По электронной конфигурации атома можно определить. Электронная конфигурация атома

Распределение электронов по различным АО называют электронной конфигурацией атома . Электронная конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям .

Электронную конфигурацию атома изображают двумя способами – в виде электронных формул и электронографических диаграмм. При написании электронных формул используют главное и орбитальное квантовые числа. Подуровень обозначают с помощью главного квантового числа (цифрой) и орбитального квантового числа (соответствующей буквой). Число электронов на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода электронная формула: 1s 1 .

Более полно строение электронных уровней можно описать с помощью электронографических диаграмм, где распределение по подуровням представляют в виде квантовых ячеек. Орбиталь в этом случае принято условно изображать квадратом, около которого проставлено обозначение подуровня. Подуровни на каждом уровне должны быть немного смещены по высоте, так как их энергия несколько различается. Электроны изображаются стрелками или ↓ в зависимости от знака спинового квантового числа. Электронографическая диаграмма атома водорода:

Принцип построения электронных конфигураций многоэлектронных атомов состоит в добавлении протонов и электронов к атому водорода. Распределение электронов по энергетическим уровням и подуровням подчиняются рассмотренным ранее правилам: принципу наименьшей энергии, принципу Паули и правилу Хунда.

С учетом структуры электронных конфигураций атомов все известные элементы в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на четыре группы: s -элементы, p -элементы, d -элементы, f -элементы.

В атоме гелия Не (Z=2) второй электрон занимает 1s -орбиталь, его электронная формула: 1s 2 . Электронографическая диаграмма:

Гелием заканчивается первый самый короткий период Периодической системы элементов. Электронную конфигурацию гелия обозначают .

Второй период открывает литий Li (Z=3), его электронная формула:
Электронографическая диаграмма:

Далее приведены упрощенные электронографические диаграммы атомов элементов, орбитали одного энергетического уровня которых расположены на одной высоте. Внутренние, полностью заполненные подуровни, не показаны.

После лития следует бериллий Ве (Z=4), в котором дополнительный электрон заселяет 2s -орбиталь. Электронная формула Ве: 2s 2

В основном состоянии следующий электрон бора В (z=5) занимает 2р -орбиталь, В:1s 2 2s 2 2p 1 ; его электронографическая диаграмма:

Следующие пять элементов имеют электронные конфигурации:

С (Z=6): 2s 2 2p 2 N (Z=7): 2s 2 2p 3

O (Z=8): 2s 2 2p 4 F (Z=9): 2s 2 2p 5

Ne (Z=10): 2s 2 2p 6

Приведенные электронные конфигурации определяются правилом Хунда.

Первый и второй энергетические уровни неона полностью заполнены. Обозначим его электронную конфигурацию и будем использовать в дальнейшем для краткости записи электронных формул атомов элементов.

Натрий Na (Z=11) и Mg (Z=12) открывают третий период. Внешние электроны занимают 3s -орбиталь:

Na (Z=11): 3s 1

Mg (Z=12): 3s 2

Затем, начиная с алюминия (Z=13), заполняется 3р -подуровень. Третий период заканчивается аргоном Ar (Z=18):

Al (Z=13): 3s 2 3p 1

Ar (Z=18): 3s 2 3p 6

Элементы третьего периода отличаются от элементов второго тем, что у них имеются свободные 3d -орбитали, которые могут участвовать в образовании химической связи. Это объясняет проявляемые элементами валентные состояния.

В четвертом периоде, в соответствии с правилом (n +l ), у калия К (Z=19) и кальция Са (Z=20) электроны занимают 4s -подуровень, а не 3d . Начиная со скандия Sc (Z=21) и кончая цинком Zn (Z=30), происходит заполнение 3d -подуровня:

Электронные формулы d -элементов можно представить в ионном виде: подуровни перечисляются в порядке возрастания главного квантового числа, а при постоянном n – в порядке увеличения орбитального квантового числа. Например, для Zn такая запись будет выглядеть так:
Обе эти записи эквивалентны, но приведенная ранее формула цинка правильно отражает порядок заполнения подуровней.

В ряду 3d -элементов у хрома Сr (Z=24) наблюдается отклонение от правила (n +l ). В соответствии с этим правилом конфигурация Сr должна выглядеть так:
Установлено, что его реальная конфигурация -
Иногда этот эффект называют «провалом» электрона. Подобные эффекты объясняются повышенной устойчивостью наполовину (p 3 , d 5 , f 7) и полностью (p 6 , d 10 , f 14) заполненных подуровней.

Отклонения от правила (n +l ) наблюдаются и у других элементов (табл. 2). Это связано с тем, что с увеличение главного квантового числа различия между энергиями подуровней уменьшаются.

Далее происходит заполнение 4p -подуровня (Ga - Kr). В четвертом периоде содержится всего 18 элементов. Аналогично происходит заполнение 5s -, 4d - и 5p - подуровней у 18-ти элементов пятого периода. Отметим, что энергия 5s - и 4d -подуровней очень близки, и электрон с 5s -подуровня может легко переходить на 4d -подуровень. На 5s -подуровне у Nb, Mo, Tc, Ru, Rh, Ag находится только один электрон. В основном состоянии 5s -подуровень Pd не заполнен. Наблюдается «провал» двух электронов.

Таблица 2

Исключения из (n +l ) – правила для первых 86 элементов

Электронная конфигурация

по правилу (n +l )

фактическая

4s 2 3d 4

4s 2 3d 9

5s 2 4d 3

5s 2 4d 4

5s 2 4d 5

5s 2 4d 6

5s 2 4d 7

5s 2 4d 8

5s 2 4d 9

6s 2 4f 1 5d 0

6s 2 4f 2 5d 0

6s 2 4f 8 5d 0

6s 2 4f 14 5d 7

6s 2 4f 14 5d 8

6s 2 4f 14 5d 9

4s 1 3d 5

4s 1 3d 10

5s 1 4d 4

5s 1 4d 5

5s 1 4d 6

5s 1 4d 7

5s 1 4d 8

5s 0 4d 10

5s 1 4d 10

6s 2 4f 0 5d 1

6s 2 4f 1 5d 1

6s 2 4f 7 5d 1

6s 0 4f 14 5d 9

6s 1 4f 14 5d 9

6s 1 4f 14 5d 10

В шестом периоде после заполнения 6s -подуровня у цезия Cs (Z=55) и бария Ba (Z=56) следующий электрон, согласно правилу (n +l ), должен занять 4f -подуровень. Однако у лантана La (Z=57) электрон поступает на 5d -подуровень. Заполненный на половину (4f 7) 4f -подуровень обладает повышенной устойчивостью, поэтому у гадолиния Gd (Z=64), следующего за европием Eu (Z=63), на 4f -подуровне сохраняется прежнее количество электронов (7), а новый электрон поступает на 5d -подуровень, нарушая правило (n +l ). У тербия Tb (Z=65) очередной электрон занимает 4f -подуровень и происходит переход электрона с 5d -подуровня (конфигурация 4f 9 6s 2). Заполнение 4f -подуровня заканчивается у иттербия Yb (Z=70). Следующий электрон атома лютеция Lu занимает 5d -подуровень. Его электронная конфигурация отличается от конфигурации атома лантана только полностью заполненным 4f -подуровнем.

В настоящее время в Периодической системе элементов Д.И. Менделеева под скандием Sc и иттрием Y располагаются иногда лютеций (а не лантан) как первый d -элемент, а все 14 элементов перед ним, включая лантан, вынося в особую группу лантаноидов за пределы Периодической системы элементов.

Химические свойства элементов определяются, главным образом, структурой внешних электронных уровней. Изменение числа электронов на третьем снаружи 4f -подуровне слабо отражается на химических свойствах элементов. Поэтому все 4f -элементы схожи по своим свойствам. Затем в шестом периоде происходит заполнение 5d -подуровня (Hf – Hg) и 6p -подуровня (Tl – Rn).

В седьмом периоде 7s -подуровень заполняется у франция Fr (Z=87) и радия Ra (Z=88). У актиния наблюдается отклонение от правила (n +l ), и очередной электрон заселяет 6d -подуровень, а не 5f . Далее следует группа элементов (Th – No) с заполняющимся 5f -подуровнем, которые образуют семейство актиноидов . Отметим, что 6d - и 5f - подуровни имеют столь близкие энергии, что электронная конфигурация атомов актиноидов часто не подчиняется правилу (n +l ). Но в данном случае значение точной конфигурации 5f т 5d m не столь важно, поскольку она довольно слабо влияет на химические свойства элемента.

У лоуренсия Lr (Z=103) новый электрон поступает на 6d -подуровень. Этот элемент иногда помещают в Периодической системе под лютецием. Седьмой период не завершен. Элементы 104 – 109 неустойчивы и их свойства малоизвестны. Таким образом, с ростом заряда ядра периодически повторяются сходные электронные структуры внешних уровней. В связи с этим следует ожидать и периодического изменения различных свойств элементов.

Периодическое изменение свойств атомов химических элементов

Химические свойства атомов элементов проявляются при их взаимодействии. Типы конфигураций внешних энергетических уровней атомов определяют основные особенности их химического поведения.

Характеристиками атома каждого элемента, которые определяют его поведение в химических реакциях являются энергия ионизации, сродство к электрону, электроотрицательность.

Энергия ионизации – это энергия, необходимая для отрыва и удаления электрона от атома. Чем ниже энергия ионизации, тем выше восстановительная способность атома. Поэтому энергия ионизации является мерой восстановительной способности атома.

Энергия ионизации, необходимая для отрыва первого электрона, называется первой энергией ионизации I 1 . Энергия, необходимая для отрыва второго электрона, называется второй энергией ионизации I 2 и т.д.. При этом имеет место следующее неравенство

I 1 < I 2 < I 3 .

Отрыв и удаление электрона от нейтрального атома происходит легче, чем от заряженного иона.

Максимальное значение энергии ионизации соответствует благородным газам. Минимальное значение энергии ионизации имеют щелочные металлы.

В пределах одного периода энергия ионизации изменяется немонотонно. Вначале она снижается при переходе от s-элементов к первым р-элементам. Затем у последующих р-элементов она повышается.

В пределах одной группы с увеличением порядкового номера элемента энергия ионизации уменьшается, что обусловлено увеличением расстояния между внешним уровнем и ядром.

Сродство к электрону – это энергия (обозначается через Е), которая выделяется при присоединении электрона к атому. Принимая электрон, атом превращается в отрицательно заряженный ион. Сродство к электрону в периоде возрастает, а в группе, как правило, убывает.

Галогены имеют самое высокое сродство к электрону. Присоединяя недостающий для завершения оболочки электрон, они приобретают законченную конфигурацию атома благородного газа.

Электроотрицательность – это сумма энергии ионизации и сродства к электрону

Электроотрицательность растёт в периоде и убывает в подгруппе.

Атомы и ионы не имеют строго определенных границ в силу волновой природы электрона. Поэтому радиусы атомов и ионов определяют условно.

Наибольшее увеличение радиуса атомов наблюдается у элементов малых периодов, у которых происходит заполнение только внешнего энергетического уровня, что характерно для s- и р-элементов. Для d- и f-элементов наблюдается более плавное увеличение радиуса с ростом заряда ядра.

В пределах подгруппы радиус атомов увеличивается, так как растёт число энергетических уровней.

Символ Льюиса: Электронная диаграмма: Единственный электрон атома водорода может принимать участие в образовании только одной химической связи с другими атомами: Количество ковалентных связей , которые образует атом в данном соединении, характеризует его валентность . Во всех соединениях атом водорода одновалентен. Гелий Гелий, как и водород, - элемент первого периода. В своём единственном квантовом слое он имеет одну s -орбиталь, на которой находится два электрона с антипараллельными спинами (неподелённая электронная пара). Символ Льюиса: Не: . Электронная конфигурация 1s 2, её графическое изображение: В атоме гелия нет неспаренных электронов, нет свободных орбиталей. Его энергетический уровень является завершённым. Атомы с завершённым квантовым слоем не могут образовывать химических связей с другими атомами. Они называются благородными или инертными газами . Гелий - их первый представитель. ВТОРОЙ ПЕРИОД Литий Атомы всех элементов второго периода имеют два энергетических уровня. Внутренний квантовый слой - это завершённый энергетический уровень атома гелия. Как было показано выше, его конфигурация выглядит как 1s 2, но для её изображения может быть также использована и сокращённая запись: . В некоторых литературных источниках её обозначают [К] (по наименованию первой электронной оболочки). Второй квантовый слой лития содержит четыре орбитали (22 = 4): одну s и три р. Электронная конфигурация атома лития: 1s 22s 1 или 2s 1. C помощью последней записи выделяются только электроны внешнего квантового слоя (валентные электроны). Символ Льюиса для лития - Li . Графическое изображение электронной конфигурации:
Бериллий Электронная конфигурация - 2s2. Электронная диаграмма внешнего квантового слоя:
Бор Электронная конфигурация - 2s22р1. Атом бора может переходить в возбуждённое состояние. Электронная диаграмма внешнего квантового слоя:


В возбуждённом состоянии атом бора имеет три неспаренных электрона и может образовать три химических связи: ВF3, B2O3. При этом у атома бора остаётся свободная орбиталь, которая может участвовать в образовании связи по донорно-акцепторному механизму. Углерод Электронная конфигурация - 2s22р2. Электронные диаграммы внешнего квантового слоя атома углерода в основном и возбуждённом состояниях:

Невозбуждённый атом углерода может образовать две ковалентных связи за счёт спаривания электронов и одну - по донорно-акцепторному механизму. Примером такого соединения является оксид углерода (II), который имеет формулу СО и называется угарным газом. Подробнее его строение будет рассмотрено в разделе 2.1.2. Возбуждённый атом углерода уникален: все орбитали его внешнего квантового слоя заполнены неспаренными электронами, т.е. число валентных орбиталей и валентных электронов у него одинаково. Идеальным партнёром для него является атом водорода, у которого на единственной орбитали находится один электрон. Этим объясняется их способность к образованию углеводородов. Имея четыре неспаренных электрона, атом углерода образует четыре химических связи: СН4, СF4, СО2. В молекулах органических соединений атом углерода всегда находится в возбуждённом состоянии:
Атом азота не может возбуждаться, т.к. в его внешнем квантовом слое нет свободной орбитали. Он образует три ковалентных связи за счёт спаривания электронов:
Имея два неспаренных электрона во внешем слое, атом кислорода образует две ковалентных связи:
Неон Электронная конфигурация - 2s22р6. Символ Льюиса: Электронная диаграмма внешнего квантового слоя:


Атом неона имеет завершённый внешний энергетический уровень и не образует химических связей ни с какими атомами. Это второй благородный газ. ТРЕТИЙ ПЕРИОД Атомы всех элементов третьего периода имеют три квантовых слоя. Электронную конфигурацию двух внутренних энергетических уровней можно изображать как . Внешний электронный слой содержит девять орбиталей, которые заселяются электронами, подчиняясь общим закономерностям. Так, для атома натрия электронная конфигурация имеет вид: 3s1, для кальция - 3s2 (в возбуждённом состоянии - 3s13р1), для алюминия - 3s23р1 (в возбуждённом состоянии - 3s13р2). В отличие от элементов второго периода, атомы элементов V – VII групп третьего периода могут существовать как в основном, так и в возбуждённом состояниях. Фосфор Фосфор является элементом пятой группы. Его электронная конфигурация - 3s23р3. Подобно азоту, он имеет три неспаренных электрона на внешнем энергетическом уровне и образует три ковалентных связи. Примером является фосфин, имеющий формулу РН3 (сравните с аммиаком). Но фосфор, в отличие от азота, во внешнем квантовом слое содержит свободные d-орбитали и может переходить в возбуждённое состояние - 3s13р3d1:

Это даёт ему возможность образовать пять ковалентных связей в таких, например, соединениях как Р2О5 и Н3РО4.

Сера Электронная конфигурация основного состояния - 3s23p4. Электронная диаграмма:
Однако он может возбуждаться, переводя электрон вначале с р - на d -орбиталь (первое возбуждённое состояние), а затем с s - на d -орбиталь (второе возбуждённое состояние):

В первом возбуждённом состоянии атом серы образует четыре химических связи в таких соединениях как SО2 и H2SO3. Второе возбуждённое состояние атома серы можно изобразить с помощью электронной диаграммы:

Такой атом серы образует шесть химических связей в соединениях SO3 и H2SO4.

1.3.3. Электронные конфигурации атомов элементов больших периодов ЧЕТВЁРТЫЙ ПЕРИОД

Начинается период с калия (19K) электронная конфигурация: 1s22s22p63s23p64s1 или 4s1 и кальция (20Ca): 1s22s22p63s23p64s2 или 4s2. Таким образом, в соответствии с правилом Клечковского, после р-орбиталей Ar заполняется внешний 4s-подуровнь, который обладает меньшей энергией, т.к. 4s-орбиталь проникает ближе к ядру; 3d-подуровень остается незаполненным (3d0). Начиная от скандия, у 10 элементов происходит заселение орбиталей 3d-подуровня. Они называются d-элементами.


В соответствии с принципом последовательного заполнения орбиталей, у атома хрома электронная конфигурация должна быть 4s23d4, однако у него наблюдается «проскок» электрона, заключающийся в переходе 4s-элекрона на близкую по энергии 3d-орбиталь (рис. 11).



Экспериментально установлено, что состояния атома, при которых p-, d-, f-орбитали заполнены наполовину (p3, d5, f7), полностью (p6, d10, f14) или свободны (p0, d0, f0), обладают повышенной устойчивостью. Поэтому если атому до полузавершения или завершения подуровня не хватает одного электрона, наблюдается его «проскок» с ранее заполненной орбитали (в данном случае - 4s).

За исключением Cr и Cu, все элементы от Ca до Zn имеют одинаковое количество электронов на внешнем уровне – два. Этим объясняется относительно небольшое изменение свойств в ряду переходных металов. Тем не менее, для перечисленных элементов валентными являются как 4s-электроны внешнего, так и 3d-электроны предвнешнего подуровня (за исключением атома цинка, у которого третий энергетический уровень полностью завершён).

31Ga 4s23d104p1 32Ge 4s23d104p2 33As 4s23d104p3

34Se 4s23d104p4 35Br 4s23d104p5 36Kr 4s23d104p6


Свободными остались 4d и 4f орбитали, хотя четвертый период завершен.

ПЯТЫЙ ПЕРИОД

Последовательность заполнения орбиталей та же, что и в предыдущем периоде: сначала заполняется 5s-орбиталь (37Rb 5s1), затем 4d и 5p (54Xe 5s24d105p6). Орбитали 5s и 4d ещё более близки по энергии, поэтому у большинства 4d-элементов (Mo, Tc, Ru, Rh, Pd, Ag) наблюдается переход электрона с 5s на 4d-подуровень.

ШЕСТОЙ И СЕДЬМОЙ ПЕРИОДЫ

В отличие от предыдущего шестой период включает 32 элемента. Цезий и барий – это 6s-элементы. Следующие энергетически выгодные состояния это 6p, 4f и 5d. Вопреки правилу Клечковского, у лантана заполняется не 4f а 5d-орбиталь (57La 6s25d1), однако у следующих за ним элементов происходит заполнение 4f-подуровня (58Ce 6s24f2), на котором четырнадцать возможных электронных состояний. Атомы от церия (Се) до лютеция (Lu) называются лантаноидами – это f-элементы. В ряду лантаноидов, иногда происходит «проскок» электрона, так же как в ряду d-элементов. Когда 4f-подуровень оказывается завершенным, продолжает заполняться 5d-подуровень (девять элементов) и завершают шестой период, как и любой другой, кроме первого, шесть р-элементов.

Первые два s-элемента в седьмом периоде – это франций и радий, за ними следует один 6d-элемент – актиний (89Ac 7s26d1). За актинием следует четырнадцать 5f-элементов – актиноидов. За актиноидами должны следовать девять 6d-элементов и завершать период должны шесть р-элементов. Седьмой период является незавершенным.

Рассмотренная закономерность формирования периодов системы элементами и заполнения атомных орбиталей электронами показывает периодическую зависимость электронных структур атомов от заряда ядра.

Период – это совокупность элементов, расположенных в порядке возрастания зарядов ядер атомов и характеризующихся одинаковым значением главного квантового числа внешних электронов. В начале периода заполняются ns -, а в конце – np -орбитали (кроме первого периода). Эти элементы образуют восемь главных (А) подгрупп периодической системы Д.И. Менделеева.

Главная подгруппа – это совокупность химических элементов, расположенных по вертикали и имеющих одинаковое число электронов на внешнем энергетическом уровне.

В пределах периода с увеличением заряда ядра и возрастающей силы притяжения к нему внешних электронов слева направо уменьшаются радиусы атомов, что в свою очередь обусловливает ослабление металлических и возрастание неметаллических свойств. За атомный радиус принимают теоретически рассчитанное расстояние от ядра до максимума электронной плотности внешнего квантового слоя. В группах сверху вниз увеличивается число энергетических уровней, а, следовательно, и атомный радиус. При этом металлические свойства усиливаются. К важным свойствам атомов, которые изменяются периодически в зависимости от зарядов ядер атомов, также относятся энергия ионизации и сродство к электрону, которые будут рассмотрены в разделе 2.2.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Первоначально элементы в Периодической таблице химических элементов Д.И. Менделеева были расположены в соответствии с их атомными массами и химическими свойствами, но на самом деле оказалось, что решающую роль играет не масса атома, а заряд ядра и, соответственно, число электронов в нейтральном атоме.

Наиболее устойчивое состояние электрона в атоме химического элемента соответствует минимуму его энергии, а любое другое состояние называется возбужденным, в нем электрон может самопроизвольно переходить на уровень с более низкой энергией.

Рассмотрим, как распределяются электроны в атоме по орбиталям, т.е. электронную конфигурацию многоэлектронного атома в основном состоянии. Для построения электронной конфигурации пользуются следующими принципами заполнения орбиталей электронами:

— принцип (запрет) Паули – в атоме не может быть двух электронов с одинаковым набором всех 4-х квантовых чисел;

— принцип наименьшей энергии (правила Клечковского) – орбитали заполняют электронами в порядке возрастания энергии орбиталей (рис. 1).

Рис. 1. Распределение орбиталей водородоподобного атома по энергиям; n – главное квантовое число.

Энергия орбитали зависит от суммы (n + l). Орбитали заполняются электронами в порядке возрастания суммы (n + l) для этих ортиталей. Так, для подуровней 3d и 4s суммы (n + l) будут равны 5 и 4, соответственно, вследствие чего, первой будет заполняться 4s орбиталь. Если сумма (n + l) одинакова для двух орбиталей, то первой заполняется орбиталь с меньшим значением n. Так, для 3d и 4p орбиталей сумма (n + l) будет равна 5 для каждой орбитали, но первой заполняется 3d орбиталь. В соответствии с этими правилами порядок заполнения орбиталей будет следующим:

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<5d<4f<6p<7s<6d<5f<7p

Семейство элемента определяется по орбитали, заполняемой электронами в последнюю очередь, в соответствии с энергией. Однако, нельзя записывать электронные формулы в соответствии с энергетическим рядом.

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 3 5s 2 правильная запись электронной конфигурации

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 3 неверная запись электронной конфигурации

Для первых пяти d – элементов валентными (т.е., электроны, отвечающие за образование химической связи) являются сумма электронов на d и s, заполненных электронами в последнюю очередь. Для p – элементов валентными являются сумма электронов, находящихся на s и p подуровнях. Для s-элементов валентыми являются электроны, находящиеся на s подуровне внешнего энергетического уровня.

— правило Хунда – при одном значении l электроны заполняют орбитали таким образом, чтобы суммарный спин был максимальным (рис. 2)

Рис. 2. Изменение энергии у 1s -, 2s – 2p – орбиталей атомов 2-го периода Периодической системы.

Примеры построения электронных конфигураций атомов

Примеры построения электронных конфигураций атомов приведены в таблице 1.

Таблица 1. Примеры построения электронных конфигураций атомов

Электронная конфигурация

Применяемые правила

Принцип Паули, правила Клечковского

Правило Хунда

1s 2 2s 2 2p 6 4s 1

Правила Клечковского

Электронная конфигурация - формула расположения электронов по различным электронным оболочкам атома химического элемента или молекулы .

Электронная конфигурация обычно записывается для атомов в их основном состоянии. Для определения электронной конфигурации элемента существуют следующие правила:

  1. Принцип заполнения . Согласно принципу заполнения, электроны в основном состоянии атома заполняют орбитали в последовательности повышения орбитальных энергетических уровней. Низшие по энергии орбитали всегда заполняются первыми.
  2. Принцип запрета Паули . Согласно этому принципу, на любой орбитали может находиться не более двух электронов и то лишь в том случае, если они имеют противоположные спины (неодинаковые спиновые числа).
  3. Правило Хунда . Согласно этому правилу, заполнение орбиталей одной подоболочки начинается одиночными электронами с параллельными (одинаковыми по знаку) спинами, и лишь после того, как одиночные электроны займут все орбитали, может происходить окончательное заполнение орбиталей парами электронов с противоположными спинами.

С точки зрения квантовой механики электронная конфигурация - это полный перечень одноэлектронных волновых функций , из которых с достаточной степенью точности можно составить полную волновую функцию атома (в приближении самосогласованного поля).

Если говорить в общем, атом, как составную систему, можно полностью описать только полной волновой функцией . Однако такое описание практически невозможно для атомов сложнее атома водорода - самого простого из всех атомов химических элементов. Удобное приближённое описание - метод самосогласованного поля . В этом методе вводится понятие о волновой функции каждого электрона. Волновая функция всей системы записывается как надлежащим образом симметризованое произведение одноэлектронных волновых функций. При вычислении волновой функции каждого электрона поле всех остальных электронов учитывается как внешний потенциал , зависящий в свою очередь от волновых функций этих остальных электронов.

В результате применения метода самосогласованного поля получается сложная система нелинейных интегродифференциальных уравнений , которая всё ещё сложна для решения. Однако уравнения самосогласованного поля имеют вращательную симметрию исходной задачи (то есть они сферически симметричны). Это позволяет полностью классифицировать одноэлектронные волновые функции, из которых составляется полная волновая функция атома.

Для начала, как в любом центрально симметричном потенциале, волновую функцию в самосогласованном поле можно охарактеризовать квантовым числом полного углового момента l {\displaystyle l} и квантовым числом проекции углового момента на какую-нибудь ось m {\displaystyle m} . Волновые функции с разными значениями m {\displaystyle m} соответствуют одному и тому же уровню энергии, т. е. вырождены. Также одному уровню энергии соответствуют состояния с разной проекцией спина электрона на какую-либо ось. Всего для данного уровня энергии 2 (2 l + 1) {\displaystyle 2(2l+1)} волновых функций. Далее, при данном значении углового момента можно перенумеровать уровни энергии. По аналогии с атомом водорода принято нумеровать уровни энергии для данного l {\displaystyle l} начиная с n = l + 1 {\displaystyle n=l+1} . Полный перечень квантовых чисел одноэлектронных волновых функций, из которых можно составить волновую функцию атома, и называется электронной конфигурацией. Поскольку всё вырождено по квантовому числу m {\displaystyle m} и по спину, достаточно только указывать полное количество электронов, находящихся в состоянии с данными n {\displaystyle n} , l {\displaystyle l} .

Энциклопедичный YouTube

  • 1 / 5

    По историческим причинам в формуле электронной конфигурации квантовое число l {\displaystyle l} записывается латинской буквой. Состояние с обозначается буквой s {\displaystyle s} , p {\displaystyle p} : l = 1 {\displaystyle l=1} , d {\displaystyle d} : l = 2 {\displaystyle l=2} , f {\displaystyle f} : l = 3 {\displaystyle l=3} , g {\displaystyle g} : l = 4 {\displaystyle l=4} и далее по алфавиту. Слева от числа l {\displaystyle l} пишут число n {\displaystyle n} , а сверху от числа l {\displaystyle l} - число электронов в состоянии с данными n {\displaystyle n} и l {\displaystyle l} . Например 2 s 2 {\displaystyle 2s^{2}} соответствует двум электронам в состоянии с n = 2 {\displaystyle n=2} , l = 0 {\displaystyle l=0} . Из-за практического удобства (см. правило Клечковского) в полной формуле электронной конфигурации термы пишут в порядке возрастания квантового числа n {\displaystyle n} , а затем квантового числа l {\displaystyle l} , например 1 s 2 2 s 2 2 p 6 3 s 2 3 p 3 {\displaystyle 1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}} . Поскольку такая запись несколько избыточна, иногда формулу сокращают до 1 s 2 2 s 2 p 6 3 s 2 p 3 {\displaystyle 1s^{2}2s^{2}p^{6}3s^{2}p^{3}} , т. е. опускают число n {\displaystyle n} там, где его можно угадать из правила упорядочения термов.

    Периодический закон и строение атома

    Все занимавшиеся вопросами строения атома в любых своих исследованиях исходят из инструментов, которые предоставлены им периодическим законом , открытым химиком Д. И. Менделеевым ; только в своём понимании этого закона физики и математики пользуются для истолкования зависимостей, показанных им, своим «языком» (правда, известен довольно ироничный афоризм Дж. У. Гиббса на этот счёт ), но, в то же время, изолированно от изучающих вещество химиков, при всём совершенстве, преимуществах и универсальности своих аппаратов ни физики ни математики, конечно, строить свои исследования не могут.

    Взаимодействие представителей этих дисциплин наблюдается и в дальнейшем развитии темы. Открытие вторичной периодичности Е. В. Бироном (1915), дало ещё один аспект в понимании вопросов, связанных с закономерностями строения электронных оболочек. C. А. Щукарев , ученик Е. В. Бирона и