Физико химическая кристаллография изучает вопросы. Основные свойства кристаллов

2014 - Международный год кристаллографии

2014 год объявлен ООН и ЮНЕСКО Международным годом кристаллографии. Кристаллография и ее достижения, кристаллографическое мышление являются достоянием всей науки и инструментом познания мира. Одним из главных научных прорывов XX века было открытие дифракции рентгеновских лучей М. Лауэ в 1912 г., которое А. Эйнштейн назвал «самым красивым экспериментом XX века». Это открытие, позволяющее «видеть» атомы, послужило огромным импульсом к более глубокому пониманию всех аспектов химии, физики, биологии, минералогии, медицины и науки вообще, которые так или иначе имеют структурную подоплеку.

Сегодня кристаллография - самая широкая научная дисциплина. Нет равных по числу нобелевских премий, которые присуждены ученым, работающим в этой области, и практически нет такой человеческой деятельности, где бы достижения кристаллографии не нашли себе применения. Без знания структуры не были бы достигнуты успехи в микроэлектронике, синтезе новых сегнетоэлектриков, лазерных материалов, органических и высокотемпературных сверхпроводников, твердых электролитов, молекулярных магнетиков, супрамолекулярных и других соединений. Сейчас статью о получении нового соединения или открытии нового минерала без доказательства их строения не примут для публикации ни в одном серьезном научном журнале. Всё более глубокое проникновение в секреты внутреннего строения кристаллов различных классов соединений позволяет осуществлять направленный синтез веществ с желаемыми структурой и свойствами. Отдельным и имеющим большое практическое значение направлением кристаллографии стало выращивание и применение искусственно выращенных кристаллов и изучение процессов их роста и свойств. Кристаллография сумела проникнуть в тайны строения биологических объектов, таких как вирусы, белки и ДНК, что помогло развитию молекулярной биологии и медицины.

К настоящему времени расшифрованы сотни тысяч структур, разработаны новые методы структурной кристаллографии, введены новые источники (электроны, нейтроны, синхротронное излучение), появились точные и производительные автоматические дифрактометры, мощные компьютеры и кристаллографические программы, сроки структурных исследований сократились от нескольких иногда лет до немногих часов. Открыты и изучаются новые, интригующие объекты - несоразмерные фазы, пластические и жидкие кристаллы, твердые ионные проводники, квазикристаллы. Важное значение приобрели исследования распределения электронной плотности в кристаллах и исследование in situ фазовых переходов и структуры кристаллов в экстремальных условиях (при высоких или низких температурах, высоких давлениях).

Нельзя не отметить вклад в кристаллографию отечественных ученых. Одним из соавторов закона о постоянстве двугранных углов кристаллов является М.В. Ломоносов. Е.С. Федоров по праву принадлежит к числу основоположников теоретической кристаллографии и кристаллохимии. Г.В. Вульф первым в России начал рентгеноструктурные исследования кристаллов и независимо от Брэгга вывел основное уравнение дифракции рентгеновских лучей кристаллами. Академик А.В. Шубников организовал в 1933 г. первый в мире Институт кристаллографии и известен не только как выдающийся исследователь физических свойств кристаллов, но и как пионер промышленного производства кварца, сегнетовой соли и других технически важных кристаллов. Академик Н.В. Белов - основатель отечественной школы структурной кристаллографии и кристаллохимии, автор всемирно известных блестящих работ по структурам минералов, неорганической кристаллохимии и теории симметрии. Весомый вклад в развитие кристаллографии, структурных исследований и кристаллохимии различных классов соединений внесли также Г.С. Жданов, А.И. Китайгородский, М.А. Порай-Кошиц, Б.К. Вайнштейн, Ю.Т. Стручков, П.М. Зоркий и другие отечественные ученые. Структурной кристаллографией и кристаллохимией занимались такие выдающиеся ученые как В.И. Вернадский, П. Дебай, Л. Полинг, Дж. Бернал, А.Е. Ферсман, В. Гольдшмидт, Дж. Уотсон и Ф. Крик, М. Перутц, Д.К. Хочкин и другие, многие из них стали впоследствии лауреатами Нобелевской и других научных премий.

Общепризнано, что родоначальником структурной кристаллографии в нашей стране является Н.В. Белов, и наиболее значимые результаты в этой области связаны с трудами самого Н.В. Белова и его многочисленных учеников. О большом международном авторитете Н.В. Белова свидетельствует то, что в течение 15 лет он занимал выборные руководящие должности в Международном союзе кристаллографов (МСК): был членом Исполнительного комитета МСК, его вице-президентом, а в 1966 г. Генеральная ассамблея МСК избрала Н,В. Белова президентом Международного союза кристаллографов. В нашей стране научная и общественная деятельность Н.В. Белова была высоко оценена: он был Героем Соцтруда, награжден 4 орденами Ленина, а также орденами Октябрьской Революции и Трудового Красного Знамени, медалями. Академия наук СССР в 1965 г. Присвоила ему свою высшую награду - золотую медаль имени М.В. Ломоносова. Он был лауреатом Ленинской и Государственной премий.

Научная школа Н.В. Белова широко известна в России. Она в первую очередь объединяет представителей трех организаций, которые он возглавлял на протяжении ряда лет - это структурный отдел Института кристаллографии РАН и две кафедры: в МГУ и в Нижегородском Университете. Но неформальных кристаллографических ячеек, возникших под влиянием Николая Васильевича гораздо больше. Такие имеются и в Черноголовке.

Николай Васильевич Белов был человеком ярким, многогранным, оказавшим большое влияние на формирование отношения к жизни у всех, кому посчастливилось с ним сотрудничать и общаться.

Мне повезло, что к таким счастливчикам отношусь и я.

Н.В. Белов (1891 -1982 )

КРИСТАЛЛОГРАФИЯ

Кристаллография – наука, изучающая кристаллы, их свойства, внешнюю форму и причины их возникновения, связанная непосредственно с минералогией, математикой (декартова система координат), физикой и химией (вопрос возникновения и роста кристаллов).Первые работы были сделаны Платоном, Пифагором и т.д.

До начала XIX века кристаллография носила описательный характер. Но уже в начале XIX получили развитие математика, физика, поэтому свое развитие получила и кристаллография. Особенно в середине XX века с ростом новых технологий, кристаллография получила экспериментальный характер (выращивание и синтез кристаллов). На сегодняшний день можно выделить следующие разделы кристаллографии:

На сегодняшний день можно выделить следующие разделы кристаллографии:

1. Геометрическая кристаллография – изучает внешнюю форму кристаллов и закономерности их внутреннего строения.

2. Кристаллохимия – изучает связь между внутренним строением кристаллов и их химическим составом.

3. Физико-химическая кристаллография – изучает закономерности образования и роста кристаллов.

4. Физическая кристаллография – изучает физические свойства кристаллов (оптические, тепловые, электрические и т.д.), где некоторые направления выделились в отдельные науки (кристаллооптика).

Тела кристаллические и аморфные

Твердые тела делятся на:

1. Аморфные , где элементарные частицы расположены беспорядочно, незакономерно, что приводит к обладанию свойством изотропности (одинаковые свойства вещества в любых направлениях). Аморфные тела неустойчивые и со временем они переходят в кристаллические (раскристаллизация).

2. Кристаллические , характеризующиеся упорядоченным расположением элементарных частиц, которые создают кристаллическую структуру, представленную пространственной решеткой.

Кристаллическая (пространственная) решетка

Кристаллическая решетка – совокупность элементарных частиц, расположенных в соответствующих точках бесконечного множества параллелепипедов, которые нацело заполняют пространство, будучи равными, параллельно ориентированными и смежными по целым граням (рис. 1).

Элементы строения пространственной решетки:

1. Узлы – элементарные частицы, занимающее определенное положение в решетке.

2. Ряд – совокупность узлов, расположенных на одной прямой через определенный равный интервал, называющийся промежутком ряда.

3. Плоская сетка – совокупность узлов, расположенных в одной плоскости.

4. Элементарная ячейка – одиночный параллелепипед, повторяемость которого образует пространственную решетку.

Математик Огюст Бравэ доказал, что всего может быть только 14 принципиально разных решеток. Параметры элементарной ячейки обуславливают тип кристаллической решетки.

Кристалл – твердое тело, имеющее форму правильного многогранника, в котором элементарные частицы расположены закономерно в виде кристаллической решетки.

Элементы ограничения кристаллов:

· грани (гладкие плоскости);

· ребра (линии пересечения граней);

· вершина (точка пересечения ребер).

Связь внешней формы кристалла с внутренним строением

1. Плоские сетки соответствуют граням кристалла.

2. Ряды соответствуют ребрам.

3. Узлы соответствуют вершинам.

Но только те плоские сетки и ряды соответствуют граням и ребрам, которые имеют наибольшую ретикулярную плотность – количество узлов на единицу площади плоской сетки или единицу длины ряда.

Отсюда Эйлер вывел закон: «Сумма количества граней и вершин равна количеству ребер плюс 2».

Основные свойства кристаллов

Закономерное внутреннее строение кристаллов в виде пространственной решетки обусловливает их важнейшие свойства:

1. Однородность – одинаковые свойства кристалла в параллельных направлениях.

2. Анизотропность – различные свойства кристалла в непараллельных направлениях (например, если минерал дистен («стен» - сопротивление) царапать по удлинению, то его твердость равна 4,5, а если в поперечном направлении, то твердость равна 6-6,5).

3. Способность самоограняться – при благоприятных условиях роста кристалл приобретает форму правильного многогранника.

4. Симметрия .

Симметрия кристаллов

Симметрия (от греч. «сим» – похожий, «метриос» – измерение, расстояние, величина) – закономерная повторяемость одинаковых граней, ребер, вершин кристалла относительно некоторых вспомогательных геометрических образов (прямой линии, плоскости, точки). Вспомогательные геометрические образы, с помощью которых обнаруживается симметрия кристалла, называются элементами симметрии.

К элементам симметрии кристалла относятся ось симметрии (L – от англ. line – линия), плоскость симметрии (P – от англ. play – плоскость), центр симметрии (С – от англ. centre – центр).

Ось симметрии – прямая линия, при повороте вокруг которой на 360° кристалл несколько раз совмещается со своим исходным положением.

Элементарный угол поворота a – может быть равен 60°, 90°, 120°, 180°.

Порядок оси симметрии – число совмещений кристалла со своим исходным положением при вращении на 360°.

В кристалле возможны оси симметрии второго, третьего, четвертого и шестого порядков. Осей симметрии пятого и больше, чем шестого не бывает. Порядок осей симметрии обозначается L 6 , L 4 , L 3 , L 2 .

Возможное количество осей симметрии одного и того же порядка следующее:

L 2 – 0, 1, 2, 3, 4, 6;

L 4 – 0, 1, 3;

Плоскость симметрии – плоскость, делящая кристалл на две зеркально-равные части.

Центр симметрии – точка внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие противоположные одинаковые грани, ребра или вершины кристалла. Из данного определения следует правило: если в кристалле центр симметрии имеется, то каждая грань его должна иметь себе противоположную, равную, параллельную и обратно направленную грань.

Совокупность всех имеющихся элементов симметрии принято записывать в строчку, без каких-либо знаков препинания между ними, при этом вначале указываются оси симметрии, начиная с высшего порядка, затем плоскость симметрии, и на последнем месте, если есть, записывается центр симметрии.

Классификация кристаллов

Кристаллы по совокупности в них элементов симметрии объединяются в классы. Еще в 1830 г. ученый Ф. Гессель путем математических вычислений пришел к выводу о том, что всего возможно 32 различные комбинации элементов симметрии в кристаллах. Именно набор элементов симметрии и определяет класс.

Классы объединяются в сингонии. В одну сингонию сгруппированы классы, характеризующиеся одним или несколькими одинаковыми элементами симметрии. Сингоний известно 7.

По степени симметричности сингонии объединяются в более крупные подразделения – категории: высшая, средняя, низшая (табл.).

Формы кристаллов

1. Простые – кристаллы, у которых все грани имеют одинаковую форму и одинаковый размер. Среди простых форм различают:

· закрытые – своими гранями полностью замыкают пространство (правильные многогранники);

· открытые – полностью пространство не замыкают и для того, чтобы их закрыть участвуют другие простые формы (призмы и т.д.)

2. Комбинация простых форм – кристалл, на котором развиты грани, отличающиеся друг от друга по форме и размеру. Сколько на кристалле различных сортов грани, столько же простых форм в этой комбинации участвуют.

Номенклатура простых форм

В основе названия отражается число граней, форма граней, сечение формы. В названиях простых форм используются греческие термины:


· моно – одно-, единственный;

· ди, би – дву-, дважды;

· три – три-, трех-, трижды;

· тетра – четыре-, четырех-, четырежды;

· пента – пяти-, пятью;

· гекса – шести-, шестью;

· окта – восьми, восемью;

· додека – двенадцать-, двенадцати;

· эдр – грань;

· гонио – угол;

· син – сходно;

· пинакос – таблица, доска;

· клинэ – наклон;

· поли – много;

· скаленос – косой, неровный.


Например: пентагондодекаэдр (пять, угол, двенадцать – 12 пятиугольников), тетрагональная дипирамида (в основании четырехугольник, а пирамид две).

Системы кристаллографических осей

Кристаллографические оси – направления в кристалле параллельные его ребрам, которые принимаются за координатные оси.Ось х – III, ось у – II, ось z – I.

Направления кристаллографических осей совпадают с рядами пространственной решетки или параллельны им. Поэтому иногда вместо обозначений I, II, III оси используются обозначения единичных отрезков a, b, c.

Типы кристаллографических осей:

1. Прямоугольная трехосная система (рис. 2) . Возникает, когда направления сориентированы перпендикулярно друг к другу. Используется в кубической (a=b=c), тетрагональной (a=b≠c) и ромбической (a≠b≠c) сингониях.

2. Четырехосная система (рис. 3) . Вертикально сориентирована четвертая ось, а в перпендикулярной к ней плоскости проводятся три оси через 120°. Используется для кристаллов гексагональной и тригональной сингонии, a=b≠c

3. Наклонная система (рис. 4). a=γ=90°, b≠90°, a≠b≠c. Используется для установки кристаллов моноклинной сингонии.

4.
Косоугольная система (рис. 5). a≠γ≠b≠90°, a≠b≠c. Используется для кристаллов триклинной сингонии.

Закон целых чисел

Это один из самых важных законов кристаллографии, называемый также законом Гаюи, законом рациональности двойных отношений, законом рациональности отношений параметров. Закон гласит: «Двойные отношения параметров, отсекаемых двумя любыми гранями кристалла на трех пересекающихся ребрах его, равны отношениям целых и сравнительно малых чисел».

1. Выбираем три непараллельных ребра, пересекающихся в точке О. Эти ребра принимаем за кристаллографические оси (рис. 6) .

2. Выбираем две грани A 1 B 1 C 1 и A 2 B 2 C 2 на кристалле, причем плоскость A 1 B 1 C 1 не параллельна плоскости A 2 B 2 C 2 , а точки лежат на кристаллографических осях.

3. Отрезки, отсекаемые гранями на кристаллографических осях называются параметрами грани. В нашем случае OA 1 , OA 2 , OB 1 , OB 2 , OC 1 , OC 2 .

, где p, q, r – рациональные и сравнительно небольшие числа.

Закон объясняется строением кристаллической решетки. Направления, выбранные в качестве осей, соответствуют рядам пространственной решетки.

Символы граней

Для получения символа грани необходимо установить кристалл в соответствующих кристаллографических осях, затем выбрать единичную грань – грань, параметры которой по каждой кристаллографической оси приняты за единицу измерения (иначе, за масштабный отрезок). В итоге, соотношение параметров будет характеризовать положение грани в кристаллографических осях.

Более удобно использовать не параметры, а индексы граней – величины, обратные параметрам: . Индексы записываются в фигурные (характеризуют простую форму в целом, например {hkl} или {hhl} ) или круглые скобки (относятся непосредственно к определенной грани, например (hhl ) или (hlh ) ), без знаков препинания. Если получается отрицательный индекс, то он может быть показан знаком вектора – {hkl}. Индексы также могут обозначаться числовыми значениями, например, {321}, {110} или {hk0}. «0» - означает, что грань параллельна оси.

Пути образования кристалло в

Кристаллы могут образовываться из всех агрегатных состояний вещества, как в природных, так и в лабораторных условиях.

Газообразное состояние – снежинки (кристаллы льда), иней, налет, самородная сера (при извержении вулканов на стенках кратеров оседают кристаллы серы); в промышленности – кристаллы йода, магний. Возгонка – процесс образования кристаллов из газообразного вещества.

Жидкое состояние – образование кристаллов из расплава и из раствора. Образование всех интрузивных пород происходит из расплавов (мантийные магматические расплавы), когда основным фактором является понижение температуры. Но наиболее распространенным является образование кристаллов из растворов. В природе эти процессы самые распространенные и интенсивные. Особенно образование кристаллов из растворов характерно для пересыхающих озер.

Твердое состояние – главным образом, процесс перехода аморфного вещества в кристаллическое (раскристаллизация), в природных условиях эти процессы активно идут при высоких температурах и давлениях.

Возникновение кристаллов

Растворы различаются по степени концентрации в них вещества:

· ненасыщенные (недосыщенные) – можно добавлять вещество, и оно продолжит растворяться;

· насыщенные – добавление вещества не приводит к его растворения, оно выпадает в осадок;

· перенасыщенные (пересыщенные) – образуется, если насыщенный раствор попадает в условия, где концентрация вещества существенно превышает предел растворимости; в первую очередь начинается испаряться растворитель.

Например, образование кристаллического зародыша NaCl:

1. Одномерный кристалл (из-за притяжения ионов образуется ряд), (рис. 7) ;

2. Двумерный кристалл (плоская сетка), (рис. 8) ;

3. Первичная кристаллическая решетка (кристаллический зародыш из около 8 элементарных ячеек), (рис. 9) .

У каждого кристалла своя цепочка образования (для кристалла соли – куб), но механизм будет всегда одинаков. В реальных условиях, как правило, центром кристаллизации служит или посторонняя примесь (песчинка), или мельчайшая частичка того вещества, из которого будет строится кристалл.

Рост кристаллов

На сегодняшний день существуют две основные теории, описывающие рост кристаллов. Первая из них именуется теорией Косселя-Странского(рис. 10) . Согласно этой теории, частицы присоединяются к кристаллу преимущественно так, чтобы выделялась наибольшая энергия. Это объяснимо тем, что любой процесс идет «легче», если энергия высвобождается.

А – высвобождается максимальное количество энергии (при попадании частицы в этот трехгранный угол).

Б – будет выделяться меньшая энергия (двугранный угол).

В – высвобождается минимум энергии, самый маловероятный случай.

Во время роста в первую очередь частицы будут попадать в положение А , затем в Б и, наконец, в В . На кристалле не начнется рост нового слоя, пока не завершено построение слоя до конца.

Эта теория вполне объясняет рост кристаллов с идеальными гладкими гранями с механизмом послойного нарастания граней.

Но в 30-х годах XX века было доказано, что грани кристалла всегда искажены или имеют какие-либо дефекты, поэтому в реальных условиях грани кристалла далеки от идеально гладких плоскостей.

Вторая теория предложена Г.Г. Леммлейном с учетом того, что грани кристаллов не идеальные развил теорию дисклокации (дислокационного роста) – смещения. За счет винтовой дисклокации на поверхности кристалла всегда имеется «ступенька», к которой легче всего присоединяются частицы растущего кристалла. Теория дислокации и, в частности, теория винтовой дислокации (рис. 11, 12) , всегда дает возможность для продолжения роста граней, ибо всегда есть место для благоприятного присоединения частицы к кристаллической решетке, дислоцированной. В результате подобного роста поверхность грани приобретает спиральной строение.

Обе теории, совершенного и несовершенного роста кристаллов, дополняют друг друга, каждая из них основана на одних и тех же законах и принципах и полностью позволяют характеризовать все вопросы роста кристаллов.

Скорость роста граней

Скорость нарастания грани – величина нормального к ее плоскости отрезка, на который данная грань передвигается в единицу времени (рис. 13) .

Скорость нарастания различных граней кристалла различна. Грани с большей скоростью нарастания постепенно уменьшаются в размерах, вытесняются разрастающимися гранями с малой скоростью нарастания и могут совсем исчезнуть с поверхности кристалла (рис. 14) . В первую очередь на кристалле развиваются грани, имеющую наибольшую ретикулярную плотность.

Скорость нарастания граней зависит от многих факторов:

внутренних и внешних. Из внутренних факторов наибольшее влияние на скорость нарастания граней оказывает их ретикулярная плотность, что выражается законом Бравэ: «Кристалл покрывается гранями с большей ретикулярной плотностью и наименьшей скоростью роста».

Факторы, влияющие на форму растущего кристалла

Факторы разделяются на внутренние (то, что непосредственно связано со свойствами ионов или атомов или кристаллической решетки) и внешние: давление, а также:

1. Концентрационные потоки. При росте кристалла в растворе около него присутствует область чуть более высокой температуры (частицы присоединяются так, чтобы высвобождалась как можно большая энергия) и с пониженной плотностью раствора (происходит питание растущего кристалла) (рис. 15). При растворении все происходит наоборот.

Потоки играют двоякую роль: постоянно движущиеся вверх потоки приносят новые порции вещества, но они же и искажают форму кристаллов. Подпитка происходит только снизу, меньше – с боков, и сверху ее почти нет. При выращивании кристаллов в лабораторных условиях воздействие концентрационных потоков пытаются исключить, для чего используют разные методики: метод динамического роста кристаллов, метод искусственного перемешивания раствора и др.


2. Концентрация и температура раствора . Всегда оказывают влияние на форму кристаллов.

Влияние концентрации раствора на форму кристаллов квасцов (концентрация повышается от 1 до 4):

1 – кристалл в форме октаэдра;

2,3 – комбинация нескольких простых форм;

4 – кристалл с преимущественным развитием грани октаэдра, форма приближается к шаровой.

Влияние температуры на эпсомит:

При повышении температуры кристаллы эпсомита приобретают более толсто-призматические очертания, при низкой температуре – тоненькая линзочка.

3. Примеси постороннего вещества . Например, октаэдр квасцов превращается в куб при росте в растворе с примесью буры.

4. Другие.

Закон постоянства гранных углов

Еще в середине XVII века, в 1669 г. датский ученый Стено изучил несколько кристаллов кварца и понял, что насколько бы сильно не был искажен кристалл, углы между гранями остаются неизменными. Сначала к закону отнеслись прохладно, но спустя 100 лет исследования Ломоносова и французского ученого Ромэ-Делиля, независимо друг от друга, подтвердили этот закон.

На сегодняшний день закон носит другое название – закон Стено-Ломоносова-Ромэ-Делиля). Закон постоянства гранных углов: «Во всех кристаллах одного и того же вещества углы между соответственными гранями и ребрами постоянны». Этот закон объясняется строением кристаллической решетки.

Для измерения углов между гранями используется прибор гониометр (похож на микс транспортира и линейки). Для более точных измерений используется оптический гониометр, изобретенный Е.С. Федоровым.

Зная углы между гранями кристалла вещества, можно определять состав вещества.

Сростки кристаллов

Среди сростков кристаллов выделяются две главные группы:

1. Незакономерные – сростки кристаллов, которые между собой в пространстве никак не взаимосвязаны и не сориентированы (друзы).

2. Закономерные:

· параллельные;

· двойники.

Параллельный сросток кристаллов представляет собой несколько кристаллов одного и того же вещества, которые могут быть различного размера, но сориентированными параллельно друг другу, кристаллическая решетка в этом сростке непосредственно связана в одно целое.

Скипетровидный сросток – более мелкие кристаллы кварца срастаются с более крупным кристаллом.

Двойники

Двойник – закономерный сросток двух кристаллов, в котором один кристалл является зеркальным отражением другого, либо одна половина двойника выводится из другой, путем разворота на 180°. С точки зрения минералогии в любом двойники всегда виден внутренний входящий угол (рис. 16).

Элементы двойника:

1. Двойниковая плоскость – плоскость, в которой отражаются две части двойника.

2. Двойниковая ось – ось, при развороте вокруг которой из одной половины двойника получается вторая.

3. Плоскость срастания – плоскость, по которой две части двойника примыкают друг к другу. В частных случаях двойниковая плоскость и плоскость срастания совпадают, но в большинстве случаев это не так.

Сочетание и характер всех трех элементов двойника определяют законы двойникования: «шпинелевый», «галльский» и т.д.

Двойники прорастания – один кристалл насквозь прорастает другой кристалл. Если участвуют несколько кристаллов соответственно выделяют тройники, четверники и т.д. (в зависимости от количества кристаллов).

Полисинтетические двойники – серия сдвойникованных кристаллов, расположенных так, что каждые два соседних расположены друг к другу в двойниковой ориентировке, а кристаллы, идущие через один, сориентированы параллельно друг другу (рис. 17).

Полисинтетическое двойникование на природных кристаллах часто проявлено в виде тонкой параллельной штриховки (двойниковых швов).

Формы природных кристаллов

Среди кристаллов принято различать:

· идеальные – те кристаллы, у которых все грани одной и той же простой формы одинаковы по размерам, очертаниям, расстоянию от центра кристалла;

· реальные – встречаются с теми или иными отклонениями от идеальных форм.

В природных (реальных) кристаллах неравномерное развитие граней одной и той же формы создает впечатление более низкой симметрии (рис. 18).



В реальных кристаллах грани далеки от математически правильных плоскостей, т.к. на гранях реальных кристаллах имеются различные усложнения в виде штриховки, узоров, ямок, наростов, т.е. скульптуры . Выделяют: паркетовидный узор, штриховка на грани, вицинали (представляют собой небольшие участки грани кристалла, незначительно смещенные от направления грани). В реальных кристаллах очень часто встречаются усложненные формы кристаллов.

При отклонении от условий нормального роста могут образоваться скелетные кристаллы – кристаллы, на которых преимущественно развиты ребра и вершины, а грани в развитии отстают (например, снежинки). Антискелетные кристаллы – преимущественно развиваются грани, а ребра и вершины отстают в развитии (кристалл приобретает округлую форму, очень часто в таком виде встречается алмаз).

Также бывают скрученные кристаллы, расщепленные, деформированные.

Внутреннее строение кристаллов

Внутренне строение кристаллов очень часто зональное. Каждое изменение химического состава раствора, где растет кристалл, вызывает свой слой. Зональное строение обусловлено пульсациями и изменениями химического состава, питающих растворов, т.е. в зависимости от чего питался кристалл в юности, будет меняться, например цвет зон.

В поперечном изломе видно секториальное строение, тесно связанное с зональностью и обусловлено изменениями состава среды.


Включения в кристаллах

Все включения делятся на гомогенные и гетерогенные. Они также делятся по времени образования на:

1. Остаточное (реликтовое) – твердая фаза, представляющая вещество, существовавшее еще до роста кристалла.

2. Сингенетичные – включения, возникшие с ростом кристаллов.

3. Эпигеничные – возникшие, после образования кристаллов.

Наибольший интерес для кристаллографии вызывают остаточные и сингенетичные включения.

Методы исследования включений в кристаллах

И.П. Ермаков и Ю.А. Долгов внесли большой вклад в изучение включений, и на сегодняшний день существуют два главных метода изучения включений в кристаллах:

1. Метод гомогенизации – группа методов, основанная на принципе превращения включений в однородное состояние; как правило, это достигается нагреванием. Например, пузырьки в кристалле представлены жидкостью, а при нагревании до определенной температуры становятся однородными, т.е. жидкость становится газом. Главным образом, этот метод работает на прозрачных кристаллах.

2. Метод декрипитации – путем изменения температуры и давления кристалл и его включения выводят из состояния равновесия и доводят включения до взрыва.

В результате получают данные о температуре и давлении образования кристалла с заключенными в нем газами, жидкостями или твердой фазы в виде включения.

К нашему времени открыто более 4 тыс. минеральных видов, поэтому для ориентации во всех представленных для нас минералов следует объединять их по общей кристаллической сущности. Один из важных аспектов, которым необходимо руководствоваться при распределении минералов на группы, так это умение отличать их от некристаллических образований. Зная, как устроены кристаллы, особенности их строения, можно суметь предсказать свойства минералов.

Как все начиналось:

Историю развития кристаллографии можно разделить на три основных этапа:

первый -- эмпирический (или собирательный) -- почти до начала XIX в. -- период постепенного накопления фактического материала, выявления и осмысления особенностей кристаллов;

второй -- теоретический (или объяснительный) -- XIX в. -- пери од интенсивного теоретического исследования форм и выявления законов внутреннего строения кристаллов;

третий (современный) -- прогностический -- период быстрого подъема, который можно охарактеризовать как экспериментальный с отчетливым прикладным направлением. Это стадия, раскрывающая перспективы развития данной области знаний.

Кристаллография как наука развивалась неравномерно. С кристаллическим веществом люди столкнулись в глубокой древности. Со времен палеолита они добывали камни, использовали их полезные свойства, удивлялись и поражались их необыкновенной форме, цвету. Порой кристаллам приписывали магическую силу. Например, долгое время кристаллы горного хрусталя принимали за устойчивую форму льда. Да и само слово «кристалл» произошло от греческого хриота ЛЛоа (кристаллос), во времена легендарного древнегреческого поэта Гомера означавшего «прозрачный лед». Аристотель считал горный хрусталь новой формой льда, образовавшейся от «великой стужи». Однако после походов Александра Македонского (356-323до н. э.) в Индию, страну с теплым климатом, где были найдены кристаллы других минералов, образование кристаллов стали связывать не с действием холода, а с силами божественного Солнца. В то время кристаллами называли лишь прозрачные, хорошо ограненные образования (кристаллы аквамарина, кварца и т. д.). Впоследствии этот термин был распространен на все остальные «угловатые» тела, даже непрозрачные, но тоже с природной многогранной формой.

Истоки кристаллографии можно усмотреть ещё в античности, когда греки предприняли первые попытки описания кристаллов. При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять Платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов. Позже выяснилось, что все что растет и движется по горизонтали или под углом к земной поверхности, характеризуется симметрией листка. Следовательно, все, что растет вертикально вектор роста совпадает с единственной осью симметрии конуса, у всего, что растет горизонтально, общим элементом симметрии с вектором силы тяжести будет лишь одна вертикальная плоскость. Так, процесс роста кристаллов, видимая симметрия возникает, когда кристалл растет на вертикальной поверхности.

Данное явление, открытое кристаллографом Г.Г. Леммлейном, позволило геологу А.А. Кораго использовать искаженные кристаллы кварца для прогноза залегания хрусталеносных жил. Кристаллы с симметрией внешней формы характеризуют круто падающие жилы, тогда как более высокая видимая симметрия приурочена к полого падающим или горизонтальным гнездам. Знание законов природной симметрии позволяет многое предвидеть. Например, если сила тяжести не играет главной роли в каком-то процессе, образуются шарообразные формы. Если сила тяжести накладывает ограничения на форму тел, образуются искаженные формы. И наконец, если симметрия среды и собственная симметрия объектов различны, образуются асимметричные тела.

Рождение же кристаллографии как науки связано с работами датского естествоиспытателя Я. Стенопа, который в 1669 г. сформулировал основные понятия о формировании кристаллов: «Рост кристаллов происходит не изнутри, как растений, но путем наложения на внешние плоскости кристалла мельчайших частиц, приносящихся извне жидкостью...».

Эта идея послойного роста кристаллов сохранила свое значение до сих пор. Кроме того, изучая реальные кристаллы кварца, Н. Стеноп обратил внимание на их отклонение от идеальных геометрических многогранников. В последующие годы закон постоянства углов подтверждали независимо друг от друга многие авторы. Окончательно закон постоянства углов утвердился в науке более чем через 100 лет после первого открытия -- в 1783 г., после выхода в свет книги французского минералога Ж.-Б.-Л. Роме де Лиля «Кристаллография, или Описание форм, присущих всем телам минерального царства», в которой он писал: «Грани кристалла могут изменяться по своей форме и относительным размерам, но их взаимные на клоны постоянны и неизменны для каждого рода кристаллов».

Необходимость измерения углов привела к изобретению М. Караижо специального прибора -- прикладного гониометра и зарождению первого кристаллографического метода, позволяющего определять симметрию и идентифицировать вещества, -- метода гониометрии. К этому же времени относится разработка немецким кристаллографом и минералогом К.С. Вейссом (1780-1856) третьего основного закона кристаллографии -- закона зон, устанавливающего зависимость между положением граней и ребер кристалла.

В 1830 г., немецкий профессор минералогии И.Ф. Гесселъ (1796-1872) пишет трактат «Кристаллометрия» с выводом 32 классов симметрии (причем слово «симметрия» им не упоминается). К сожалению, труд Гесселя остался незамеченным. Французский кристаллограф, астроном, морской офицер О. Браве, исходя из однородности кристалла, пришел к выводу, что центры тяжести кирпичиков -- молекул -- располагаются в кристалле по закону трехмерной периодичности в виде узлов пространственной решетки. В 1855 г. Браве вывел 14 типов пространственных решеток, отличающихся друг от друга формой и симметрией. Этим он заложил основу современной структурной кристаллографии. Позднее, исходя из его гипотезы, было доказано, что для кристаллов возможны лишь оси симметрии первого, второго, третьего, четвертого и шестого порядков и никогда не бывает осей пятого и выше шестого порядков, ибо они невозможны в кристаллических решетках. Так был найден важнейший закон, проводящий границу между симметрией кристаллов и симметрией органических образований -- растений и животных. Для кристаллов пятерные оси и оси порядка выше шести запрещены, для органического вещества таких ограничений нет.

Кроме осей симметрии О. Браве ввел еще два геометрических образа -- элемента симметрии, с помощью которых выявляется симметрия кристаллов: центр симметрии и плоскость симметрии и впервые дал определение симметричной фигуры: «Симметричный многогранник... обладает центром симметрии, или одной или несколькими осями симметрии, или одной или несколькими плоскостями симметрии. Многогранник, не обладающий ни центром, ни осями, ни плоскостями симметрии, будет называться асимметричным».

Выводом кристаллографических групп занимались многие ученые, и среди них П. Кюри, который, изучая вопросы симметрии конечных фигур, вывел семь предельных групп симметрии, содержащих оси бесконечных порядков. Кроме того, он показал, что сложные оси симметрии можно получить, комбинируя повороты и отражения в плоскости симметрии. Кюри назвал их зеркальными осями симметрии. В итоге было доказано, что симметрия кристалла строго определяет его внешнюю форму, так как существуют только девять элементов симметрии, с помощью которых можно описать симметрию любого кристаллического многогранника. Дальнейшим шагом в развитии учения о симметрии кристаллов явились труды великого русского кристаллографа Е.С. Федорова, который в 1855 г. в своей первой работе «Начала учения о фигурах» заново дал оригинальный вывод 32 классов симметрии, которым подчиняется внешняя огранка кристаллов. Федоров был первым, кто занялся выяснением геометрических законов, управляющих расположением в кристаллах атомов, молекул и ионов. Федоров считал кристалл состоящим из параллелоэдров -- многогранников, расположенных в параллельном положении друг относительно друга. Каждый параллелоэдр -- это молекула! Таким образом, решетчатое строение по Федорову -- это совокупность кристаллических молекул.

Было положено начало рентгеноструктурному анализу кристаллов работами английского физика У.Л. Брэгга (1890-1971) и русского кристаллографа Г.В. Вульфа(1863-1925), истолковавшими независимо друг от друга явление дифракции рентгеновских лучей в кристаллах и предложившими формулу, названную их именами и связавшую длины рентгеновских лучей с межплоскостными расстояниями.

Вслед за открытием дифракции рентгеновских лучей на кристаллах теория пространственной симметрии кристаллов получила блестящее подтверждение в первых структурных работах отца У.Г.Брэгга (1862-1942) и сына У.Л. Брэгга, которые на основании своих опытов расшифровали структуры ряда кристаллических веществ. Одной из первых расшифровок была структура меди. Вслед за ней -- структуры таких простых соединений, как поваренная соль (NaCI), пирит (FeS7), алмаз (С), цинковая обманка (ZnS) и т. д. К середине1920-хгг. были расшифрованы структуры более сложных соединений -- силикатов. Благодаря работам Брэггов было определено расположение атомов в пространстве, межатомные расстояния. В 1920 г. А. Лайде удалось найти геометрический способ определения радиусов ионов, основанный на предположении, что размеры анионов значительно превышают размеры катионов и в некоторых ионных кристаллах первые непосредственно контактируют друг с другом. Таким образом, работы Брэггов положили непосредственное начало развитию кристаллохимии.

Почти за 100 лет, прошедшие после 1912 г., в мире расшифрованы сотни тысяч кристаллических структур природных, синтетических, в том числе органических, соединений. Это, безусловно, триумф кристаллографии! И если первоначально кристаллография занимала скромное место среди фундаментальных наук, изучая и описывая главным образом внешнюю форму исключительно кристаллов минералов, являясь как бы служанкой минералогии, то в дальнейшем ее роль возросла, поскольку объектом ее исследований стали не только природные, но и искусственные кристаллы, их внутреннее строение, способы выращивания.

кристаллография хрусталеносный жила гониометр

Кристаллография - наука о кристаллах и кристаллическом состоянии материи. Она изучает возникновение и рост кристаллов, их внешнюю форму, внутренние строение и физические свойства.

Слово “кристалл” - греческого происхождения. Кристаллом древние греки называли лёд, а затем и горный хрусталь, который считали окаменевшим льдом. Позднее, начиная с 17 века, кристаллами стали называть все твёрдые тела, имеющие природную форму плоскостного многогранника. Такие многогранники ограничены плоскостями - гранями, которые пересекаются по прямым линиям - рёбрам.

Краткая история кристаллографии

Подавляющее большинство используемых в современной технике материалов имеет кристаллическое строение. Исключение составляет, пожалуй, только широко известное и используемое стекло - аморфный материал. Его близкие родственники - аморфные металлические сплавы (металлические стекла) до сих пор экзотичны, хотя довольно уверенно начинают занимать свое место в широком круге используемых человеком материалов. Поэтому, говоря о кристаллах и имея в виду только крупные, красивые, большей частью прозрачные образования, найденные в природе или изготовленные искусственным образом, мы делаем ошибку. Кристаллы - это не только драгоценные камни: простая медная проволочка или алюминиевая вилка состоят из материала, имеющего кристаллическое строение. Сталь для машин, алюминиевые сплавы для ракет и самолетов, полупроводниковые приборы и многое другое содержат в основе кристаллы разного типа, с разными свойствами, но объединенные одним общим главным качеством: правильным расположением атомов или молекул в пространстве.

Именно эта правильность и является наиболее замечательным свойством кристаллов, привлекающим к ним внимание и завораживающим всякого, кто впервые сталкивается с таким интересным объектом. Вся наука о кристаллах началась с осознания того факта, что независимо от своего происхождения кристаллы одного сорта имеют одинаковые внешние формы и внутреннее строение. Это потребовало использования математических понятий для строгого описания формы кристаллов и, собственно, с этого и началась научная кристаллография. "Учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в ней математика" - эту мысль И. Канта наилучшим образом характеризует ситуация, возникшая к той дате, с которой исчисляется возраст научной кристаллографии.

Эта дата хорошо известна. В 1669 году Н. Стенон открыл закон постоянства углов между гранями кристалла. Именно отсюда ведет свое начало научная кристаллография. Следующая замечательная веха на ее пути - 1774 год. Рене Гаюи формулирует закон целых чисел, согласно которому положение любой грани кристалла в пространстве может быть выражено тремя целыми числами. Основы физической кристаллографии, устанавливающей связь между свойствами кристалла и свойствами атомов, из которых он состоит, были заложены нашим соотечественником М.В. Ломоносовым, догадки которого тем более удивительны, что в годы его жизни не существовало сколько-нибудь правильных представлений о природе атомов и молекул. Настоящий расцвет кристаллографии начался в первые годы XX века. Это связано с использованием рентгеновских лучей, открытых незадолго до этого в 1895 году. Применение таких лучей к расшифровке кристаллической структуры (М. Лауэ, 1912) вооружило исследователей мощнейшим инструментом, позволяющим с точностью до четвертого знака после запятой определять межатомные расстояния в кристаллах. После этого экспериментальные исследования кристаллов двинулись вперед очень быстро, и этот марш продолжается до сих пор.

В России начала XX века возникли две школы кристаллографов. Первая из них возглавлялась Е.С. Федоровым, который, выведя 230 так называемых федоровских групп, создал учение о кристаллах, лежащее в основе современной кристаллографии. Г.В. Вульф больше тяготел к физическому описанию природы кристаллов. Он первым в России начал всестороннее использование рентгеноструктурного анализа для исследований строения кристаллов и получил основное уравнение рентгеноструктурного анализа, известное как уравнение Вульфа-Брэггов. Ученик Вульфа А.В. Шубников, организатор первого в мире Института кристаллографии Российской Академии наук, вошел в историю не только как выдающийся исследователь свойств кристаллов, но и как пионер использования кристаллов в промышленных масштабах.

С середины нашего столетия кристаллография начала интенсивно разделяться на области знания, связанные между собой единым подходом, но сосредоточенные на разных объектах, причем не только относящиеся к традиционной области интересов - неживой природе, но и к области биофизических и биохимических объектов, таких, как вирусы, белки и т.п. Одновременно усиливались связи кристаллографии с другими науками - геологией, химией, металлургией, физикой и химией твердого тела, теорией прочности и пластичности, электроникой и другими. Можно смело утверждать, что само существование и современный уровень этих наук были бы совершенно невозможны без широкого использования кристаллографических понятий, лежащих в самой их основе.

Наука о кристаллах

В настоящее время понятие “кристалл” является более широким, и к кристаллическим телам относят все твердые образования, обладающие закономерным внутренним строением. Закономерность эта заключается в строго упорядоченном расположении частиц, слагающих кристаллическое тело. При этом частицы одного сорта периодически повторяются, располагаясь по параллельным линиям. Эти частицы можно мысленно соединить прямыми линиями так, что получится некоторая система параллелепипедов, в вершинах которых и будут находиться все однородные частицы. Такая система параллелепипедов, равных друг другу, параллельно расположенных и смежных по целым граням, получила название “пространственной решётки”. Соответственные точки параллелепипедов пространственной решётки, например, их центры или вершины, называются узлами.

Узлы пространственной решётки ассоциируют обычно с центрами тяжести частиц одного сорта, причём этими частицами могут быть атомы, ионы, радикалы или молекулы. Замена материальных частиц математическими точками создает определённые удобства при изучении строения и свойств кристаллических веществ в тех случаях, когда решение рассматриваемого вопроса от природы частиц не зависит.

Таким образом, пространственная решётка служит как бы схемой внутреннего строения кристаллического тела.

Решётчатое строение является наиболее характерной особенностью всех, без исключения, кристаллических тел и обуславливает их специальные свойства, в том числе и способность кристаллов приобретать форму многогранников.

Отсюда вытекает следующее определение кристаллическому веществу: ”Кристаллическими называются все твердые тела, имеющие решётчатое строение”.

Понятие о пространственной решётке и решётчатое строение кристаллов лежат в основе всей современной кристаллографии.

Твердые тела, не имеющие решётчатого строения, называются аморфными. Примерами аморфных тел могут служить различные стёкла, смолы, желатин, клей, сургуч, сапожный вар, пластмассы и др. В аморфном веществе составляющие его частицы располагаются в общем беспорядочно, как и в жидкостях. Поэтому аморфные тела часто уподобляют жидкостям с очень большим внутренним трением (или высокой вязкостью). Основными же признаками являются:

1) изотропность, т. е. одинаковость свойств во всех направлениях;

2) отсутствие чётко выраженной температуры плавления.

Аморфные вещества не являются устойчивыми. Они обнаруживают с течением времени тенденцию к кристаллизации (наблюдается, например, “расстеклование” стекла, “засахаривание” леденцов). Кристаллическое состояние по сравнению с аморфным оказывается более устойчивым, так как упорядоченному расположению частиц в структуре отвечает минимальная внутренняя энергия о чём свидетельствует выделение теплоты при кристаллизации жидкости и поглощение тепла при расплавлении кристаллов.

В связи с отмеченным аморфные тела нередко относят к переохлаждённым жидкостям.

Таким образом, представителями истинно твёрдых тел являются только кристаллы.

Исторически учение о кристаллах развивалось совместно с минералогией, как один из её разделов. Лишь с конца 19 в. кристаллография выделяется в самостоятельную науку благодаря тому, что с развитием химии и особенно органической химии было установлено широкое распространение кристаллических веществ, часто не имеющих ничего общего с минералами. Кроме того, обнаружилась определённая связь между химическим составом кристаллов и их внешней формой. Это послужило основанием Ф. Энгельсу в одной из своих работ назвать кристаллографию частью химии.

Однако, до опытов Лауэ кристаллография сохраняла свой первоначальный описательный характер, занимаясь, главным образом, изучением некоторых физических свойств и внешних геометрических форм кристаллов. После экспериментального подтверждения решётчатого строения кристаллов содержание кристаллографии существенным образом изменилось. Возможность непосредственного изучения внутреннего строения кристаллов с помощью рентгеновских лучей значительно расширила цели и задачи кристаллографии и привела к появлению и быстрому развитию новых разделов этой науки (например, кристаллохимия, кристаллофизика, кристаллооптика и др.).

Современная кристаллография изучает все свойства кристаллического вещества и относящиеся к нему закономерности, которые находятся в связи с его решётчатым внутренним строением. Основной задачей кристаллографии является установление взаимной связи между структурой кристаллов и их химическим составом, а также различными физическими, физико-химическими и геометрическими свойствами.

Следовательно, главными науками, на которых базируется современная кристаллография, являются физика, химия, физическая химия и математика. В свою очередь кристаллографией широко пользуются металлография, рентгенография, физика твердого тела, петрография, геохимия, радиотехника и др. Сохранила кристаллография свои прежние связи и с минералогией. Большой интерес к кристаллографии проявляют также физики и химики, поскольку существует определённая зависимость физических свойств кристаллов от их внутреннего строения, которое в свою очередь обуславливается химическим составом кристаллического вещества.

Значение кристаллографии, как науки о кристаллах, вытекает из чрезвычайной распространенности кристаллического состояния вещества. Так как с кристаллами приходится иметь дело практически во всех сферах человеческой деятельности, то развитие почти каждой отрасли народного хозяйства выдвигает целый ряд важных кристаллографических задач. Сюда относится, прежде всего, задача получения высококачественных кристаллических материалов, необходимых для удовлетворения потребностей новой и новейшей техники. Искусственные алмазы, кварц, рубин, многочисленные полупроводники, люминесцентные кристаллы и др. уже широко используются в обрабатывающей и оптической промышленности, в радиоэлектронике и компьютерах, в космических исследованиях и ультразвуковой технике. Однако, бурное развитие науки и техники требует всё новых видов кристаллических материалов, в том числе металлов и сплавов, обладающих теми или иными нужными свойствами. Решение этой проблемы требует тщательного изучения процессов образования, роста и разрушения кристаллов, а также исследования кристаллических структур, в геометрии которых кроется одна из основных причин физических и химических особенностей кристаллов.