Магнитная проницаемость проволоки. Магнитные свойства вещества

Определение магнитной проницаемости вещества. Ее роль в описании магнитного поля

Если провести опыт с соленоидом, который соединен с баллистическим гальванометром, то при включении тока в соленоиде можно определять значение магнитного потока Ф, который будет пропорционален отбросу стрелки гальванометра. Проведем опыт дважды, причем ток (I) в гальванометре установим одинаковый, но в первом опыте соленоид будет без сердечника, а во втором опыте, перед тем как включить ток, введем в соленоид железный сердечник. Обнаруживается, то, что во втором опыте магнитный поток существенно больше, чем в первом (без сердечника). При повторении опыта с сердечниками разной толщины, получается, максимальный поток получается в том случае, когда весь соленоид заполнен железом, то есть обмотка плотно навита на железный сердечник. Можно провести опыт с разными сердечниками. В результате получается, что:

где $Ф$ -- магнитный поток в катушке с сердечником, $Ф_0$ -- магнитный поток в катушке без сердечника. Увеличение магнитного потока при введении в соленоид сердечника объясняется тем, что к магнитному потоку, который создает ток в обмотке соленоида, добавился магнитный поток, создаваемый совокупностью ориентированных амперовых молекулярных токов. Под влиянием магнитного поля молекулярные токи ориентируются, и их суммарный магнитный момент перестает быть равным нулю, возникает дополнительное магнитное поле.

Определение

Величину $\mu $, которая характеризует магнитные свойства среды, называют магнитной проницаемостью (или относительной магнитной проницаемостью).

Это безразмерная характеристика вещества. Увеличение потока Ф в $\mu $ раз (1) означает, что магнитная индукция $\overrightarrow{B}$ в сердечнике во столько же раз больше, чем в вакууме при том же токе в соленоиде. Следовательно, можно записать, что:

\[\overrightarrow{B}=\mu {\overrightarrow{B}}_0\left(2\right),\]

где ${\overrightarrow{B}}_0$ -- магнитная индукция поля в вакууме.

Наряду с магнитной индукцией, которая является основной силовой характеристикой поля, используют такую вспомогательную вектор ную величину как напряженность магнитного поля ($\overrightarrow{H}$), которая связана с $\overrightarrow{B}$ следующим соотношением:

\[\overrightarrow{B}=\mu \overrightarrow{H}\left(3\right).\]

Если формулу (3) применить к опыту с сердечником, то получим, что в отсутствии сердечника:

\[{\overrightarrow{B}}_0={\mu }_0\overrightarrow{H_0}\left(4\right),\]

где $\mu $=1. При наличии сердечника мы получаем:

\[\overrightarrow{B}=\mu {\mu }_0\overrightarrow{H}\left(5\right).\]

Но так как выполняется (2), то получается, что:

\[\mu {\mu }_0\overrightarrow{H}={\mu м}_0\overrightarrow{H_0}\to \overrightarrow{H}=\overrightarrow{H_0}\left(6\right).\]

Мы получили, что напряженность магнитного поля не зависит от того, каким однородным веществом заполнено пространство. Магнитная проницаемость большинства веществ около единицы, исключения составляют ферромагниетики.

Магнитная восприимчивость вещества

Обычно вектор намагниченности ($\overrightarrow{J}$) связывают с вектором напряженности в каждой точке магнетика :

\[\overrightarrow{J}=\varkappa \overrightarrow{H}\left(7\right),\]

где $\varkappa $ -- магнитная восприимчивость, безразмерная величина. Для неферромагнитных веществ и в не больших полях $\varkappa $ не зависит от напряженности, является скалярной величиной. В анизотропных средах $\varkappa $ является тензором и направления $\overrightarrow{J}$ и $\overrightarrow{H}$ не совпадают.

Связь между магнитной восприимчивостью и магнитной проницаемостью

\[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0}-\overrightarrow{J}\left(8\right).\]

Подставим в (8) выражение для вектора намагниченности (7), получим:

\[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0}-\overrightarrow{H}\left(9\right).\]

Выразим напряженность, получим:

\[\overrightarrow{H}=\frac{\overrightarrow{B}}{{\mu }_0\left(1+\varkappa \right)}\to \overrightarrow{B}={\mu }_0\left(1+\varkappa \right)\overrightarrow{H}\left(10\right).\]

Сравнивая выражения (5) и (10), получим:

\[\mu =1+\varkappa \left(11\right).\]

Магнитная восприимчивость может быть как положительной так и отрицательной. Из (11) следует, что магнитная проницаемость может быть как больше единицы, так и меньше нее.

Пример 1

Задание: Вычислите намагниченность в центре кругового витка радиуса R=0,1 м с током силой I=2A, если он погружен в жидкий кислород. Магнитная восприимчивость жидкого кислорода равна $\varkappa =3,4\cdot {10}^{-3}.$

За основу решения задачи примем выражение, которое отражает связь напряженности магнитного поля и намагниченности:

\[\overrightarrow{J}=\varkappa \overrightarrow{H}\left(1.1\right).\]

Найдем поле в центре витка с током, так как намагниченность нам необходимо вычислит в этой точке.

Выберем на проводнике с током элементарный участок (рис.1), в качестве основы для решения задачи используем формулу напряженности элемента витка с током:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направлением тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Исходя из рис. 1 $\vartheta=90{}^\circ $, следовательно (1.1) упростится, кроме того расстояние от центра окружности (точки, где мы ищем магнитное поле) элемента проводника с током постоянно и равно радиусу витка (R), следовательно имеем:

Результирующий вектор напряженности магнитного поля направлен по оси X, его можно найти как сумму отдельных векторов$\ \ \overrightarrow{dH},$ так как все элементы тока создают в центре вика магнитные поля, направленные вдоль нормали витка. Тогда по принципу суперпозиции полную напряженность магнитного поля можно получить, если перейти к интегралу:

Подставим (1.3) в (1.4), получим:

Найдем намагниченность, если подставим напряженность из (1.5) в (1.1), получим:

Все единицы даны в системе СИ, проведем вычисления:

Ответ: $J=3,4\cdot {10}^{-2}\frac{А}{м}.$

Пример 2

Задание: Вычислите долю суммарного магнитного поля в вольфрамовом стержне, который находится во внешнем однородном магнитном поле, которую определяют молекулярные токи. Магнитная проницаемость вольфрама равна $\mu =1,0176.$

Индукцию магнитного поля ($B"$), которая приходится на долю молекулярных токов, можно найти как:

где $J$ -- намагниченность. Она связана с напряженностью магнитного поля выражением:

где магнитную восприимчивость вещества можно найти как:

\[\varkappa =\mu -1\ \left(2.3\right).\]

Следовательно, магнитное поле молекулярных токов найдем как:

Полное поле в стержне вычисляется в соответствии с формулой:

Используем выражения (2.4) и (2.5) найдем искомое соотношение:

\[\frac{B"}{B}=\frac{{\mu }_0\left(\mu -1\right)H}{\mu {\mu }_0H}=\frac{\mu -1}{\mu }.\]

Проведем вычисления:

\[\frac{B"}{B}=\frac{1,0176-1}{1,0176}=0,0173.\]

Ответ:$\frac{B"}{B}=0,0173.$

Магнитное поле катушки определяется током и напряженность этого поля , а индукция поля . Т.е. индукция поля в вакууме пропорциональна величине тока. Если же магнитное поле создается в некой среде или веществе, то поле воздействует на вещество, а оно, в свою очередь, определенным образом изменяет магнитное поле.

Вещество, находящееся во внешнем магнитном поле, намагничивается и в нем возникает добавочное внутреннее магнитное поле. Оно связано с движением электронов по внутриатомным орбитам, а также вокруг собственной оси. Движение электронов и ядер атомов можно рассматривать как элементарные круговые токи.

Магнитные свойства элементарного кругового тока характеризуются магнитным моментом.

При отсутствии внешнего магнитного поля элементарные токи внутри вещества ориентированы беспорядочно (хаотически) и, поэтому общий или суммарный магнитный момент равен нулю и в окружающем пространстве магнитное поле элементарных внутренних токов не обнаруживается.

Влияние внешнего магнитного поля на элементарные токи в веществе состоит в том, что изменяется ориентация осей вращения заряженных частиц причем так, что их магнитные моменты оказываются направленными в одну сторону. (в сторону внешнего магнитного поля). Интенсивность и характер намагничивания у различных веществ в одинаковом внешнем магнитном поле значительно отличаются. Величину, характеризующую свойства среды и влияние среды на плотность магнитного поля, называют абсолютной магнитной проницаемостью или магнитной проницаемостью среды (μ с ) . Это есть отношение = . Измеряется [μ с ]=Гн/м.

Абсолютная магнитная проницаемость вакуума называется магнитной постоянной μ о =4π 10 -7 Гн/м.

Отношение абсолютной магнитной проницаемости к магнитной постоянной называют относительной магнитной проницаемостью μ c /μ 0 =μ. Т.е. относительная магнитная проницаемость – это величина, показывающая, во сколько раз абсолютная магнитная проницаемость среды больше или меньше абсолютной проницаемости вакуума. μ - величина безразмерная, изменяющаяся в широких пределах. Эта величина положена в основу деления всех материалов и сред на три группы.

Диамагнетики . У этих веществ μ < 1. К ним относятся - медь, серебро, цинк, ртуть, свинец, сера, хлор, вода и др. Например, у меди μ Cu = 0,999995. Эти вещества слабо взаимодействуют с магнитом.

Парамагнетики . У этих веществ μ > 1. К ним относятся – алюминий, магний, олово, платина, марганец, кислород, воздух и др. У воздуха = 1,0000031. . Эти вещества также, как и диамагнетики, слабо взаимодействуют с магнитом.

Для технических расчетов μ диамагнитных и парамагнитных тел принимается равной единице.

Ферромагнетики . Это особая группа веществ, играющих громадную роль в электротехнике. У этих веществ μ >> 1. К ним относятся железо, сталь, чугун, никель, кобальт, гадолиний и сплавы металлов. Эти вещества сильно притягиваются к магниту. У этих веществ μ = 600- 10 000. У некоторых сплавов μ достигает рекордных значений до 100 000. Следует отметить, что μ для ферромагнитных материалов непостоянна и зависит от напряженности магнитного поля, вида материала и температуры.

Большое значение µ в ферромагнетиках объясняется тем, что в них имеются области самопроизвольного намагничивания (домены), в пределах которых элементарные магнитные моменты направлены одинаково. Складываясь, они образуют общие магнитные моменты доменов.

В отсутствие магнитного поля магнитные моменты доменов ориентированы хаотически и суммарный магнитный момент тела или вещества равен нулю. Под действием внешнего поля магнитные моменты доменов ориентируются в одну сторону и образуют общий магнитный момент тела, направленный в ту же сторону, что и внешнее магнитное поле.

Эту важную особенность используют на практике, применяя ферромагнитные сердечники в катушках, что позволяет резко усилить магнитную индукцию и магнитный поток при тех же значениях токов и числа витков или, иначе говоря, сконцентрировать магнитное поле в относительно малом объеме.

Магнитный момент- это основная векторная величина, характеризующая магнитные свойства вещества. Поскольку источником магнетизма является замкнутый ток, то значение магнитного момента М определяется как произведение силы тока I на площадь, охватываемую контуром токаS:

М = I×S А×м 2 .

Магнитными моментами обладают электронные оболочки атомов и молекул. Электроны и другие элементарные частицы имеют спиновый магнитный момент, определяемый существованием собственного механического момента – спина. Спиновый магнитный момент электрона может ориентироваться во внешнем магнитном поле так, что возможны только две равные и противоположно направленные проекции момента на направление вектора напряженности магнитного поля, равные магнетону Бора – 9,274×10 -24 А×м 2 .

  1. Определите понятие «намагниченность» вещества.

Намагниченность – J – это суммарный магнитный момент единицы объема вещества:

  1. Определите понятие «магнитная восприимчивость».

Магнитная восприимчивость вещества, א v – отношение намагниченности вещества к напряженности магнитного поля, относящаяся к единице объема:

א v = , безразмерная величина.

Удельная магнитная восприимчивость, אотношение магнитной восприимчивости к плотности вещества,т.е. магнитная восприимчивость единицы массы, измеряемая в м 3 /кг.

  1. Определите понятие «магнитная проницаемость».

Магнитная проницаемость, μ – это физическая величина, характеризующая изменение магнитной индукции при воздействии магнитного поля. Для изотропных сред магнитная проницаемость равна отношению индукции в среде В к напряженности внешнего магнитного поля Н и к магнитной постоянной μ 0 :

Магнитная проницаемость – величина безразмерная. Её значение для конкретной среды на 1 больше магнитной восприимчивости той же среды:

μ = א v + 1, так какВ = μ 0 (Н+J).

  1. Дайте классификацию материалов по магнитным свойствам.

По магнитному строению и значению магнитной проницаемости (восприимчивости) материалы подразделяются на:

Диамагнетики μ< 1 (материал «сопротивляется» магнитному полю);

Парамагнетики μ > 1 (материал слабо воспринимает магнитное поле);

Ферромагнетики μ >> 1 (магнитное поле в материале усиливается);

Ферримагнетики μ >> 1 (магнитное поле в материале усиливается, но магнитная структура материала отличается от структуры ферромагнетиков);

Антиферромагнетики μ ≈ 1 (материал слабо реагирует на магнитное поле, хотя по магнитной структуре схож с ферримагнетиками).

  1. Опишите природу диамагнетизма.

Диамагнетизм – это свойство вещества намагничиваться навстречу направлению действующего на него внешнего магнитного поля (в соответствии с законом электромагнитной индукции и правилом Ленца). Диамагнетизм свойственен всем веществам, но в «чистом виде» он проявляется у диамагнетиков. Диамагнетики – вещества, молекулы которых не имеют собственных магнитных моментов (их суммарный магнитный момент равен нулю), поэтому других свойств, кроме диамагнетизма у них нет. Примеры диамагнетиков:


Водород, א= - 2×10 -9 м 3 /кг.

Вода, א= - 0,7×10 -9 м 3 /кг.

Алмаз, א= - 0,5×10 -9 м 3 /кг.

Графит, א= - 3×10 -9 м 3 /кг.

Медь, א= - 0,09×10 -9 м 3 /кг.

Цинк, א= - 0,17×10 -9 м 3 /кг.

Серебро, א= - 0,18×10 -9 м 3 /кг.

Золото, א= - 0,14×10 -9 м 3 /кг.

43. Опишите природу парамагнетизма.

Парамагнетизм – это свойство веществ, называемых парамагнетиками, которые, будучи помещены во внешнее магнитное поле, приобретают магнитный момент, совпадающий с направлением этого поля. Атомы и молекулы парамагнетиков в отличие от диамагнетиков имеют собственные магнитные моменты. При отсутствии поля ориентация этих моментов хаотична (из-за теплового движения) и суммарный магнитный момент вещества равен нулю. При наложении внешнего поля происходит частичная ориентация магнитных моментов частиц в направлении поля, и к напряженности внешнего поля Н добавляется намагниченность J: В = μ 0 (Н+J). Индукция в веществе усиливается. Примеры парамагнетиков:

Кислород, א= 108×10 -9 м 3 /кг.

Титан, א= 3×10 -9 м 3 /кг.

Алюминий, א= 0,6×10 -9 м 3 /кг.

Платина, א= 0,97×10 -9 м 3 /кг.

44.Опишите природу ферромагнетизма.

Ферромагнетизм – это магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомов в определенном объеме вещества (домене) параллельны, что обусловливает самопроизвольную намагниченность домена. Появление магнитного порядка связано с обменным взаимодействием электронов, имеющим электростатическую природу (закон Кулона). В отсутствии внешнего магнитного поля ориентация магнитных моментов различных доменов может быть произвольной, и рассматриваемый объем вещества может иметь в целом слабую или нулевую намагниченность. При приложении магнитного поля магнитные моменты доменов ориентируются по полю тем больше, чем выше напряженность поля. При этом изменяется значение магнитной проницаемости ферромагнетика и усиливается индукция в веществе. Примеры ферромагнетиков:

Железо, никель, кобальт, гадолиний

и сплавы этих металлов между собой и другими металлами (Al, Au, Cr, Si и др.). μ ≈ 100…100000.

45. Опишите природу ферримагнетизма.

Ферримагнетизм – это магнитоупорядоченное состояние вещества, в котором магнитные моменты атомов или ионов образуют в определенном объеме вещества (домене) магнитные подрешетки атомов или ионов с суммарными магнитными моментами не равными друг другу и направленными антипараллельно. Ферримагнетизм можно рассматривать как наиболее общий случай магнитоупорядоченного состояния, а ферромагнетизм как случай с одной подрешеткой. В состав ферримагнетиков обязательно входят атомы ферромагнетиков. Примеры ферримагнетиков:

Fe 3 O 4 ; MgFe 2 O 4 ; CuFe 2 O 4 ; MnFe 2 O 4 ; NiFe 2 O 4 ; CoFe 2 O 4 …

Магнитная проницаемость ферримагнетиков имеет тот же порядок, что и у ферромагнетиков: μ ≈ 100…100000.

46.Опишите природу антиферромагнетизма.

Антиферромагнетизм – это магнитоупорядоченное состояние вещества, характеризующееся тем, что магнитные моменты соседних частиц вещества ориентированы антипараллельно, и в отсутствии внешнего магнитного поля суммарная намагниченность вещества равна нулю. Антиферромагнетик в отношении магнитного строения можно рассматривать как частный случай ферримагнетика, в котором магнитные моменты подрешеток равны по модулю и антипараллельны. Магнитная проницаемость антиферромагнетиков близка к 1. Примеры антиферромагнетиков:

Cr 2 O 3 ; марганец; FeSi; Fe 2 O 3 ; NiO……… μ ≈ 1.

47.Какое значение магнитной проницаемости у материалов в сверхпроводящем состоянии?

Сверхпроводники ниже температуры сверхперехода являются идеальными диамагнетиками:

א= - 1; μ = 0.

4. Магнитные материалы. Химия радиоматериалов

4. Магнитные материалы

Магнитные материалы в электро и радиосвязи играют столь же важную роль, как проводниковые и диэлектрические материалы. В электрических машинах, трансформаторах, дросселях, электрорадиоаппаратуре и измерительных приборах всегда в том или ином виде используют магнитные материалы: в качестве магнитопровода, в виде постоянных магнитов или для экранирования магнитных полей.

Любое вещество, будучи помещенным в магнитное поле, приобретает некоторый магнитный момент М. Магнитный момент единицы объема называют намагниченностью J м:

J м =M/V. (4.1)

Намагниченность связана с напряженностью магнитного поля:

J м =k м H, (4.2)

где k м – безразмерная величина, характеризующая способность данного вещества намагничиваться в магнитном поле и называемая магнитной восприимчивостью .

Первопричиной магнитных свойств вещества являются внутренние скрытые формы движения электрических зарядов, представляющие собой элементарные круговые токи, обладающие магнитными моментами. Такими токами являются орбитальные спины и орбитальное вращение электронов в атоме. Магнитные моменты протонов и нейтронов примерно в 1000 раз меньше магнитного момента электрона, поэтому магнитные свойства атома целиком определяются электронами, магнитным моментом ядра можно пренебречь.

4.1. Классификация веществ по магнитным свойствам

По реакции на внешнее магнитное поле и по характеру внутреннего магнитного упорядочения все вещества в природе можно разделить на пять групп:

  • диамагнетики;
  • парамагнетики;
  • ферромагнетики;
  • антиферромагнетики;
  • ферримагнетики.

Диамагнетики – магнитная проницаемость m меньше единицы и не зависит от напряженности внешнего магнитного поля.

Диамагнетизм обусловлен небольшим изменением угловой скорости орбитального вращения электрона при внесении атома в магнитное поле.

Диамагнитный эффект является универсальным, присущим всем веществам. Однако в большинстве случаев он маскируется более сильными магнитными эффектами.

К диамагнетикам относят инертные газы, водород, азот, многие жидкости (вода, нефть), ряд металлов (медь, серебро, золото, цинк, ртуть и др.), большинство полупроводников и органических соединений. Диамагнетики – все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

Внешним проявлением диамагнетизма является выталкивание диамагнетиков из неоднородного магнитного поля.

Парамагнетики – вещества с m больше единицы, не зависящей от напряженности внешнего магнитного поля.

Внешнее магнитное поле вызывает преимущественную ориентацию магнитных моментов атомов в одном направлении.

Парамагнетики, помещенные в магнитное поле, втягиваются в него.

К числу парамагнетиков относятся: кислород, окись азота, щелочные и щелочно-земельные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

Парамагнитный эффект по физической природе во многом сходен с дипольно-релаксационной поляризацией диэлектриков.

К ферромагнетикам относят вещества с большой магнитной проницаемостью (до10 6), сильно зависящей от напряженности внешнего магнитного поля и температуры.

Ферромагнетикам присуща внутренняя магнитная упорядоченность, выражающаяся в существовании макроскопических областей с параллельно ориентированными магнитными моментами атомов. Важнейшая особенность ферромагнетиков заключается в их способности намагничиваться до насыщения в слабых магнитных полях.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры Т° спонтанно возникает антипараллельная ориентация магнитных моментов одинаковых атомов или ионов кристаллической решетки

При нагревании антиферромагнетик переходит в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.)

К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Магнитная проницаемость у них высока и сильно зависит от напряженности магнитного поля и температуры.

Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом – различные оксидные соединения, а главный интерес представляют ферриты.

Диа-, пара- и антиферромагнетики можно объединить в группу слабомагнитных веществ, тогда как ферро- и ферримагнетики представляют собой сильномагнитные материалы и представляют наибольший интерес.

4.2. Магнитные характеристики материалов

Поведение ферромагнитного материала в магнитном поле характеризуется начальной кривой намагничивания:

Рис. 4.1. Начальная кривая намагничивания.

Показывающей зависимость магнитной индукции В в материале от напряженности магнитного поля Н.

Свойства магнитных материалов оценивают магнитными характеристиками. Рассмотрим основные из них.

4.2.1. Абсолютная магнитная проницаемость

Абсолютная магнитная проницаемость m а материала представляет собой отношение магнитной индукции В к напряженности магнитного поля Н в заданной точке кривой намагничивания для данного материала и выражается в Гн/м:

m а =В/Н (4.3)

Относительная магнитная проницаемость материала m есть отношение абсолютной магнитной проницаемости к магнитной постоянной:

m =m а /m о (4.4)

μ 0 – характеризует магнитное поле в вакууме (m 0 =1.256637·10 -6 Гн/м).

Абсолютная магнитная проницаемость применяется только для расчетов. Для оценки же свойств магнитных материалов используют m, не зависящую от выбранной системы единиц. Ее называют магнитной проницаемостью. Магнитная проницаемость зависит от напряженности магнитного поля:


Рис. 4.2. Зависимость магнитной проницаемости от напряженности магнитного поля.

Различают начальную m н и максимальную магнитную проницаемость m м. Начальную измеряют при напряженностях магнитного поля, близких к нулю.

Большие значения m н и m м показывают, что данный материал легко намагничивается в слабых и сильных магнитных полях.

4.2.2. Температурный коэффициент магнитной проницаемости

Температурный коэффициент магнитной проницаемости ТКm позволяет оценить характер изменения m в зависимости

ТК μ = (μ 2 - μ 1)/ μ 1 (Т 2 – Т 1)

Типичная зависимость μ от Т° приведена на рис.4.3.


Рис.4.3. Типичная зависимость магнитной проницаемости ферромагнитных материалов от температуры

Т°, при которой μ падает почти до нуля называется температурой Кюри Т к. При Т > Т к процесс намагничивания расстраивается из-за интенсивного теплового движения атомов и молекул материала, следовательно, материал перестает быть ферромагнитным.

Так, для чистого железа Т к = 768°C
для никеля Т к = 358°C
для кобальта Т к = 1131°C

4.2.3. Индукция насыщения

Индукция В s , характерная для всех магнитных материалов, называется индукцией насыщения (см.рис.4.4). Чем больше В s при заданной Н, тем лучше магнитный материал.

Если образец магнитного материала намагничивать, непрерывно повышая напряженность магнитного поля Н, магнитная индукция В тоже будет непрерывно возрастать по кривой начального намагничивания 1:


Рис.4.4. Петля гистерезиса магнитного материала

Эта кривая заканчивается в точке, соответствующей индукции насыщения В s . При уменьшении Н индукция тоже будет уменьшаться, но начиная с величины В m значения В не будут совпадать с начальной кривой намагничивания.

4.2.4. Остаточная магнитная индукция

Остаточная магнитная индукция В r наблюдается в ферромагнитном материале, когда Н=0. Для размагничивания образца надо, чтобы напряженность магнитного поля изменила свое направление на противоположное – Н. Напряженность поля, при которой индукция становится равной нулю, называется коэрцитивной силой Н с. Чем больше Н с, тем в меньшей степени материал способен размагничиваться.

Если после размагничивания материала намагничивать его в противоположном направлении, образуется замкнутая петля, которую называют предельной петлей гистерезиса – петля, снятая при плавном изменении напряженности магнитного поля от +Н до –Н, когда магнитная индукция становится равной индукции насыщения В s .

4.2.5. Удельные потери на гистерезис

Это потери P г, затрачиваемые на перемагничивание единицы массы материала за один цикл [Вт/кг]. Их величина зависит от частоты перемагничивания и значения максимальной индукции. Они определяются (за один цикл) площадью петли гистерезиса.

4.2.6. Динамическая петля гистерезиса

Она образуется при перемагничивании материала переменным магнитным полем и имеет большую площадь, чем статическая, т.к. при действии переменного магнитного поля кроме потерь на гистерезис возникают потери на вихревые токи и магнитное последействие (отставание по времени параметров от Н), которое определяется магнитной вязкостью материала.

4.2.7. Потери энергии на вихревые токи

Потери энергии на вихревые токи Р в зависят от удельного электрического сопротивления материала ρ. Чем больше ρ, тем меньше потери. Р в также зависят от плотности материала и его толщины. Они пропорциональны квадрату амплитуды магнитной индукции В m и частоты f переменного поля.

4.2.8. Коэффициент прямоугольности петли гистерезиса

Для оценки формы гистерезисной петли пользуются коэффициентом прямоугольности петли гистерезиса:

К п = В r /В m (4.6)

Чем больше К п, тем прямоугольнее петля. Для магнитных материалов, применяемых в автоматике и ЗУ ЭВМ, К п = 0.7-0.9.

4.2.9. Удельная объемная энергия

Это характеристика, применяемая доля оценки свойств магнитно-твердых материалов, выражается формулой:

W м = 1/2(B d ·H d), (4.7)

где B d и H d соответственно индукция и напряженность магнитного поля, соответствующие максимальному значению удельной объемной энергии (рис.4.5).


Рис.4.5. Кривые размагничивания и магнитной энергии

Чем больше объемная энергия, тем лучше магнитный материал и постоянный магнит, из него изготовленный.

4.3. Классификация магнитных материалов

Согласно поведению в магнитном поле все магнитные материалы делятся на две основные группы – магнитно-мягкие (МММ) и магнитно-твердые (МТМ). МММ характеризуются большими значениями начальной и максимальной магнитной проницаемостью и малыми значениями коэрцитивной силы (меньше 4000 А/м). Они легко намагничиваются и размагничиваются, отличаются малыми потерями на гистерезис.

Чем чище МММ, тем лучше его магнитные характеристики.

МТМ обладают большой коэрцитивной силой (больше 4000А/м) и остаточной индукцией (больше 0.1 Тл). Они с большим трудом намагничиваются, но зато могут долго сохранять магнитную энергию, т.е. служить источниками постоянного магнитного поля.

По составу все магнитные материалы делятся на

  1. металлические
  2. неметаллические
  3. магнитодиэлектрики.

Металлические магнитные материалы это чистые металлы (железо, кобальт, никель) и магнитные сплавы некоторых металлов.

Неметаллические магнитные материалы – ферриты, получаемые из порошкообразной смеси окислов железа и окислов других металлов. Опрессованные ферритовые изделия подвергаются отжигу, в результате чего они превращаются в твердые монолитные детали.

Магнитодиэлектрики представляют собой композиционные материалы, состоящие из 60-80% порошкообразного магнитного материала и 40-20% диэлектрика.

Ферриты и магнитодиэлектрики отличаются от металлических магнитных материалов большими ρ(10 2 -10 8 Ом·м), от чего потери на вихревые токи малы. Это позволяет использовать их в высокочастотной технике. Кроме того, ферриты обладают большой стабильностью магнитных параметров в широком диапазоне частот (включая СВЧ).

4.4. Металлические магнитно-мягкие материалы

Основными магнитно-мягкими материалами, применяемыми в радиоэлектронной аппаратуре, являются карбонильное железо, пермаллои, альсиферы и низкоуглеродистые кремнистые стали.

4.4.1. Карбонильное железо

Представляет собой тонкодисперсный порошок, состоящий из частиц сферической формы диаметром 1–8 мкм.

μ н = 2500 – 3000
μ м = 20000 – 21000
Н с = 4.5 – 6.2 А/м

Его применяют при изготовлении высокочастотных магнитодиэлектрических сердечников.

4.4.2. Пермаллои

Пластичные железоникелевые сплавы с содержанием никеля 45–80%, легко прокатываются в тонкие листы и ленты, толщиной до 1 мкм. При содержании никеля 45–50% называются низконикелевыми, 60–80% - высоконикелевыми.

μ н = 2000 – 14000
μ м = 50000 – 270000
Н с = 2 – 10 А/м
ρ = 0.25 – 0.45 мкОм·м

Для улучшения магнитных характеристик в пермаллои вводят молибден, хром, кремний или медь, отжигают в водороде или вакууме, при помощи турбомолекулярных насосов.

Легированные пермаллои применяют для деталей аппаратуры, работающих на частотах 1–5 МГц. В магнитных усилителях применяют пермаллои с прямоугольной петлей гистерезиса.

4.4.3. Альсиферы

Представляют собой нековкие, хрупкие сплавы, состоящие из 5.5–13% алюминия, 9–10% кремния, остальное – железо.

μ н = 6000 – 7000
μ м = 30000 – 35000
Н с = 2.2 А/м
ρ = 0.8 мкОм·м

Из него изготовляют литые сердечники, работающие в диапазоне до 50 кГц.

4.4.4. Низкоуглеродистые кремнистые стали

Представляют собой сплавы железа с 0.8–4.8% кремния, содержание углерода не более 0.08%. Это сравнительно дешевый материал. Введение большого количества кремния улучшает магнитные свойства материала, но повышает его хрупкость (поэтому кремния не более 4.8%).

Листы кремнистой стали изготавливают прокаткой заготовок в нагретом и ненагретом состояниях, поэтому различают горячекатанную и холоднокатанную сталь.

Улучшенные магнитные характеристики холоднокатанных сталей наблюдаются только при совпадении направления магнитного потока с напрвлением пркатки. В противном случае свойства горячекатанных сталей выше.

Таблица 4.1. Стали применяют в менее ответственных узлах РЭА.

Горячекатанная

холоднокатанная

4.5. Металлические магнитно-твердые материалы

По составу, состоянию и способу получения магнитно-твердые материалы подразделяются на:

  1. легированные стали, закаливаемые на мартенсит;
  2. литые магнитно-твердые сплавы;
  3. магниты из порошков;
  4. магнитно-твердые ферриты;
  5. пластически деформируемые сплавы и магнитные ленты.

Характеристиками материалов для постоянных магнитов служат коэрцитивная сила, остаточная индукция и максимальная энергия, отдаваемая магнитом во внешнее пространство. Магнитная проницаемость материалов для постоянных магнитов ниже, чем МММ, причем чем выше коэрцитивная сила, тем меньше магнитная проницаемость.

4.5.1. Легированные стали, закаливаемые на мартенсит

Данные стали являются наиболее простым и доступным материалом для постоянных магнитов. Они легируются вольфрамом, хромом, молибденом и кобальтом. Величина W м для мартенситных сталей составляет 1–4 кДж/м 3 . В настоящее время мартенситные стали имеют ограниченное применение из-за невысоких магнитных свойств, но полностью от них не отказываются, т.к. они дешевы и допускают механическую обработку на металлорежущих станках.

4.5.2. Литые магнитно-твердые сплавы

Большую магнитную энергию имеют тройные сплавы Al-Ni-Fe, которые раньше называли сплавами альни . При добавлении кобальта или кремния в эти сплавы их магнитные свойства повышаются. Недостатком этих сплавов является трудность изготовления из них изделий точных размеров вследствие хрупкости и твердости их, допускающих обработку только путем шлифовки.

4.5.3. Магниты из порошков

Необходимость получения особенно мелких изделий со строго выдержанными размерами обусловила привлечение методов порошковой металлургии для получения постоянных магнитов. При этом различают металлокерамические магниты и магниты из зерен порошка, скрепленных тем или иным связующим (металлопластические магниты).

4.5.4. Пластически деформируемые сплавы и магнитные ленты

К таким сплавам относятся викаллой, кунифе, кунико и некоторые другие. Основные представления об этих сплавах приведены в табл.4.2.

Таблица 4.2.

Марка сплава

Хим. Состав %, ост. Fe

Н с,
кА/м

W м,
КДж/м 3

Викаллой I

51-54 Со
10-11.5 V

Викаллой II

51-54 Со
11.5-13 V

Кунифе II

50Cu,20Ni 2.5Co

50Cu,21Ni, 29Co

Кунико II

4.6. Ферриты

Это соединения оксида железа Fe 2 O 3 с оксидами других металлов: ZnO, NiO. Ферриты изготавливают из порошкообразной смеси оксидов этих металлов.

Название ферритов определяется названием одно-, двухвалентного металла, оксид которого входит в состав феррита:

Если ZnO – феррит цинка

NiO – феррит никеля.

Ферриты имеют кубическую кристаллическую решетку, подобную решетке шпинели, встречающейся в природе: MgO·Al 2 O 3 . Большинство соединений указанного типа, как и природный магнитный железняк FeO·Fe 2 O 3 , обладает магнитными свойствами. Однако феррит цинка и феррит кадмия являются немагнитными. Исследования показали, что наличие или отсутствие магнитных свойств определяется кристаллической структурой этих материалов, и в частности расположением ионов двухвалентных металлов и железа между ионами кислорода. В случае структуры обычной шпинели, когда в центре кислородных тетраэдров расположены ионы Zn ++ или Cd ++ , магнитные свойства отсутствуют. При структуре так называемой обращенной шпинели, когда в центре кислородных тетраэдров расположены ионы Fe +++ , материал обладает магнитными свойствами. Ферриты, в состав которых кроме оксида железа входит только один оксид, называется простым. Химическая формула простого феррита:

MeO x Fe 2 O 3 или MeFe 2 O 4

Феррит цинка – ZnFe 2 O 4 , феррит никеля – NiFe 2 O 4 .

Не все простые ферриты обладают магнитными свойствами. Так CdFe 2 O 4 является немагнитным веществом.

Наилучшими магнитными характеристиками обладают сложные или смешанные ферриты, представляющие твердые растворы одного в другом. В этом случае используются и немагнитные ферриты в сочетании с простыми магнитными ферритами. Общая формула широко распространенных никель-цинковых ферритов имеет следующий вид:

mNiO·Fe 2 O 3 + nZnO·Fe 2 O 3 + pFeO·Fe 2 O 3 , (4.8)

где коэффициенты m, n и p определяют количественные соотношения между компонентами. Процентный состав компонентов играет существенную роль в получении тех или иных магнитных свойств материала.

Наиболее широко в РЭА применяют смешанные магнитно-мягкие ферриты: никель-цинковые, марганец-цинковые и литий-цинковые.

Достоинства ферритов – стабильность магнитных характеристик в широком диапазоне частот, малые потери на вихревые токи, малый коэффициент затухания магнитной волны, а также простота изготовления ферритовых деталей.

Недостатки всех ферритов – хрупкость и резко выраженная зависимость магнитных свойств от температуры и механических воздействий.

4.7. Магнитодиэлектрики

Это композиционные материалы, состоящие из мелкодисперсных частиц магнитно-мягкого материала, соединенных каким-либо органическим или неорганическим диэлектриком. В качестве мелкодисперсных МММ применяют карбонильное железо, альсиферы и некоторые сорта пермаллоев. В качестве диэлектрика – эпоксидные или бакелитовые смолы, полистирол, жидкое стекло и др.

Назначение диэлектриков не только в том, чтобы соединять частицы магнитного материала, но и создать между ними электроизоляционные прослойки и тем самым повысить электрическое сопротивление магнитодиэлектрика. Это резко снижает потери на вихревые токи и дает возможность работать на частотах 10–100 МГц (в зависимости от состава).

Магнитные характеристики магнитодиэлектриков несколько ниже исходных ферромагнитных наполнителей. Несмотря на это магнитодиэлектрики применяют для изготовления сердечников ВЧ узлов РЭА. Это обусловлено большой стабильностью магнитных характеристик и возможностью изготовления из них сердечников сложной формы. Кроме того, изделия из диэлектриков отличаются высокой чистотой поверхности и точностью размеров.

Лучшие магнитодиэлектрики – с наполнителями: молибденовым пермаллоем или карбонильным железом.

Магнитная проницаемость - физическая величина , коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией texvc не найден; См. math/README - справку по настройке.): {B} и напряжённостью магнитного поля Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): {H} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая её состав, состояние, температуру и т. д.).

Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году .

Обычно обозначается греческой буквой Невозможно разобрать выражение (Выполняемый файл texvc . Может быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем, соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \vec{B} = \mu\vec{H},

и Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует :

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \ B_i = \mu_{ij}H_j

Для изотропных веществ соотношение:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \vec{B} = \mu\vec{H}

можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).

Нередко обозначение Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu совпадает с таковым в СГС).

Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн / или / 2 .

Относительная магнитная проницаемость в СИ связана с магнитной восприимчивостью χ соотношением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu_r = 1 + \chi,

Классификация веществ по значению магнитной проницаемости

Подавляющее большинство веществ относятся либо к классу диамагнетиков (Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu \lessapprox 1 ), либо к классу парамагнетиков (Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \mu \gtrapprox 1 ). Но ряд веществ - (ферромагнетики), например железо , обладают более выраженными магнитными свойствами.

У ферромагнетиков вследствие гистерезиса , понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.

Магнитные проницаемости некоторых веществ и материалов

Магнитная восприимчивость некоторых веществ

Магнитная восприимчивость и магнитная проницаемость некоторых материалов

Medium Восприимчивость χ m
(объемная, СИ)
Проницаемость μ [Гн/м] Относительная проницаемость μ/μ 0 Магнитное поле Максимум частоты
Метглас (англ. Metglas ) 1,25 1 000 000 при 0.5 Тл 100 kHz
Наноперм (англ. Nanoperm ) 10×10 -2 80 000 при 0.5 Тл 10 kHz
Мю-металл 2,5×10 -2 20 000 при 0.002 Тл
Мю-металл 50 000
Пермаллой 1,0×10 -2 70 000 при 0.002 Тл
Электротехническая сталь 5,0×10 -3 4000 при 0.002 Тл
Феррит (никель-цинк) 2,0×10 -5 - 8,0×10 -4 16-640 100 kHz ~ 1 MHz[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found. )]]
Феррит (марганец-цинк) >8,0×10 -4 640 (и более) 100 kHz ~ 1 MHz
Сталь 8,75×10 -4 100 при 0.002 Тл
Никель 1,25×10 -4 100 - 600 при 0.002 Тл
Неодимовый магнит 1.05 до 1,2-1,4 Тл
Платина 1,2569701×10 -6 1,000265
Алюминий 2,22×10 -5 1,2566650×10 -6 1,000022
Дерево 1,00000043
Воздух 1,00000037
Бетон 1
Вакуум 0 1,2566371×10 -6 (μ 0) 1
Водород -2,2×10 -9 1,2566371×10 -6 1,0000000
Тефлон 1,2567×10 -6 1,0000
Сапфир -2,1×10 -7 1,2566368×10 -6 0,99999976
Медь -6,4×10 -6
or -9,2×10 -6
1,2566290×10 -6 0,999994
Вода -8,0×10 -6 1,2566270×10 -6 0,999992
Висмут -1,66×10 -4 0,999834
Сверхпроводники −1 0 0

См. также

Напишите отзыв о статье "Магнитная проницаемость"

Примечания

Отрывок, характеризующий Магнитная проницаемость

Мне было так его жаль!.. Но, к сожалению, помочь ему было не в моих силах. И мне, честно, очень хотелось узнать, чем же эта необыкновенная малышка ему помогла...
– Мы нашли их! – опять повторила Стелла. – Я не знала, как это сделать, но бабушка мне помогла!
Оказалось, что Гарольд, при жизни, даже не успел узнать, как страшно пострадала, умирая, его семья. Он был рыцарем-воином, и погиб ещё до того, как его город оказался в руках «палачей», как и предсказывала ему жена.
Но, как только он попал в этот, ему незнакомый, дивный мир «ушедших» людей, он сразу же смог увидеть, как безжалостно и жестоко поступила с его «единственными и любимыми» злая судьба. После он, как одержимый, целую вечность пытался как-то, где-то найти этих, самых ему дорогих на всём белом свете людей... И искал он их очень долго, больше тысячи лет, пока однажды какая-то, совершенно незнакомая, милая девочка Стелла не предложила ему «сделать его счастливым» и не открыла ту «другую» нужную дверь, чтобы наконец-то их для него найти...
– Хочешь, я покажу тебе? – опять предложила малышка,
Но я уже не была так уверена, хочу ли я видеть что-то ещё... Потому, что только что показанные ею видения ранили душу, и невозможно было от них так быстро избавиться, чтобы желать увидеть какое-то продолжение...
– Но ты ведь хочешь увидеть, что с ними случилось! – уверенно констатировала «факт» маленькая Стелла.
Я посмотрела на Гарольда и увидела в его глазах полное понимание того, что я только что нежданно-негаданно пережила.
– Я знаю, что ты видела... Я смотрел это много раз. Но они теперь счастливы, мы ходим смотреть на них очень часто... И на них «бывших» тоже... – тихо произнёс «грустный рыцарь».
И тут только я поняла, что Стелла, просто-напросто, когда ему этого хотелось, переносила его в его же прошлое, точно так же, как она сделала это только что!!! И она делала это почти играючи!.. Я даже не заметила, как эта дивная, светлая девчушка всё сильнее и сильнее стала меня к себе «привязывать», становясь для меня почти что настоящим чудом, за которым мне без конца хотелось наблюдать... И которую совершенно не хотелось покидать... Тогда я почти ещё ничего не знала и не умела, кроме того, что могла понять и научиться сама, и мне очень хотелось хотя бы чему-то у неё научиться, пока ещё была такая возможность.
– Ты ко мне, пожалуйста, приходи! – тихо прошептала вдруг погрустневшая Стелла, – ты ведь знаешь, что тебе ещё нельзя здесь оставаться... Бабушка сказала, что ты не останешься ещё очень, очень долго... Что тебе ещё нельзя умирать. Но ты приходи...
Всё вокруг стало вдруг тёмное и холодное, будто чёрные тучи вдруг затянули такой красочный и яркий Стеллин мир...
– Ой, не надо думать о таком страшном! – возмутилась девочка, и, как художник кисточкой по полотну, быстро «закрасила» всё опять в светлый и радостный цвет.
– Ну вот, так правда лучше? – довольно спросила она.
– Неужели это были просто мои мысли?.. – опять не поверила я.
– Ну, конечно же! – засмеялась Стелла. – Ты же сильная, вот и создаёшь по-своему всё вокруг.
– А как же тогда думать?.. – всё ещё никак не могла «въехать» в непонятное я.
– А ты просто «закройся» и показывай только то, что хочешь показать, – как само собой разумеющееся, произнесла моя удивительная подружка. – Бабушка меня так научила.
Я подумала, что видимо мне тоже пришла пора чуть-чуть «потрясти» свою «засекреченную» бабушку, которая (я почти была в этом уверена!) наверняка что-то знала, но почему-то никак не желала меня пока ничему учить...
– Так ты хочешь увидеть, что стало с близкими Гарольда? – нетерпеливо спросила малышка.
Желания, если честно, у меня слишком большого не было, так как я не была уверена, чего от этого «показа» можно ожидать. Но чтобы не обидеть щедрую Стеллу, согласилась.
– Я не буду тебе показывать долго. Обещаю! Но ты должна о них знать, правда же?.. – счастливым голоском заявила девчушка. – Вот, смотри – первым будет сын...

К моему величайшему удивлению, в отличие от виденного раньше, мы попали в совершенно другое время и место, которое было похожим на Францию, и по одежде напоминало восемнадцатый век. По широкой мощёной улице проезжал крытый красивый экипаж, внутри которого сидели молодые мужчина и женщина в очень дорогих костюмах, и видимо, в очень дурном настроении... Молодой человек что-то упорно доказывал девушке, а та, совершенно его не слушая, спокойно витала где-то в своих грёзах, чем молодого человека очень раздражала...
– Вот видишь – это он! Это тот же «маленький мальчик»... только уже через много, много лет, – тихонько прошептала Стелла.
– А откуда ты знаешь, что это точно он? – всё ещё не совсем понимая, спросила я.
– Ну, как же, это ведь очень просто! – удивлённо уставилась на меня малышка. – Мы все имеем сущность, а сущность имеет свой «ключик», по которому можно каждого из нас найти, только надо знать, как искать. Вот смотри...
Она опять показала мне малыша, сына Гарольда.
– Подумай о его сущности, и ты увидишь...
И я тут же увидела прозрачную, ярко светящуюся, на удивление мощную сущность, на груди которой горела необычная «бриллиантовая» энергетическая звезда. Эта «звезда» сияла и переливалась всеми цветами радуги, то уменьшаясь, то увеличиваясь, как бы медленно пульсируя, и сверкала так ярко, будто и вправду была создана из самых потрясающих бриллиантов.
– Вот видишь у него на груди эту странную перевёрнутую звезду? – Это и есть его «ключик». И если ты попробуешь проследить за ним, как по ниточке, то она приведёт тебя прямо к Акселю, у которого такая же звезда – это и есть та же самая сущность, только уже в её следующем воплощении.
Я смотрела на неё во все глаза, и видно заметив это, Стелла засмеялась и весело призналась:
– Ты не думай, что это я сама – это бабушка меня научила!..
Мне было очень стыдно чувствовать себя полной неумёхой, но желание побольше узнать было во сто крат сильнее любого стыда, поэтому я запрятала свою гордость как можно глубже и осторожно спросила:
– А как же все эти потрясающие «реальности», которые мы сейчас здесь наблюдаем? Ведь это чья-то чужая, конкретная жизнь, и ты не создаёшь их так же, как ты создаёшь все свои миры?
– О, нет! – опять обрадовалась возможности что-то мне объяснить малышка. – Конечно же, нет! Это ведь просто прошлое, в котором все эти люди когда-то жили, и я всего лишь переношу нас с тобой туда.
– А Гарольд? Как же он всё это видит?
– О, ему легко! Он ведь такой же, как я, мёртвый, вот он и может перемещаться, куда захочет. У него ведь уже нет физического тела, поэтому его сущность не знает здесь препятствий и может гулять, где ей захочется... так же, как и я... – уже печальнее закончила малышка.
Я грустно подумала, что то, что являлось для неё всего лишь «простым переносом в прошлое», для меня видимо ещё долго будет являться «загадкой за семью замками»... Но Стелла, как будто услышав мои мысли, тут же поспешила меня успокоить:
– Вот увидишь, это очень просто! Тебе надо только попробовать.
– А эти «ключики», они разве никогда не повторяются у других? – решила продолжить свои расспросы я.
– Нет, но иногда бывает кое-что другое...– почему-то забавно улыбаясь, ответила крошка. – Я в начале именно так и попалась, за что меня очень даже сильно «потрепали»... Ой, это было так глупо!..
– А как? – очень заинтересовавшись, спросила я.
Стелла тут же весело ответила:
– О, это было очень смешно! – и чуть подумав, добавила, – но и опасно тоже... Я искала по всем «этажам» прошлое воплощение своей бабушки, а вместо неё по её «ниточке» пришла совсем другая сущность, которая как-то сумела «скопировать» бабушкин «цветок» (видимо тоже «ключик»!) и, как только я успела обрадоваться, что наконец-то её нашла, эта незнакомая сущность меня безжалостно ударила в грудь. Да так сильно, что у меня чуть душа не улетела!..
– А как же ты от неё избавилась? – удивилась я.
– Ну, если честно, я и не избавлялась... – смутилась девочка. – Я просто бабушку позвала...
– А, что ты называешь «этажами»? – всё ещё не могла успокоиться я.
– Ну, это разные «миры» где обитают сущности умерших... В самом красивом и высоком живут те, которые были хорошими... и, наверное, самыми сильными тоже.
– Такие, как ты? – улыбнувшись, спросила я.
– О, нет, конечно! Я наверное сюда по ошибке попала. – Совершенно искренне сказала девчушка. – А знаешь, что самое интересное? Из этого «этажа» мы можем ходить везде, а из других никто не может попасть сюда... Правда – интересно?..
Да, это было очень странно и очень захватывающе интересно для моего «изголодавшегося» мозга, и мне так хотелось узнать побольше!.. Может быть потому, что до этого дня мне никогда и никто ничего толком не объяснял, а просто иногда кто-то что-то давал (как например, мои «звёздные друзья»), и поэтому, даже такое, простое детское объяснение уже делало меня необычайно счастливой и заставляло ещё яростнее копаться в своих экспериментах, выводах и ошибках... как обычно, находя во всём происходящем ещё больше непонятного. Моя проблема была в том, что делать или создавать «необычное» я могла очень легко, но вся беда была в том, что я хотела ещё и понимать, как я это всё создаю... А именно это пока мне не очень-то удавалось...