объяснение существования очень горячей фазы с В оригинальной работе Кокса и Смита высказано предположение, что дальнейший нагрев может происходить при столкновениях старых остатков сверхновых. Согласно этим авторам, пересечение старых оболочек и их разогрев при столкновениях приводят к образованию сети из горячего газа, пронизывающей диск Галактики.

По всей вероятности, первыми внеземными объектами, которые привлекли внимание человека еще в глубокой древности, были Солн­це и Луна. Вопреки известной шутке о том, что Луна полезнее Солнца потому, что светит ночью, а днем и без того светло, перво­степенная роль Солнца была отмечена людьми еще в первобытную эпоху, и это нашло отражение в мифах и легендах почти всех народов.

Вопрос о том, какова природа звезд, возник, очевидно, гораздо позже. Заметив блуждающие звезды - планеты, люди, быть может, впервые сделали попытку проанализировать взаимосвязь различных явлений, хотя возникшая таким путем астрология подменила знания суевериями. Любопытно, что астрономия, одна из наиболее обобщаю­щих наук о природе, свои первые шаги совершала по зыбкой почве заблуждений, отголоски которых дошли даже до наших дней.

Причину этих заблуждений легко понять, если учесть, что пер­вый этап развития науки о небе в буквальном смысле слова был основан на созерцании и абстрактном мышлении, когда практически отсутствовали какие-либо астрономические инструменты. Тем более поразительно, что этот этап блестяще завершился, бессмертным творением Коперника - первой и важнейшей революцией в астро­номии. До этого казалось очевидным, что наблюдаемое, видимое совпадает с действительным, реально существующим, копирует его. Коперник впервые доказал, что действительное может радикально и принципиально отличаться от видимого.

Следующий столь же решительный шаг сделан великим Галилеем, сумевшим увидеть то, что не заметил даже такой тонкий наблюдатель, как Аристотель. Именно Галилей впервые понял, что, вопреки очевидному, процесс движения тела вовсе не означает постоянного воздействия на него другого тела. Открытый Галилеем принцип инерции позволил затем Ньютону сформулировать законы динамики, которые послужили фундаментом современной физики.

Если самое гениальное свое открытие Галилей сделал в области механики - и это в дальнейшем принесло огромную пользу астроно­мии, - то непосредственно наука о небе обязана ему началом новой эпохи в своем развитии - эпохи телескопических наблюдений.

Применение телескопа в астрономии прежде всего неизмеримо увеличило число объектов, доступных исследованиям. Еще Джорда­но Бруно говорил о бесчисленных мирах солнц. Он оказался прав: звезды - самые важные объекты во Вселенной, в них сконцентри­ровано почти все космическое вещество. Но звезды - это не просто резервуары для хранения массы и энергии. Они являются тер­моядерными котлами, где происходит процесс образования атомов тяжелых элементов, без которых невозможны были бы наиболее сложные этапы эволюции материи, приведшие на Земле к возникно­вению флоры, фауны, человека и наконец человеческой цивилизации.

По мере совершенствования телескопов и методов регистрации электромагнитного излучения астрономы получают возможность проникать во все более удаленные уголки космического простран­ства. И это не только расширяет геометрический горизонт извест­ного нам мира: более далекие объекты отличаются и по возрасту, так что в известной нам части Вселенной, которую принято называть Метагалактикой, содержится богатая информация об истории раз­вития, иными словами, об эволюции Вселенной. Современная астро­номия обогатилась учением о развитии миров, подобно тому как биология в свое время обогатилась учением Дарвина. Это уже бо­лее высокая ступень перехода -от видимого к действительному, ибо по тому, что видно сегодня, мы познаем суть явлений в далеком прошлом и можем предвидеть будущее!

В последнее время в астрономии наметился еще один важный переход от наблюдаемого к действительному. Само по себе наблю­даемое теперь оказалось достоянием многих ученых-астрономов, вооруженных самой современной техникой, которая использует малейшие возможности, скрытые в тайниках физических законов и позволяющие вырывать у природы ее тайны. Но проникновение в неведомую еще нам реальность - это не просто представление о том, что вокруг чего обращается, и даже не то, что является причиной движения или как выглядели те или иные тела в незапамятные времена, а нечто гораздо большее. Это – познание свойств пространства и времени в целом, в масштабах, не доступных нашему непосредственному восприятию и созерцанию.

Пространство между звёздами, за ис­ключением отдельных туманностей, выглядит пустым. На самом же деле всё межзвёздное пространство за­полнено веществом. К такому заклю­чению учёные пришли после того, как в начале XX в. швейцарский аст­роном Роберт Трюмплер открыл по­глощение (ослабление) света звёзд на пути к земному наблюдателю. Причём степень его ослабления зависит от цвета звезды. Свет от голубых звёзд поглощается более интенсивно, чем от красных. Таким образом, если звезда излучает в голубых и красных лучах одинаковое количество энер­гии, то в результате поглощения све­та голубые лучи ослабляются сильнее красных и с Земли звезда кажется красноватой.

Вещество, поглощающее свет, рас­пределено в пространстве не равно­мерно, а имеет клочковатую структу­ру и концентрируется к Млечному Пути. Тёмные туманности, такие, как Угольный Мешок и Конская Голова, являются местом повышенной плот­ности поглощающего межзвёздного

вещества. А состоит оно из мельчай­ших частиц - пылинок. Физические свойства пылинок к настоящему вре­мени изучены достаточно хорошо.

Помимо пыли между звёздами имеется большое количество невиди­мого холодного газа. Масса его поч­ти в сто раз превосходит массу пыли. Как же стало известно о существова­нии этого газа? Оказалось, что атомы водорода излучают радиоволны с длиной волны 21 см. Большую часть информации о межзвёздном вещест­ве получают с помощью радиотеле­скопов. Так были открыты облака атомарного нейтрального водорода.

Типичное облако атомарного ней­трального водорода имеет температу­ру около 70 К (-200 °С) и невысокую плотность (несколько десятков ато­мов в кубическом сантиметре про­странства). Хотя такая среда и счита­ется облаком, для землянина это глубокий вакуум, в миллиард раз раз­реженнее, чем вакуум, создаваемый, например, в кинескопе телевизора. Размеры облаков водорода - от 10 до 100 пк (для сравнения: звёзды в среднем находятся друг от друга на рас­стоянии 1 пк).

Впоследствии были обнаружены ещё более холодные и плотные обла­ка молекулярного водорода, совер­шенно непрозрачные для видимого света. Именно в них сосредоточена большая часть холодного межзвёзд­ного газа и пыли. По размерам эти облака примерно такие же, как и об­ласти атомарного водорода, но плот­ность их в сотни и тысячи раз выше. Поэтому в больших молекулярных облаках может содержаться огромная масса вещества, достигающая сотен тысяч и даже миллионов масс Солн­ца. В молекулярных облаках, состоя­щих в основном из водорода, присут­ствуют и многие более сложные молекулы, в том числе простейшие органические соединения. Некоторая часть межзвёздного ве­щества нагрета до очень высоких температур и «светится» в ультрафи­олетовых и рентгеновских лучах. В рентгеновском диапазоне излучает самый горячий газ, имеющий темпе­ратуру около миллиона градусов. Это - короналъный газ, названный так по аналогии с разогретым газом в солнечной короне. Корональный газ отличается очень низкой плотностью: примерно один атом на кубический дециметр пространства.

Горячий разреженный газ образу­ется в результате мощных взрывов - вспышек сверхновых звёзд. От места взрыва в межзвёздном газе распро­страняется ударная волна и нагрева­ет газ до высокой температуры, при которой он становится источником рентгеновского излучения. Корональ­ный газ обнаружен также в простран­стве между галактиками.

Итак, основным компонентом меж­звёздной среды является газ, состоя­щий из атомов и молекул. Он переме­шан с пылью, содержащей около 1% массы межзвёздного вещества, и про­низывается быстрыми потоками эле­ментарных частиц - космическими лучами - и электромагнитным излу­чением, которые также можно считать составляющими межзвёздной среды. Кроме того, межзвёздная среда оказалась слегка намагниченной.

Магнитные поля связаны с облака­ми межзвёздного газа и движутся вместе с ними. Эти поля примерно в 100 тыс. раз слабее магнитного по­ля Земли. Межзвёздные магнитные поля способствуют образованию наиболее плотных и холодных обла­ков газа, из которых конденсируют­ся звёзды. Частицы космических лу­чей также реагируют на межзвёздное магнитное поле: они перемещаются вдоль его силовых линий по спи­ральным траекториям, как бы нави­ваясь на них. При этом электроны, входящие в состав космических лу­чей, излучают радиоволны. Это так называемое синхротронное излуче­ние рождается в межзвёздном про­странстве и уверенно наблюдается в радиодиапазоне.

ГАЗОВЫЕ ТУМАННОСТИ

Наблюдения с помощью телескопов позволили обнаружить на небе боль­шое количество слабосветящихся пя­тен - светлых туманностей. Систе­матическое изучение туманностей начал в XVIII в. Уильям Гершель. Он разделял их на белые и зеленоватые. Подавляющее большинство белых туманностей образовано множест­вом звёзд - это звёздные скопления и галактики, а некоторые оказались связанными с межзвёздной пылью, которая отражает свет близко распо­ложенных звёзд, - это отражатель­ные туманности. Как правило, в цен­тре такой туманности видна яркая звезда. А вот зеленоватые туманно­сти - не что иное, как свечение меж­звёздного газа.

Самая яркая на небе газовая туман­ность - Большая туманность Орио­на. Она видна в бинокль, а при хоро­шем зрении её можно заметить и невооружённым глазом - чуть ниже трёх звёзд, расположенных в одну ли­нию, которые образуют Пояс Орио­на. Расстояние до этой туманности около 1000 световых лет.

Что заставляет светиться межзвёзд­ный газ? Ведь привычный нам воздух прозрачен и не излучает света. Голу­бое небо над головой светится рассе­янным на молекулах воздуха светом Солнца. Ночью небо становится тём­ным. Впрочем, иногда всё же можно увидеть свечение воздуха, например во время грозы, когда под действием электрического разряда возникает молния. В северных широтах и в Ан­тарктиде часто наблюдаются поляр­ные сияния - разноцветные полосы и сполохи на небе. В обоих случаях воздух излучает свет не сам по себе, а под действием потока быстрых час­тиц. Поток электронов порождает вспышку молнии, а попадание в атмо­сферу Земли энергичных частиц из радиационных поясов, существую­щих в околоземном космическом пространстве, - полярные сияния.

Подобным образом возникает из­лучение в неоновых и других газовых лампах: поток электронов бомбардирует атомы газа и заставляет их све­титься. В зависимости от того, какой газ находится в лампе, от его давле­ния и электрического напряжения, приложенного к лампе, изменяется цвет излучаемого света.

В межзвёздном газе также проис­ходят процессы, приводящие к излу­чению света, однако они не всегда связаны с бомбардировкой газа бы­стрыми частицами.

Объяснить, как возникает свечение межзвёздного газа, можно на приме­ре атомарного водорода. Атом водоро­да состоит из ядра (протона), имею­щего положительный электрический заряд, и вращающегося вокруг него от­рицательно заряженного электрона. Они связаны между собой электриче­ским притяжением. Затратив опреде­лённую энергию, их можно разделить. Такое разделение приводит к иони­зации атома. Но электроны и ядра могут вновь соединиться друг с дру­гом. При каждом объединении частиц будет выделяться энергия. Она излучается в виде порции (кванта) света оп­ределённого цвета, соответствующего данной энергии.

Итак, для того чтобы газ излучал, необходимо ионизовать атомы, из которых он состоит. Это может про­изойти в результате столкновений с другими атомами, но чаще ионизация возникает, когда атомы газа поглоща­ют кванты ультрафиолетового излуче­ния, например от ближайшей звезды.

Если вблизи облака нейтрально­го водорода вспыхнет голубая горя­чая звезда, то при условии, что обла­ко достаточно большое и массивное, почти все ультрафиолетовые кванты от звезды поглотятся атомами об­лака. Вокруг звезды складывается область ионизованного водорода. Освободившиеся электроны обра­зуют электронный газ температу­рой около 10 тыс. градусов. Обрат­ный процесс рекомбинации, когда свободный электрон захватывается протоном, сопровождается переиз­лучением освободившейся энергии в виде квантов света.

Свет излучается не только водоро­дом. Как считалось в XIX в., цвет зе­леноватых туманностей определяет­ся излучением некоего «небесного» химического элемента, который на­звали небулием (от лат. nebula - «ту­манность»). Но впоследствии выясни­лось, что зелёным цветом светится кислород. Часть энергии движения частиц электронного газа расходует­ся на возбуждение атомов кислорода, т. е. на перевод электрона в атоме на более далёкую от ядра орбиту. При возвращении электрона на устойчи­вую орбиту атом кислорода должен испустить квант зелёного света. В земных условиях он не успевает это­го сделать: плотность газа слишком высока и частые столкновения «раз­ряжают» возбуждённый атом. А в крайне разреженной межзвёздной среде от одного столкновения до другого проходит достаточно много времени, чтобы электрон успел со­вершить этот запрещённый переход и атом кислорода послал в простран­ство квант зелёного света. Аналогич­ным образом возникает излучение азота, серы и некоторых других эле­ментов.

Таким образом, область ионизо­ванного газа вокруг горячих звёзд можно представить в виде «машины», которая перерабатывает ультрафио­летовое излучение звезды в очень интенсивное излучение, спектр кото­рого содержит линии различных хи­мических элементов. И цвет газовых туманностей, как выяснилось позд­нее, различен: они бывают зелено­ватые, розовые и других цветов и оттенков - в зависимости от темпе­ратуры, плотности и химического со­става газа.

Некоторые звезды на заключительных стадиях эволюции постепенно сбрасывают внешние слои, которые, медленно расширяясь, образуют светящиеся туманности. При наблюдении в телескопы эти туманности напоминают диски планет, поэтому они получили название планетарных. В центре некоторых из них можно увидеть небольшие очень горячие звезды. Расширяющиеся газовые туманности также возникают в конце жизни некоторых массивных звезд, когда они взрываются как сверхновые; при этом звезды полностью разрушаются, рассеивая свое вещество в межзвездное пространство. Это вещество богато тяжелыми элементами, образовавшихся в ядерных реакциях, протекавших внутри звезды, и в дальнейшем служит материалом для звезд новых поколений и планет.

Что происходит в центре нашей Галактики?

Центральная область Млечного Пути приковывала внимание астрономов на протяжении многих десятилетий. От нее до Земли всего 25 тыс. световых лет, тогда как от центров других галактик нас отделяют миллионы световых лет, поэтому есть все основания надеяться, что именно центр нашей Галактики удастся изучить более подробно. Однако в течение длительного времени непосредственно наблюдать эту область было невозможно, поскольку она скрыта большими плотными облаками газа и пыли. Хотя открытия, сделанные при наблюдениях рентгеновского и гамма-излучения, безусловно важны, наиболее обширные и ценные спект­роскопические исследования центра Галактики были проведены в инфра­красном и радиодиапазонах, в кото­рых он впервые наблюдался. Доволь­но подробно изучалось радиоизлуче­ние атомарного водорода с длиной волны 21 см. Водород - наиболее распространенный элемент во Все­ленной, что компенсирует слабость его излучения. В тех областях Млеч­ного Пути, где облака межзвездного газа не слишком плотны и где ультра­фиолетовое излучение не очень интен­сивно, водород присутствует глав­ным образом в виде изолированных электрически нейтральных атомов; именно хорошо различимые радио­сигналы атомарного водорода де­тально картировались для установле­ния структуры нашей Галактики.

На расстояниях более 1000 св. лет от центра Галактики излучение ато­марного водорода дает надежные данные о вращении Галактики и структуре ее спиральных рукавов. Из него нельзя получить много информа­ции об условиях вблизи центра Галак­тики, поскольку там водород преиму­щественно объединен в молекулы или ионизован (расщеплен на протон и электрон).

Мощные облака молекулярного во­дорода скрывают центр Галактики и наиболее удаленные объекты, находя­щиеся в плоскости Галактики. Однако микроволновые и инфракрасные теле­скопы позволяют наблюдать и эти облака, и то, что находится сзади них в галактическом центре. Кроме моле­кулярного водорода облака содержат много стабильных молекул окиси (монооксида) углерода (СО), для ко­торых наибольшая характеристиче­ская длина волны излучения составля­ет 3 мм. Это излучение проходит че­рез земную атмосферу и может быть зарегистрировано наземными прием­никами; особенно много окиси угле­рода в темных пылевых облаках, по­этому она играет полезную роль для определения их размеров и плотно­сти. Измеряя доплеровский сдвиг (из­менение частоты и длины волны сиг­нала, вызываемое движением источ­ника вперед или назад относительно наблюдателя), можно определить и скорости движения облаков.

Обычно темные облака довольно холодные - с температурой около 15 К(-260°С), поэтому окись углеро­да в них находится в низких энергети­ческих состояниях и излучает на отно­сительно низких частотах - в милли­метровом диапазоне. Часть вещества вблизи центра Галактики явно более теплая. С помощью Койперовской астрономической обсерватории исследова­телями из Калифорнийского универ­ситета в Беркли зарегистрировали бо­лее энергичное излучение окиси угле­рода в дальней инфракрасной обла­сти, указывающее на температуру га­за около 400 К, что приблизительно соответствует точке кипения воды. Этот газ нагревается под воздействи­ем идущего из центра Галактики уль­трафиолетового излучения и, воз­можно, ударных волн, которые воз­никают при столкновениях облаков, движущихся вокруг центра.

В других местах вокруг центра окись углерода несколько холоднее и большая часть ее излучения прихо­дится на более длинные волны - око­ло 1 мм. Но даже здесь температура газа составляет несколько сотен кельвинов, т. е. близка к температуре у поверхности Земли и гораздо выше, чем внутри большинства межзвезд­ных облаков. "К другим детально изу­ченным молекулам относятся цианис­тый водород (HCN), гидроксил (ОН), моносульфид углерода (CS) и аммиак (NH^). Карта излучения HCN высо­кого разрешения была получена на ра­диоинтерферометре Калифорнийско­го университета. Карта указыва­ет на существование разбитого на от­дельные сгустки, неоднородного дис­ка из теплых молекулярных облаков, окружающего «полость» шириной около 10 св. лет в центре Галак­тики. Поскольку диск наклонен от­носительно линии наблюдения с Земли, эта круглая полость кажет­ся эллиптической (см. рис. внизу).

Атомы углерода и кислорода, часть которых ионизована ультрафи­олетом, перемешаны в диске с моле­кулярным газом. Карты инфракрас­ного и радиоизлучений, соответству­ющих линиям испускания ионов, ато­мов и разных молекул, показывают, что газовый диск вращается вокруг центра Галактики со скоростью око­ло 110 км/с, а также, что этот газ теп­лый и собран в отдельные сгустки. Измерения обнаружили и некоторые облака, движения которых совершен­но не соответствуют этой общей схе­ме циркуляции; возможно, это веще­ство упало сюда с некоторого рассто­яния. Ультрафиолетовое излучение центральной области «ударяет» по внешнему краю облачного диска, со­здавая почти непрерывное кольцо ионизованного вещества. Ионизован­ные стримеры и сгустки газа имеются также в центральной полости.

Некоторые достаточно распро­страненные ионизованные элементы, включая неон, лишенный одного электрона, аргон без двух электронов и серу без трех электронов, имеют яр­кие линии излучения вблизи 10 мкм - в той части инфракрасного спектра, для которого земная атмосфера про­зрачна. Было также обнаружено, что из всех элементов вблизи центра преобладает однозарядный ионизованный неон, тогда как трехза­рядный ион серы там практически от­сутствует. Чтобы отобрать три элек­трона у атома серы, нужно затратить гораздо больше энергии, чем для то­го, чтобы отобрать один электрон у атома неона; наблюдаемый состав ве­щества указывает на то, что в цент­ральной области поток ультрафиоле­тового излучения велик, но его энер­гия не очень большая. Отсюда следу­ет, что это излучение, по-видимому, создается горячими звездами с темпе­ратурой от 30 до 35 тыс. Кельвинов, и звезды с температурой, существенно больше указанной, отсутствуют.

полости диаметром 10 св. лет, окружающей центр. В неко­торых частях полости скорости

близ­ки к скорости вращения кольца моле­кулярного газа - около 110 км/с. Часть облаков внутри этой области движется значительно быстрее - при­мерно со скоростью 250 км/с, а неко­торые имеют скорости до 400 км/с.

В самом центре обнаружено ионизованное веще­ство, движущееся со скоростями до 1000 км/с. Это вещество ассоцииро­вано с интересным набором объектов вблизи центра полости, известным как IRS 16, который был обнаружен Беклином и Негебауэром во время по­иска источников коротковолнового инфракрасного излучения. Большин­ство найденных ими очень небольших источников - это, вероятно, одиноч­ные массивные звезды, но IRS 16 (16-й в их списке инфракрасный источник) представляет собой нечто иное: по­следующие измерения выявили в нем.пять ярких необычных компонентов. Вся эта центральная область - как теплый газовый диск, так и внутрен­няя полость - является, по-видимо­му, сценой, где совсем недавно разы­гралось какое-то бурное действие. Кольцо или диск газа, вращающиеся вокруг центра Галактики, должны постепенно превратиться в однород­ную структуру в результате столкно­вений между быстро и медленно дви­жущимися сгустками вещества. Из­мерения доплеровского сдвига пока­зывают, что разница между скоростя­ми отдельных сгустков в кольце моле­кулярного газа достигает десятков ки­лометров в секунду. Эти сгустки дол­жны сталкиваться, а их распределе­ние сглаживаться в масштабах време­ни порядка 100 тыс. лет, т. е. за один-два оборота вокруг центра. Отсюда следует, что в течение этого проме­жутка времени газ подвергся сильно­му возмущению, возможно, в резуль­тате выделения энергии из центра или падения вещества с некоторого рас­стояния извне, и столкновения между сгустками должны быть еще доста­точно сильными, чтобы в газе возни­кали ударные волны. Справедливость этих выводов может быть проверена путем поиска «следов» таких волн.

Ударные волны могут быть иден­тифицированы по спектральным ли­ниям горячих сильно возбужденных молекул. Такие молекулы были обна­ружены при наблюдениях с Койперовской астрономической обсервато­рии; к ним относятся радикалы гидроксила - электрически заряженные фрагменты молекул воды, которые были с силой разорваны на части. За­регистрировано также коротковолно­вое инфракрасное излучение горячих молекул водорода; оно указывает, что в некоторых местах температура облаков молекулярного газа достига­ет 2000 К - именно такая температу­ра может создаваться ударными вол­нами. Каков источник плотных моле­кулярных пылевых облаков вблизи центра? Вещество содержит тяжелые элементы; это указывает на то, что оно было образовано в недрах звезд, где в результате элементы, такие как углерод, кислород и азот. Старые звезды расширяются и испускают огромное количество вещества, а в не­которых случаях взрываются как сверхновые. В любом случае тяжелые элементы выбрасываются в меж­звездное пространство. Вещество об­лаков, находящихся вблизи центра Галактики, было, по-видимому, бо­лее основательно «обработано» внут­ри звезд, чем вещество, расположен­ное дальше от центра, поскольку вблизи центра особенно много неко­торых редких изотопов, образующих­ся только внутри звезд.

Не все это вещество было создано ранее существовавшими звездами в непосредственной близости от цент­ра. Возможно, часть облаков была притянута извне. Под влиянием тре­ния и магнитных полей вещество по­степенно стягивается по направлению к центру, поэтому в этой области оно должно скапливаться..

Газ в Большом Магеллановом Облаке.

Светящиеся газовые туманности- одни из наиболее красивых и впечатляющих объектов во Вселенной. Туманность 30 Золотой Рыбы является самой яркой и большой из газовых туманностей трех десятков галактик местной группы, включая нашу Галактику. Она имеет неправильную форму и огромные размеры. В то время как Большая туманность в созвездии Ориона видна невооруженным глазом в виде звезды с размытым изображением. Туманность 30 Золотой Рыбы занимает на небе площадь, сравнимую с диском солнца или полной луны, несмотря на то что она находится от нас в 100 с лишним раз дальше туманности Ориона. Ее диаметр составляет около 1000 световых лет, а туманности Ориона – всего три световых года. Газ туманности в значительной степени ионизирован: большая часть атомов потеряла по крайней мере по одному электрону. Оказывается, туманность 30 Золотой Рыбы содержит ионизированного газа в 1500 раз больше, чем туманность Ориона. Ионизация газа происходит под действием ультрафиолетового излучения, испускаемого массивными горячими молодыми звездами, находящимися в туманности.

Двадцатый век породил удивительные науку и технику, они позволяют человеческой мысли проникать в глубины Вселенной, поистине за пределы известного мира. Наш кругозор и горизонты видимого мира расширились на столько, что человеческий разум, пытающийся сбросить с себя оковы земных предрассудков, едва способен овладеть им. Ученые, работающие в различных областях науки, пытаясь с помощью физических законов объяснить загадочные объекты, обнаруженные в наше время, убеждаются в том, что удивительная Вселенная, в которой мы живём, в основном ещё нам не известна. Если же какая-либо информация о Вселенной становится доступной, то часто даже самый дерзновенный ум оказывается не подготовленным к её восприятию в той форме, в какой её преподносит природа. Поражаясь необычности вновь открытых небесных объектов, следует помнить, что за всю историю человечества, ни одна наука не достигала столь феноменально быстрого развития, как наука об этих уникальных объектах. И всё это буквально за последние десятилетия. Утоляя присущую человеку неистощимую жажду познания, астрофизики неутомимо изучают природу этих небесных объектов, бросающих вызов человеческому разуму.

1.С.Данлоп «Азбука звёздного неба» (1990 г.)

2.И.Левитт «За пределами известного мира» (1978 г.)

3.Джон С. Матис «Объект необычайно высокой светимости в Большом Магелановом Облаке» (В мире науки. Октябрь 1984 г.)

4.Чарлз Г. Таунс, Рейнгард Гензел «Что происходит в центре нашей Галактики?» (В мире науки. Июнь 1990 г.)

5.Аванта плюс. Астрономия.