Как называется платоново тело с 12 гранями. Платоновы тела

Правильные многогранники с древних времен привлекали внимание философов, строителей, архитекторов, художников, математиков. Их поражала красота, совершенство, гармония этих фигур.

Правильный многогранник – объёмная выпуклая геометрическая фигура, все грани которой - одинаковые правильные многоугольники и все многогранные углы при вершинах равны между собой. Существует множество правильных многоугольников, но правильных многогранников всего пять. Названия этих многогранников пришли из Древней Греции, и в них указывается число («тетра» - 4, «гекса» - 6, «окта» - 8, «додека» - 12, «икоса» - 20) граней («эдра»).

Эти правильные многогранники получили название платоновых тел по имени древнегреческого философа Платона, который придавал им мистический смысл, но были известны они и до Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр - как самый обтекаемый - воду; куб - самая устойчивая из фигур - землю, а октаэдр – воздух. Додекаэдр отождествлялся со всей Вселенной и почитался главнейшим.

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Кристалл пирита (сернистого колчедана, FeS2) имеет форму додекаэдра.

Тетраэдр – правильная треугольная пирамида, и гексаэдр – куб – фигуры, с которыми мы постоянно встречаем в реальной жизни. Чтобы лучше почувствовать форму других платоновых тел, стоит самому создать их из плотной бумаги или картона. Сделать плоскую развёртку фигур несложно. Создание правильных многогранников чрезвычайно занимательно самим процессом формообразования.

Завершенные и причудливые формы правильных многогранников широко используются в декоративном искусстве. Объёмные фигуры можно сделать более занимательными, если плоские правильные многоугольники представить другими фигурами, вписывающимися в многоугольник. Например: правильный пятиугольник можно заменить звездой. Такая объёмная фигура не будет иметь рёбер. Собрать её можно, связывая концы лучей звёзд. И 10 звёзд собирается плоская развёртка. Объёмной фигура получается после закрепления оставшихся 2 звёзд.

Если ваш ребёнок любит делать поделки своими умелыми руками, предложите ему собрать объёмную фигуру многогранник додекаэдр из плоских пластиковых звёзд. Результат работы обрадует вашего ребёнка: он изготовит своими руками оригинальную декоративную конструкцию, которой можно украсить детскую комнату. Но, самое замечательное – ажурный шар светится в темноте. Пластиковые звёзды изготовлены с добавлением современного безвредного вещества - люминофора.

Текущая страница: 4 (всего у книги 36 страниц) [доступный отрывок для чтения: 9 страниц]

Платон I: Структура из симметрии – платоновы тела

Платоновы тела поддерживают вокруг себя какую-то магию. Они всегда были и остаются теми объектами, с которыми можно творить волшебство. Они уходят корнями глубоко в доисторическую пору человечества и живут сейчас как предметы, сулящие удачу или неудачу в самых известных настольных играх, в частности в знаменитых «Подземельях и драконах». Кроме того, их таинственная сила вдохновила ученых на некоторые из самых плодотворных открытий в развитии математики и физики. Их невыразимая красота достойна того, чтобы поглубже сконцентрироваться на них.

Альбрехт Дюрер на своей гравюре «Меланхолия I» (илл. 4) подразумевает очарование правильных многогранников, хотя тело, изображенное на его картине, не вполне платоново. (Технически это усеченный треугольный трапецоэдр. Он может быть получен растягиванием граней октаэдра определенным образом.) Возможно, Крылатый Гений впал в меланхолию, потому что не может вникнуть, почему злобная летучая мышь сбросила ему в кабинет именно это, не вполне платоново тело вместо правильной фигуры.


Илл. 4. Альбрехт Дюрер «Меланхолия I»


На картине изображено усеченное платоново тело, магический квадрат и множество других эзотерических символов. С моей точки зрения, она прекрасно показывает досаду, которую я часто испытываю, пытаясь с помощью чистой идеи понять реальность. К счастью, так бывает не всегда.

Правильные многоугольники

Прежде чем перейти к платоновым телам, давайте начнем с чего-нибудь попроще – с их самых близких аналогов в двух измерениях, а именно с правильных многоугольников. Правильный многоугольник – это плоская фигура, у которой все стороны равны и смыкаются под равными углами. Самый простой правильный многоугольник имеет три стороны – это равносторонний треугольник. Далее идет квадрат с четырьмя сторонами. Затем – правильный пятиугольник, или пентагон (который был выбран символом пифагорейцев и взят за основу в проекте хорошо известной штаб-квартиры вооруженных сил9
Имеется в виду Пентагон – главное административное здание Министерства обороны США. – Прим. пер.

), шестиугольник (часть пчелиного улья и, как мы увидим далее, графена10
Слой атомов углерода, соединенных в гексагональную двумерную кристаллическую решетку. – Прим. пер.

), семиугольник (его можно найти на различных монетах), восьмиугольник (знаки обязательной остановки), девятиугольник… Этот ряд можно продолжать бесконечно: для каждого целого числа, начиная с трех, существует уникальный правильный многоугольник. В каждом случае количество вершин равно количеству сторон. Мы также можем рассматривать круг как предельный случай правильного многоугольника, где число сторон становится бесконечным.

Правильные многоугольники, в некотором интуитивном смысле, могут приобрести значение идеального воплощения плоскостных «атомов». Они могут служить как концептуальные атомы, из которых мы можем составлять более сложные построения порядка и симметрии.

Платоновы тела

Теперь перейдем от плоских фигур к объемным. Для максимального единообразия мы можем обобщать понятие правильного многогранника различными способами. Самый естественный из них, который оказывается наиболее плодотворным, ведет к платоновым телам. Мы говорим об объемных телах, грани которых являются правильными многоугольниками, все одинаковы и одинаково смыкаются в каждой вершине. Тогда вместо бесконечного ряда решений мы получим ровно пять тел!


Илл. 5. Пять платоновых тел – волшебных фигур


Пять платоновых тел – это:

тетраэдр с четырьмя треугольными гранями и четырьмя вершинами, в каждой из которых сходится по три грани;

октаэдр с восемью треугольными гранями и шестью вершинами, в каждой из которых сходится по четыре грани;

икосаэдр с 20 треугольными гранями и 12 вершинами, в каждой из которых сходится по пять граней;

Додекаэдр с 20 пятиугольными гранями и 20 вершинами, в каждой из которых сходится по три грани;

Куб с шестью квадратными гранями и восемью вершинами, в каждой из которых сходится по три грани.


Существование этих пяти многогранников легко понять, без особых трудностей можно и сконструировать их модели. Но почему их только пять? (Или есть еще другие?)

Чтобы разобраться с этим вопросом, заметим, что вершины тетраэдра, октаэдра и икосаэдра объединяют три, четыре и пять треугольников, сходящихся вместе, и зададим вопрос: «Что произойдет, если мы продолжим и их будет шесть?» Тогда мы поймем, что шесть равносторонних треугольников, имеющих общую вершину, будут лежать на плоскости. Сколько ни повторяй этот плоский объект, он не позволит нам построить законченную фигуру, ограничивающую некий объем. Вместо этого фигура будет бесконечно распространяться по плоскости, как показано на илл. 6 (слева).


Илл. 6. Три бесконечных платоновы поверхности

На рисунке показаны только конечные их части. Эти три правильных замещения плоскости могут и должны восприниматься как родственные платоновым телам – их блудные братья, которые отправились в паломничество и никогда не вернутся.


Мы получим такие же результаты, если совместим четыре квадрата или три шестиугольника. Эти три правильные сечения на плоскости – достойные дополнения к платоновым телам. Далее мы увидим, как они воплощаются в жизнь в микромире (илл. 29).

Если мы попытаемся совместить более шести равносторонних треугольников, четырех квадратов или трех любых бо́льших правильных многоугольников, нам не хватит места и мы просто не сможем разместить вокруг вершины их суммарный угол. И поэтому пять платоновых тел – это все конечные правильные многогранники, которые могут существовать.

Знаменательно, что определенное конечное число – пять – появляется из соображений геометрической правильности и симметрии. Правильность и симметрия – это естественные и прекрасные вещи для размышления, но у них нет очевидной или прямой связи с определенными числами. Как мы увидим, Платон интерпретировал этот сложный случай их возникновения удивительно творческим образом.

Предыстория

Часто известным людям достается слава за открытия, сделанные другими. Это «эффект Матфея», обнаруженный социологом Робертом Мёртоном и основанный на строчках из Евангелия от Матфея:

Ибо каждому имеющему будет дано, и у него будет изобилие, а у неимеющего будет взято и то, что он имеет11
Евангелие от Матфея, 13:12. – Прим. пер.

Так случилось и с платоновыми телами.

В музее Ашмолин в Оксфордском университете12
Музей искусства и археологии в Оксфорде. – Прим. пер.

Можно увидеть стенд с пятью резными камнями, изготовленными примерно в 2000 г. до н. э. в Шотландии, которые кажутся реализациями пяти платоновых тел (хотя некоторые ученые и оспаривают это). По всей видимости, они использовались в какой-то игре с костями. Можно представить, как пещерные люди собирались вокруг общего костра и резались в «Подземелья и драконы» эпохи палеолита. Вполне возможно, что не Платон, а его современник Теэтет (417–369 гг. до н. э.) первым математически доказал, что это эти самые пять тел – единственные возможные правильные многогранники. Не ясно, в какой степени Платон вдохновил Теэтета или наоборот, или в воздухе античных Афин витало что-то такое, что вдохнули они оба. В любом случае платоновы тела получили свое название, потому что Платон оригинально использовал их в работе гения, одаренного творческим воображением, чтобы провидческим образом создать теорию физического мира.


Илл. 7. Доплатоновские изображения платоновых тел, которые, возможно, использовались в играх с костями около 2000 г. до н. э.


Заглянув в гораздо более далекое прошлое, мы понимаем, что некоторые простейшие создания биосферы, в том числе вирусы и диатомеи (не пары атомов, как можно было бы подумать из названия, а морские водоросли, которые часто отращивают вычурные панцири в виде платоновых тел), не только «открыли», но и буквально воплотили платоновы тела задолго до того, как на Земле появились первые люди. Вирус герпеса; вирус, который вызывает гепатит В; вирус иммунодефицита человека и вирусы многих других болезней имеют форму, напоминающую икосаэдр или додекаэдр. Они заключают свой генетический материал – ДНК или РНК – в белковые капсулы-экзоскелеты, которые определяют их внешние формы, как показано на цветной вклейке D. Капсулы маркированы цветом таким образом, что одинаковые цвета обозначают одинаковые «строительные блоки». В глаза бросается характерное для додекаэдра соединение трех пятиугольников. Но если провести прямые линии через центры синих областей, то мы увидим икосаэдр.

Более сложные микроскопические существа, в том числе радиолярии, которые любил изображать Эрнст Геккель в своей великолепной книге «Красота форм в природе», также воплощают в жизнь платоновы тела. На илл. 8 мы видим замысловатый кремниевый экзоскелет этих одноклеточных организмов. Радиолярии – древняя форма жизни, которую обнаруживают в самых ранних окаменелостях. Ими полны океаны и сегодня. Каждое из пяти платоновых тел воплощается в некотором количестве биологических видов живых организмов. В названиях некоторых из них даже закрепилась их форма, в том числе Circoporus octahedrus, Circogonia icosahedra и Circorrhegma dodecahedra .

Вдохновляющая идея Евклида

«Начала» Евклида являются величайшим учебником всех времен, и другие книги им в этом не чета. Эта книга принесла в геометрию систему и строгость. Если посмотреть более широко, она ввела в область идей – путем практического применения – метод анализа и синтеза.


Илл. 8. Радиолярии становятся видимыми под объективом самого простого микроскопа. Их экзоскелеты часто демонстрируют симметрию платоновых тел.


Анализ и Синтез являются предпочтительной формулировкой «редукционизма» для Исаака Ньютона и для нас тоже. Вот что говорит Ньютон:

Путем такого анализа мы можем переходить от соединений к ингредиентам, от движений – к силам, их производящим, и вообще от действий – к их причинам, от частных причин – к более общим, пока аргумент не закончится наиболее общей причиной. Таков метод анализа, синтез же предполагает причины открытыми и установленными в качестве принципов; он состоит в объяснении при помощи принципов явлений, происходящих от них, и доказательстве объяснений13
Цит. по: Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. – М.-Л.: Госиздат, 1927. – С. 306.

Эту стратегию можно сравнить с подходом Евклида к геометрии, где он начинает с простых, интуитивно понятных аксиом, чтобы потом вывести из них более сложные и удивительные следствия. Великие «Математические начала» Ньютона, основополагающий документ современной математической физики, тоже следуют показательному стилю Евклида, пошагово переходя от аксиом при помощи логических построений к более значительным результатам.

Важно подчеркнуть, что аксиомы (или законы физики) не говорят вам, что с ними делать. Собирая их вместе без всякой цели, легко создать большое количество ничего не значащих фактов, о которых скоро забудут. Это как пьеса или музыкальный отрывок, которые бредут как неприкаянные и не приходят никуда. Как обнаружили те, кто пытался приспособить искусственный интеллект для решения творческих математических задач, самое трудное в этом деле – определить цели. Имея в голове стóящую цель, становится легче найти средства, чтобы достичь ее. Я люблю печенье с предсказаниями, и раз мне попалось самое удачное на свете печенье: изречение, которое я в нем нашел, великолепно подытоживает все сказанное:

Работа сама научит вас, как ее сделать.

И, конечно, для лучшего усвоения материала, для студентов и потенциальных читателей заманчиво иметь перед собой вдохновляющую цель. С самого начала на них производит глубокое впечатление понимание того, что они могут предвкушать ощущение удивительного трюка создания конструкции, которая неумолимо движется от «очевидных» аксиом к далеко не очевидным заключениям.

Итак, какова была цель Евклида в «Началах»? Тринадцатый и последний том этого шедевра завершается построением пяти платоновых тел и доказательством, почему их существует только пять. Мне приятно думать – тем более что это вполне правдоподобно, – что Евклид думал об этом заключении, когда начинал работать над всей книгой и пока писал ее. В любом случае это подходящее и приносящее чувство завершенности заключение.

Платоновы тела как атомы

Древние греки признавали в материальном мире четыре основные составляющие, или элемента: огонь, вода, земля и воздух. Вы, возможно, заметили, что количество элементов – четыре – близко к пяти, количеству правильных многогранников. Платон, разумеется, заметил! В его самом авторитетном, пророческом и непостижимом диалоге «Тимей» можно найти теорию элементов, основанную на многогранниках. Она состоит в следующем.

Каждый элемент состоит из атомов определенного вида. Атомы имеют форму платоновых тел: атомы огня – форму тетраэдра, атомы воды – икосаэдра, атомы земли – куба, атомы воздуха – октаэдра.

В этих утверждениях есть определенное правдоподобие. Они дают объяснения. Атомы огня имеют острую форму, что объясняет, почему прикосновение к огню болезненно. Атомы воды самые гладкие и круглые, поэтому они могут плавно обтекать друг друга. Атомы земли могут быть плотно прижаты друг к другу и заполняют пространство без пустот. Воздух, который может быть и горячим, и влажным, имеет промежуточную между огнем и водой форму атомов.

Хотя четыре и близко к пяти, но они не могут быть равны, поэтому полного совпадения между правильными многогранниками, рассмотренными как атомы, и элементами быть не может. Менее одаренный мыслитель был бы, возможно, обескуражен этой трудностью, но гениальный Платон не утратил присутствия духа. Он воспринял это как вызов и как возможность. Он предположил, что оставшийся правильный многогранник, додекаэдр, тоже сыграл свою роль в руках Творца-строителя, но не как атом. Нет, додекаэдр – это не просто какой-то атом, скорее, он повторяет форму самой Вселенной в целом.

Аристотель, который всегда старался превзойти Платона, предложил другую, более консервативную и последовательную теорию. Две главные идеи этих влиятельных философов состояли в том, что Луна, планеты и звезды, населяющие небесный свод, состоят из совершенно иной материи, чем та, которую мы можем найти в подлунном мире, и в том, что «природа не терпит пустоты»; таким образом, небесное пространство не могло быть пустым. Эти рассуждения требовали существования пятого элемента, или квинтэссенции, отличающейся от земли, огня, воды и воздуха, чтобы заполнить небесный свод. Так додекаэдр нашел свое место в качестве атома квинтэссенции или эфира.

Сегодня трудно согласиться с деталями обеих этих теорий. Науке нет никакой пользы от того, чтобы анализировать мир в терминах этих четырех (или пяти) элементов. В современном представлении атомы – вовсе не твердые тела, и уж подавно они не имеют форму платоновых тел. Теория элементов Платона с сегодняшней точки зрения выглядит грубой и во всех отношениях безнадежно неверной.

Структура из симметрии

Но хотя взгляды Платона провалились как научная теория, они были успешны как предсказание и, я бы сказал, как произведение интеллектуального искусства. Чтобы оценить концепцию в этом качестве, мы должны отойти от деталей и посмотреть на нее в целом. Глубинная, ключевая догадка в системе физического мира с точки зрения Платона состоит в том, что мир этот должен по большому счету воплощать в жизнь красивые понятия. И эта красота должна быть красотой особого рода: красотой математической правильности, идеальной симметрии. Для Платона, как и для Пифагора, эта догадка была в то же время верой, страстным желанием и основополагающим принципом. Они жаждали привести Разум в гармонию с Веществом, показав, что Вещество состоит из чистейших произведений Разума.

Важно подчеркнуть, что Платон поднялся в своих идеях над общепринятым уровнем философских обобщений своего времени, чтобы сделать определенные заявления о том, что же такое вещество. Его своеобразные, хотя и неправильные, идеи не попадают в позорную категорию «даже не ошибочно»14
Говорят, что знаменитый физик-теоретик Вольфганг Паули однажды раскритиковал беспомощную работу молодого ученого такими вошедшими в поговорку словами: «Это не просто неверно, это даже не дотягивает до ошибочного!» – Прим. пер.

Как мы уже видели, Платон даже сделал некоторые шаги в направлении сравнения этой теории с реальностью. Огонь обжигает, потому что у тетраэдра острые грани, вода течет, потому что икосаэдры легко перекатываются друг по другу, и т. д. В диалоге Платона «Тимей», где говорится обо всем этом, вы также найдете причудливые объяснения того, что мы бы назвали химическими реакциями и свойствами сложных (состоящих больше чем из одного элемента) веществ. Эти объяснения основаны на геометрии атомов. Но эти напрасно потраченные усилия удручающе далеки от того, что мы при всем желании могли бы считать серьезным экспериментальным доказательством научной теории и еще дальше от использования научных знаний для практических целей.

И все же взгляды Платона в нескольких направлениях предвосхищают современные идеи, находящиеся сегодня на переднем крае научного мышления.

Хотя строительные «кирпичики» материи, которые предложил Платон, совсем не те, которые мы знаем сегодня, сама идея о том, что есть лишь немногие строительные элементы, существующие в множестве одинаковых копий, остается основополагающей.

Но даже если не принимать во внимание эту смутную вдохновляющую идею, более специфический принцип построения теории Платона – выделение структуры из симметрии – оставил свой след в веках. Мы приходим к небольшому числу особых структур из чисто математических соображений – соображений симметрии – и преподносим их Природе как возможные элементы ее строения. Тот вид математической симметрии, который избрал Платон, чтобы составить свой список составляющих элементов, весьма отличен от симметрии, которую мы используем сегодня. Но идея о том, что в основе Природы лежит симметрия, стала доминировать в нашем восприятии физической реальности. Умозрительная идея о том, что симметрия определяет структуру – т. е. что кто-то может использовать высокие требования математического совершенства, чтобы прийти к небольшому перечню возможных реализаций, а потом воспользоваться этим списком как руководством по построению модели мира, – стала нашей путеводной звездой на границах неизведанного, не нанесенных ни на одну карту. Эта идея почти кощунственна в своем безрассудстве, поскольку провозглашает, что мы можем разобраться, как действовал Мастер и точно узнать, как все было сделано. И, как мы увидим далее, она оказалась совершенно правильной.

Для того чтобы обозначить Творца физического мира, Платон использовал слово «демиург». Буквальное его значение – «мастер»; обычно его переводят словом «создатель», что не совсем верно. Это греческое слово Платон подобрал очень тщательно. Оно отражало его веру в то, что физический мир не является окончательной реальностью. Есть также вечный и вневременной мир Идей, которые существуют до какого-либо, с необходимостью несовершенного, физического воплощения и независимо от него. Беспокойный творческий ум – Мастер или Создатель – отливает свои создания из идей, используя последние как формы.

«Тимей» – непростое для понимания произведение, и всегда остается соблазн принять неясность или ошибку за глубину. Осознавая это, я нахожу тем не менее интересным и вдохновляющим то, что Платон не останавливается на платоновых телах, но размышляет о том, что атомы в иных формах, подобно физическим объектам, в свою очередь могут быть составлены из более примитивных треугольников. Детали, конечно, «даже не ошибочны», но интуиция, призывающая рассмотреть модель серьезно, говорить на ее языке и раздвигать границы, в корне верна. Идея о том, что атомы могут иметь составные части, предвосхищает современное стремление анализировать все глубже и глубже. А идея о том, что эти составные части в нормальных условиях не могут существовать как отдельные объекты, а обнаруживаются только как части более сложных объектов, возможно, как раз и реализуется в сегодняшних кварках и глюонах, вечно связанных внутри атомных ядер.

Помимо всего прочего среди размышлений Платона мы найдем идею, которая является центральной в наших размышлениях, – идею о том, что мир в своей глубинной структуре воплощает Красоту. Это оживший дух умозаключений Платона. Он предполагает, что сама основа структуры мира – его атомы – это воплощения чистых идей, которые могут быть открыты и четко сформулированы одним лишь напряжением ума.

Экономия средств

Возвращаясь к вирусам: где же они научились своей геометрии?

Это тот случай, когда простота приобретает вид сложности или, если быть более точным, когда простые правила определяют строение кажущихся сложными структур, которые по зрелом размышлении становятся идеально простыми. Суть в том, что ДНК вирусов15
Не во всех вирусах генетический материал представлен в виде ДНК; есть и РНК-содержащие вирусы. – Прим. ред.

Которая должна нести в себе информацию обо всех аспектах их жизнедеятельности, очень ограничена в размерах. Чтобы сэкономить на длине строительного материала, стоит делать что-либо из простых идентичных частей, соединенных одинаковым образом. Мы уже слышали эту песню: «простые, идентичные части, одинаково соединенные» – и как раз в определении платоновых тел! Поскольку часть создает целое, вирусам не нужно знать о додекаэдрах или икосаэдрах, а только о треугольниках, да еще одно или два правила, чтобы соединить их вместе. Это только более разнородным, нерегулярным и на первый взгляд даже случайным телам – таким как люди – требуются более подробные сборочные инструкции. Симметрия появляется как структура по умолчанию, когда информация и ресурсы ограничены.

Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.

Аннотация

Выдающийся русский философ Алексей Лосев, исследователь эстетики античности и эпохи Возрождения, в следующих словах сформулировал «золотую» парадигму древних греков: «С точки зрения Платона, да и вообще с точки зрения всей античной космологии мир представляет собой некое пропорциональное целое, подчиняющееся закону гармонического деления - золотого сечения». Новейшие открытия современной науки, основанные на Платоновых телах, золотом сечении, числах Фибоначчи: фуллерены, Нобелевская Премия - 1996; квазикристаллы, Нобелевская Премия - 2011; экспериментальное доказательство существования гармонии «золотого сечения» в квантовом мире; обнаружение фибоначчиевой закономерности в таблице Менделеева; «гипотеза Прокла» и новый взгляд на «Начала» Евклида и историю развития математики, начиная с Евклида; гиперболические фунции Фибоначчи и новая геометрическая теория филлотаксиса; треугольник Паскаля и обобщенные числа Фибоначчи; обобщенные золотые пропорции и закон структурной гармонии систем; лямбда-числа Фибоначчи как новый класс целочисленных последовательностей, обладающих уникальными математическими свойствами; «металлические пропорции» и общая теория гармонических гиперболических функций; решение четвертой проблемы Гильберта и поиск гармонических гиперболических миров Природы; "золотые" матрицы, преобразования Фибоначчи-Лоренца и «золотая» интерпретация специальной теории относительности; «золотые» геноматрицы; алгоритмическая теории измерений, коды и компьютеры Фибоначчи; системы счисления с иррациональными основаниями, троичная зеркально-симметричная арифметика и "золотая" теория чисел как новое направление в теории чисел; обобщенные матрицы Фибоначчи и новая теория кодирования; наконец, «математика гармонии» как новое междисциплинарное направление, восходящее к «Началам» Евклида, - все это «лики божественной пропорции» в современной науке, которые создают общую картину ее движения к "Золотой" Научной Революции, что в совокупности отражает одну из важнейших тенденций в развитии современной науки - возврат к Пифагору, Платону и Евклиду.

Часть III

«Математика владеет не только истиной, но и высокой красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Бертран Рассел

Предисловие

Каждому из нас не раз приходилось задумываться над тем, почему Природа способна создавать такие удивительные эстетические структуры, которые восхищают и радуют глаз. Почему художники, поэты, композиторы, архитекторы создают восхитительные произведения искусства из столетия в столетие? В чем же секрет и какие законы лежат в основе этих гармоничных созданий? Что такое «гармония»? И имеет ли она математическое выражение? Для моделирования «мира гармонии» в античном мире, прежде всего в Древней Греции, была создана математика гармонии, элементы которой возрождены в современной науке во многих книгах , включая книгу Alexey Stakhov The Mathematics of Harmony . From Euclid to Contemporary Mathematics and Computer Science , опубликованной в 2009 г. одним из наиболее престижных научных издательств мира “World Scientific” .

Цель настоящей публикации, предназначенной для широкой аудитории, состоит в том, чтобы популярно объяснить понятие «гармонии», которое было введено в науку на заре развития человеческой цивилизации, рассказать об истории этого направления в античный период, эпоху средневековья, эпоху Возрождения, в 19 и 20 веках, а также ввести в круг идей и приложений современной «математики гармонии», автивно развивающейся в 21 в. . Конечно, «математика гармонии» - это раздел математики; поэтому полностю избежать математических формул в статье, посвященной этой математической дисциплине, авторам не удалось. Однако, «математика гармонии» - это достаточно простая (можно сказать, «элементарная») математика, в которой используются математические формулы, доступные школьникам старших классов. И авторы надеются на снисхождение наших читателей.

Статья состоит из 4-х частей:

Часть III. Платоновы тела, «гипотеза Прокла», новый взгляд на «Начала» Евклида, фуллерены и квазикристаллы

Часть IV. Роль «математики гармонии» в развитии современной науки

Часть III . Платоновы тела, «гипотеза Прокла», новый взгляд на «Начала» Евклида, фуллерены и квазикристаллы

7. Платоновы тела

Правильные многоугольники и многогранники

Человек проявляет интерес к правильным многоугольникам и многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа.

Что же такое многоугольник и многогранник? Для ответа на этот вопрос напомним, что собственно геометрию определяют иногда как науку о пространстве и пространственных фигурах - двумерных и трехмерных. Двумерную фигуру можно определить как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником . Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства. Многоугольники, образующие многогранник, называются его гранями.

Издавна ученые интересовались идеальными или правильными многоугольниками, то есть, многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник , поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т.д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть, число правильных многоугольников бесконечно.

Что же такое правильный многогранник ? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой - столько же, сколько существует правильных многоугольников. Однако это не так. В «Началах Евклида» мы находим строгое доказательство того, что существует только пять выпуклых правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Правильные многогранники в «Началах» Евклида

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Веннинджера «Модели многогранников» . Книга начинается с описания так называемых правильных многогранников , то есть, многогранников, образованных простейшими правильными многоугольниками одного типа. Эти многогранники принято называть Платоновыми телами , названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии. Мы начнем наше рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники (Рис.21).

Рис.21 . Платоновы тела: тетраэдр (tetrahedron), октаэдр (octahedron), куб (cube) додекаэдр (dodecaedron), икосаэдр (icosahedron)

Первым (и простейшим) среди правильных многогранников является тетраэдр (tetrahedron) . В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (octahedron) . В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями - октаэдр (octahedron) .

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями - икосаэдр (icosahedron) .

Следующая правильная форма многоугольника - квадрат . Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (cube) .

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника - пентагона . Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (dodecahedron) .

Следующим правильным многоугольником является шестиугольник . Однако если соединить три шестиугольника в одной точке, то мы получим плоскость, то есть, из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. По существу мы повторили рассуждения, которые провел Евклид в Книге XIII своих «Начал». Именно эта книга посвящена изложению завершенной геометрической теории Платоновых тел. И именно из этих рассуждений вытекает, что существует только пять выпуклых правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Числовые характеристики Платоновых тел. Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней n, сходящихся в каждой вершине, число граней Г , число вершин В , число ребер Р и число плоских углов У на поверхности многогранника Эйлер открыл и доказал знаменитую формулу:

В - Р + Г = 2 ,

Связывающую число вершин, ребер и граней любого выпуклого многогранника. Указанные выше числовые характеристики приведены в Табл.2.

Таблица 2 . Числовые характеристики Платоновых тел


Уместно обратить внимание на свойство дуальности, которое связывет Платоноваы тела. Из Табл.2 вытекает, что для гексаэдра (куба) и октаэдра число ребер Р=12 и число плоских углов на поверхности У=24 совпадают. Но число граней Г=6 куба совпадает с числом вершин В=6 октаэдра, а число вершин куба В=8 совпадает с числом граней Г=8 октаэдра. Кроме того, число сторон грани куба m = 4 совпадает с числом граней октаэдра, сходяшимся в вершине, n =4, при этом число граней куба, сходящимся в n =3, совпадает с числом сторон грани октаэдра m = 3. Подобная же сиуация наблюдается и в случае икосаэдра и додкаэдра. В таких случаях говорят о дуальности соответствующих Платновых тепл, то есть, куб дуален октаэдру, а икосаэдр дуален додекаэдру. Заметим, что в свойстве дуальности отражена «скрытая» гармония Платоновых тел.

Золотое сечение в додекаэдре и икосаэдре . Додекаэдр (dodecahedron) и дуальный ему икосаэдр (icosahedron) занимают особое место среди Платоновых тел. Прежде всего, необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотым сечением. Действительно, гранями додекаэдра являются пентагоны, то есть, правильные пятиугольники, основанные на золотом сечении. Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотое сечение играет определяющую роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие подтверждения глубокой математической связи золотого сечения с икосаэдром и додекаэдром. И эта связь приводит к тому, что додекаэдр и икосаэдр выражают в «скрытой» форме гармонию золотого сечения.

9. Гипотеза Прокла: новый взгляд на «Начала» Евклида и историю развития математики

С какой целью Евклид написал свои «Начала»?

На первый взгляд, кажется, что ответ на этот вопрос очень простой: главная цель Евклида состояла в том, чтобы изложить основные достижения греческой математики за 300 лет, предшествующих Евклиду, используя «аксиоматический метод» изложения материала. Действительно, «Начала» Евклида являются главным трудом греческой науки, посвященным аксиоматическому построению геометрии и математики. Такой взгляд на «Начала» наиболее распространен в современной математике.

Однако, кроме «аксиоматической» точки зрения существует и другая точка зрения на мотивы, которыми руководствовался Евклид при написании «Начал». Эта точка зрения высказана греческим философом и математиком Проклом Диадохом (412-485), одним из первых комментаторов «Начал».

Прежде всего, несколько слов о Прокле. Прокл родился в Византии в семье богатого адвоката из Ликии. Намереваясь пойти по стопам отца, подростком уехал в Александрию, где учился сначала риторике, затем заинтересовался философией и стал учеником александрийского неоплатоника Олимпиодора Младшего. Именно у него Прокл начал изучать логические трактаты Аристотеля. В возрасте 20 лет Прокл переезжает в Афины, где Платоновскую Академию в то время возглавлял Плутарх Афинский. Уже к 28-летнему возрасту Прокл написал одну из своих главнейших работ, комментарий на платоновского «Тимея». Около 450 г. Прокл становится главой Платоновской Академии.

Среди математических сочинений Прокла наиболее известным является его «Комментарий к первой книге «Начал» Евклида». В этом Комментарии он выдвигает следующую необычную гипотезу, которую называют “гипотезой Прокла”. Суть ее состоит в следующем. Как известно, XIII-я, то есть, заключительная книга «Начал», посвящена изложению теории пяти правильных многогранников, которые играли главенствующую роль в «Космологии Платона» и в современной науке известны под названием Платоновых тел. Именно на это обстоятельство и обращает внимание Прокл. Как подчеркивает Эдуард Сороко , по мнению Прокла, Евклид «создавал «Начала» якобы не с целью изложения геометрии как таковой, а чтобы дать полную систематизированную теорию построения пяти «Платоновых тел», попутно осветив некоторые новейшие достижения математики».

Значение гипотезы Прокла для развития математики . Главный вывод из «гипотезы Прокла» состоит в том, что «Начала» Евклида, величайшее греческое математическое сочинение, было написано Евклидом под непосредственным влиянием греческой «идеи Гармонии», которая была связана с Платоновыми телами. Таким образом, «гипотеза Прокла» позволяет высказать предположение, что хорошо известные в античной науке "Пифагорейская доктрина о числовой гармонии Мироздания» и «Космология Платона», основанная на правильных многогранниках, были воплощены в величайшем математическом сочинении греческой математики, “Началах” Евклида. С этой точки зрения мы можем рассматривать “Начала” Евклида как первую попытку создать «Математическую теорию гармонии мироздания», которая ассоциировалась в античной науке с Платоновыми телами. И это было главной идеей греческой науки! Это и есть главная тайна «Начал» Евклида, которая приводит к пересмотру истории возникновения математики, начиная с Евклида.

К сожалению, оригинальная гипотеза Прокла, касающаяся истинных целей, которые преследовал Евклид при написании Начал, проигнорирована многими современными историками математики, что привело к искаженному взгляду на структуру математики и всего математического образования. И это является одной из главных «стратегических ошибок» в развитии математики.

«Гипотеза Прокла» и «ключевые» проблемы античной математики . Как известно, академик Колмогоров в книге выделил две главные, то есть, «ключевые» проблемы, которые стимулировали развитие математики на этапе ее зарождения - проблему счета и проблему измерения . Однако, из «гипотезы Прокла» вытекает еще одна «ключевая» проблема - проблема гармонии , которая была связана с «Платоновыми телами» и «золотым сечением» - одним из важнейших математических открытий античной математики (Предложение II.11 «Начал» Евклида). Именно эта проблема была положена Евклидом в основу «Начал», главной целью которых было создание геометрической теории «Платоновых тел», которые в «космологии Платона» выражали гармонию Мироздания. Эта идея приводит к новому взгляду на историю математики, представленному на Рис.22.


Рис. 22 . «Ключевые» проблемы античной математики и новые направления в математике, теоретической физике и информатике

Подход, демонстрируемый с помощью Рис.22, впервые был изложен в работе . Он основан на следующих рассуждениях. Уже на этапе зарождения математики было сделано ряд важных математических открытий, которые фундаментально повлияли на развитие математики и всей науки в целом. Важнейшими из них являются:

1. Позиционный принцип представления чисел , сделанный вавилонскими математиками во 2-м тысячелетии до н.э. и воплощенный ими в Вавилонской 60-ричной системе счисления. Это важное математическое открытие лежит в основе всех последующих позиционных систем счисления, в частности, десятичной системы и двоичной системы - основы современных компьютеров. Это открытие, в конечном итоге, привело к формированию понятия натурального числа - важнейшего понятия, лежащего в основе математики.

2. Доказательство существования несоизмеримых отрезков . Это открытие, сделанное в научной школе Пифагора, привело к переосмысливанию ранней пифагорейской математики, в основе которой лежал «принцип соизмеримости величин», и к введению иррациональных чисел - второго (после натуральных чисел) фундаментального понятия математики. В конечном итоге, эти два понятия (натуральные и иррациональные числа) и были положены в основу «Классической Математики».

3. Деление отрезка в крайнем и среднем отношении («золотое сечение») . Описание этого математического открытия дано в «Началах» Евклида (Предложение II.11). Это предложение было введена Евклидом с целью создания полной геометрической теории «Платоновых тел» (в частности, додекаэдра), изложению которых посвящена заключительная (XIII-я) книга «Начал» Евклида.

Сформулированный выше подход (Рис.22) приводит к выводу, который может оказаться неожиданным для многих математиков. Оказывается, что параллельно с «Классической Математикой» в науке, начиная с древних греков, начало развиваться еще одно математическое направление - «Математика Гармонии», которая, как и классическая математика, восходит к «Началам» Евклида, но акцентирует свое внимание не на «аксиоматическом подходе», а на геометрической «задаче о делении отрезка в крайнем и среднем отношении» (Предложение II.11) и на теории правильных многогранников, изложенной в Книге XIII «Начал» Евклида. В развитии «математики гармонии» в течение нескольких тысячелетий принимали участие выдающиеся мыслители, ученые и математики: Пифагор, Платон, Евклид, Фибоначчи, Пачоли, Кеплер, Кассини, Бине, Люка, Клейн, а в 20-м веке - известные математики Коксетер, Воробьев, Хоггатт и Вайда. И мы никак не можем игнорировать этот исторический факт.

Истоки доктрины

Согласно замечанию комментатора последнего издания сочинений Платона, у него «вся космическая пропорциональность покоится на принципе золотого деления, или гармонической пропорции». Как упоминалось, космология Платона основывается на правильных многогранниках, называемых телами Платона. Представление о «сквозной» гармонии мироздания неизменно ассоциировалось с ее воплощением в этих пяти правильных многогранниках, выражавших идею повсеместного совершенства мира. И то, что главная «космическая» фигура - додекаэдр, символизировавший тело мира и вселенской души, был основан на золотом сечении, придавало последнему особое очарование, смысл главной пропорции мироздания.

Космология Платона стала началом так называемой икосаэдро-додекаэдрической доктрины , которая с античных пор красной нитью проходит через всю человеческую науку. Суть этой доктрины состоит в том, что додекаэдр и икосаэдр есть типичные формы природы во всех ее проявлениях, начиная с космоса и заканчивая микромиром.

Форма Земли

Вопрос о форме Земли постоянно занимал умы ученых античных времен. И когда гипотеза о шарообразной форме Земли получила подтверждение, возникла идея о том, что по своей форме Земля представляет собой додекаэдр. Так, уже Сократ писал:

«Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из 12 кусков кожи».

Эта гипотеза Сократа нашла дальнейшее научное развитие в трудах физиков, математиков и геологов. Так, французский геолог де Бимон и известный математик Пуанкаре считали, что форма Земли представляет собой деформированный додекаэдр.

Российский геолог С. Кислицин, также разделял мнение о додекаэдрической форме Земли. Он высказал гипотезу о том, что 400-500 млн. лет назад геосфера додекаэдрической формы превратилась в гео-икосаэдр. Однако такой переход оказался неполным и незавершенным, в результате чего гео-додекаэдр оказался вписанным в структуру икосаэдра. Более подробная информация об этой гипотезе изложена в книге .

Тайна Египетского календаря

Одним из первых солнечных календарей был египетский , созданный в 4-м тысячелетии до н.э. Первоначально египетский календарный год состоял из 360 дней. Год делился на 12 месяцев ровно по 30 дней в каждом. Однако позже было обнаружено, что такая длительность календарного года не соответствует астрономическим данным. И тогда египтяне добавили к календарному году еще 5 дней, которые, однако, не считались днями месяцев. Это были 5 праздничных дней, соединявших соседние календарные годы. Таким образом, египетский календарный год имел следующую структуру: 365=12 х 30+5. Заметим, что именно египетский календарь является прообразом современного календаря.

Возникает вопрос: почему египтяне разделили календарный год на 12 месяцев? Ведь существовали календари с другим количеством месяцев в году. Например, в календаре майя год состоял из 18 месяцев по 20 дней в месяце. Следующий вопрос, касающийся египетского календаря: почему каждый месяц имел ровно 30 дней (точнее суток)? Можно поставить некоторые вопросы и по поводу системы измерения времени, которая, воможно, была сформирована в более поздние времена. В частности, возникает вопрос: почему единица часа была выбрана таким образом, чтобы она ровно 24 раза укладывалась в сутки, то есть, почему 1 сутки = 24 (2 х 12) часа? Далее: почему 1 час = 60 минут, а 1 минута = 60 секунд? Эти же вопросы относятся и к выбору единиц угловых величин, в частности: почему окружность разбита на 360°, то есть, почему 2p=360°=12 х 30°? К этим вопросам добавляются и другие, в частности: почему астрономы признали целесообразным считать, что существует 12 зодиакальных знаков, хотя на самом деле в процессе своего движения по эклиптике Солнце пересекает 13 созвездий? И еще один «странный» вопрос: почему вавилонская система счисления имела весьма необычное основание - число 60?

Анализируя египетский календарь, а также системы измерения времени и угловых величин, мы обнаруживаем, что в них с удивительным постоянством повторяются четыре числа: 12, 30, 60 и производное от них число 360 = 12´30. Возникает вопрос: не существует ли какой-то фундаментальной научной идеи, которая могла бы дать простое и логичное объяснение использованию этих чисел в египетском календаре и системах?

Обратимся к додекаэдру (Рис.21). Из Табл.1 вытекает, что додекаэдр имеет 12 граней, 30 ребер и 60 плоских углов на своей поверхности. Каково же было удивление древних египтян, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. Таким образом, между такой совершенной пространственной фигурой, как додекаэдр , и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания . Поскольку по представлению древних движение Солнца по эклиптике имело строго круговой характер, то, выбрав 12 знаков Зодиака, дуговое расстояние между которыми равнялось ровно 30°, египтяне удивительно красиво согласовали годичное движение Солнца по эклиптике со структурой своего календарного года: один месяц соответствовал перемещению Солнца по эклиптике между двумя соседними знаками Зодиака! Более того, перемещение Солнца на один градус соответствовало одному дню в египетском календарном году! При этом эклиптика автоматически получалась разделенной на 360°. Позже эта же научная идея была использована создателями системы измерения времени. Разделение каждой половины суток на 12 частей (12 граней додекаэдра ) привело к введению часа - важнейшей единицы времени. Разделение часа на 60 минут (60 плоских углов на поверхности додекаэдра ) привело к введению минуты - следующей важной единицы времени. Точно также была введена секунда (1 минута = 60 секунд).

Таким образом, выбрав додекаэдр в качестве главной «гармонической» фигуры мироздания, и строго следуя числовым характеристикам додекаэдра 12, 30, 60, ученым удалось построить чрезвычайно стройный календарь, а также системы измерения времени и угловых величин.

Вот такие удивительные выводы вытекают из сопоставления додекаэдра с Солнечной системой. И если наша гипотеза правильна (пусть кто-нибудь попытается ее опровергнуть), то отсюда следует, что вот уже много тысячелетий человечество живет под знаком «золотого сечения» (которое лежит в основе додкаэдра)! И каждый раз, когда мы смотрим на циферблат наших часов, который также построен на использовании числовых характеристик додекаэдра 12, 30 и 60, мы прикасаемся к главной «Тайне Мироздания» - золотому сечению , сами того не подозревая! Видимо, такая гипотеза Египетского календаря касается некоторой «скрытой» тайны Солнечной системы, связнной с «золотым сечением».

Иоганн Кеплер и Феликс Клейн

“Misterium Cosmographiсum”. Свою научную деятельность Иоганн Кеплер начал в небольшом австрийском городе Граце, куда после окончания Тюбингенской академии он был направлен преподавателем математики в гимназию.

Сделаем одно «лирическое отступение». С 15-го по 19-е июля 1996 года в Граце состоялась 7-я Международная конференция по числам Фибоначчи и их приложениям. На этой конференции Алексей Стахов сделал доклад The Golden Section and Modern Harmony Mathematics , с которого, по существу, и началось развитите современной «математики гармонии» как нового междисциплинарного направления современной науки . Доклад вызвал большой интерес математиков-фибоначчистам и был отобран для публикации в сборнике «Applications of Fibonacci Numbers» (1998) . В период пребывания в Граце проф. Алексей Стахов сфотографировался возле памятника Иоганну Кеплеру, установленному в одном из парков Граца.


Алексей Стахов рядом с памятником Иоганну Кеплеру

(Грац, июль 1996)

Первым астрономическим сочинением Кеплера, написанным в Граце, была небольшая книжка со следующим названием: «Предвестник космографических исследований, содержащий тайну мироздания относительно чудесных пропорций между небесными кругами и истинных причин, числа и размеров небесных сфер, а также периодических движений, изложенных с помощью пяти правильных тел Иоганном Кеплером из Вюртемберга, математиком из достославной провинции Штирии». Сам он называл эту книгу, опубликованную в 1597 г., «Misterium Cosmographicum» («Тайна космографии»).

Читая первое сочинение Кеплера «Misterium Cosmographicum» («Тайна космографии»), не устаешь удивляться его фантазии. Глубокое убеждение в существовании гармонии мира наложило отпечаток на все мышление Кеплера. Цель своих исследований, изложенных в «Тайне космографии», Кеплер сформулировал в предисловии:

«Любезный читатель! В этой книжке я вознамерился доказать, что всеблагой и всемогущий Бог при сотворении нашего движущегося мира и при расположении небесных орбит избрал за основу пять правильных тел, которые со времен Пифагора и Платона и до наших дней снискали столь громкую славу, выбрал число и пропорции небесных орбит, а также отношения между движениями выбрал в соответствии с природой правильных тел. Сущность трех вещей - почему они устроены так, а не иначе - особенно интересовали меня, а именно: число, размеры и движения небесных орбит».

Раскрыть тайну мироздания значило, по Кеплеру, ответить на вопрос, который он сам же себе и поставил впервые в истории астрономии. Именно в книжке «Тайна космографии» Кеплеру удалось, как ему казалось, раскрыть эту тайну. Ее сущность, по мнению Кеплера, состоит в следующем:

«Земля (орбита Земли) есть мера всех орбит. Вокруг нее опишем додекаэдр. Описанная вокруг додекаэдра сфера есть сфера Марса. Вокруг сферы Марса опишем тетраэдр. Описанная вокруг тетраэдра сфера есть сфера Юпитера. Вокруг сферы Юпитера опишем куб. Описанная вокруг тетраэдра сфера есть сфера Сатурна. В сферу Земли вложим икосаэдр. Вписанная в него сфера есть сфера Венеры. В сферу Венеры вложим октаэдр. Вписанная в него сфера есть сфера Меркурия».

Vera W. de Spinadel. From the Golden Mean to Chaos. Nueva Libreria, 1998 (second edition, Nobuko, 2004).

Gazale Midhat J. Gnomon. From Pharaohs to Fractals. Princeton, New Jersey: Princeton University Press, 1999 (Русский перевод: Мидхат Газале. Гномон. От фараонов до фракталов. Москва-Ижевск: Институт компьютерных исследований, 2002.)

Татаренко А.А. Золотые T m - гармонии и D m - фракталы — суть солитоно-подобного Тm - cтруктурогенеза мира // «Академия Тринитаризма», М., Эл № 77-6567, публ.12691, 09.12.2005

    Аракелян Грант. Числа и величины в современной физике. Ереван: Изд. АН, 1989.

    Шенягин В.П. «Пифагор, или Каждый создает свой миф» - четырнадцать лет с момента первой публикации о квадратичных мантиссовых s-пропорциях // «Академия Тринитаризма», М., Эл № 77-6567, публ.17031, 27.11.2011

    Falcon Sergio, Plaza Angel. On the Fibonacci k-numbers Chaos, Solitons & Fractals, Volume 32, Issue 5, June 2007: 1615-1624.

    A.P. Stakhov, On the general theory of hyperbolic functions based on the hyperbolic Fibonacci and Lucas functions and on Hilbert’s Fourth Problem. Visual Mathematics, Vol. 15, No.1, 2013. http://www.mi.sanu.ac.rs/vismath/2013stakhov/hyp.pdf

    A. Stakhov, S. Aranson, “Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem.” Applied Mathematics, 2011, No.1 (January), No.2 (February), No.3 (March).

    Стахов, А.П. Формулы Газале, новый класс гиперболических функций Фибоначчи и Люка и усовершенствованный метод «золотой» криптографии // «Академия Тринитаризма», М.,Эл № 77-6567, публ.14098, 21.12.2006

    Стахов А.П., Теория λ -чисел Фибоначчи // «Академия Тринитаризма», М., Эл № 77-6567, публ.17407, 05.04.2012 http://www.trinitas.ru/rus/doc/0232/009a/02321250.htm

    A.P. Stakhov, The Mathematics of Harmony: Clarifying the Origins and Development of Mathematics // Congressus Numerantium, 193, 2008, 5-48.

    Stakhov, “The “golden” matrices and a new kind of cryptography.” Chaos, Solitons & Fractals 2007, Volume 32, Issue 3, 1138-1146.

    A. Stakhov, S. Aranson. “Golden” Fibonacci Goniometry. Fibonacci-Lorentz Transformations, and Hilbert’s Fourth Problem. Congressus Numerantium, 193 (2008), 119-156.

    A.P. Stakhov, “The Golden Section and Modern Harmony Mathematics.” Applications of Fibonacci Numbers, Kluwer Academic Publishing, Volume 7, 1998: 393-399.

    Стахов А. П., Ткаченко И. С. Гиперболическая тригонометрия Фибоначчи // Доклады Академии наук УССР, том 208, № 7, 1993.

    Stakhov A., Rozin B. On a new class of hyperbolic function // Chaos, Solitons & Fractals, 2005, Vol. 23, Issue 2, 379-389.

    Стахов А.П. Обобщенные золотые сечения и новый подход к геометрическому определению числа. // Украинский математический журнал, 2004, Vol. 56, No. 8, 1143-1150.

Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук "суть предположения", может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, "пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания", предположения находят основания посредством диалектики. Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге "Пир" выдвигается понятие предела; идея выступает здесь как предел становления вещи.

ТЕЛА ПЛАТОНА.

Тела Платона-это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Указанным ниже путем можно доказать, что существует именно пять правильных многогранников (это доказал Евклид). Они - правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

ТАБЛИЦА№1

ТАБЛИЦА№2

Название: Радиус описанной сферы Радиус вписанной сферы Объем
Тетраэдр а\/6 4 a\/6 12 a3\/2 12
Куб а\/3 2 a 2 a3
Октаэдр а\/2 2 a\/6 6 a3\/2 12
Додекаэдр a 4 \/18+6\/5 1 2 25+11\/5 10 a3 4 (15+7\/5)
Икосаэдр a 12(3+\/5)\/3 5 12 a3(3+\/5)

Тетраэдр-четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. (рис.1).

Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. (рис.2).

Октаэдр-восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. (рис.3).

Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников. (рис.4).

Икосаэдр-двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников. (рис.5).

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен- ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют также платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание его по латыни стали называть quintaessentia («пятая сущность»). Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб-монокристалл поваренной соли (NaCl), октаэдр-монокристалл алюмокалиевых квасцов ((KalSO4)2*12H2O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры двенадцати граней додекаэдра.


Список литературы

1.«Советская Энциклопедия» Москва 1979г.

2.Математический энциклопедический словарь/ «Советская Энциклопедия», 1988г.

3.Математика: Школьная энциклопедия /Гл. ред. М 34 С.М. Никольский. - М.: Научное издательство «Большая Российская энциклопедия», 1996,-527 С.: ил