Напряженность электрического поля точечного заряда на расстоянии. Закон обратных квадратов

«Физика - 10 класс»

При решении задач с использованием понятия напряжённости электрического поля нужно прежде всего знать формулы (14.8) и (14.9), определяющие силу, действующую на заряд со стороны электрического поля, и напряжённость поля точечного заряда. Если поле создаётся несколькими зарядами, то для расчёта напряжённости в данной точке надо сделать рисунок и затем определить напряжённость как геометрическую сумму напряжённостей полей.


Задача 1.


Два одинаковых положительных точечных заряда расположены на расстоянии r друг от друга в вакууме. Определите напряжённость электрического поля в точке, расположенной на одинаковом расстоянии r от этих зарядов.


Р е ш е н и е.


Согласно принципу суперпозиции полей искомая напряжённость равна геометрической сумме напряжённостей полей, созданных каждым из зарядов (рис. 14.17): = 1 + 2 .

Модули напряжённостей полей зарядов равны:

Диагональ параллелограмма, построенного на векторах 1 и 2 , есть напряжённость результирующего поля, модуль которой равен:

Задача 2.


Проводящая сфера радиусом R = 0,2 м, несущая заряд q = 1,8 10 -4 Кл, находится в вакууме. Определите: 1) модуль напряжённости электрического поля на её поверхности; 2) модуль напряжённости 1 электрического поля в точке, отстоящей на расстоянии r 1 = 10 м от центра сферы; 3) модуль напряжённости 0 в центре сферы.


Р е ш е н и е.


Электрическое поле заряженной сферы вне её совпадает с полем точечного заряда. Поэтому

Следовательно,


Задача 3.


В однородное электрическое поле напряжённостью Е 0 = 3 кН/Кл внесли точечный заряд q = 4 10 -10 Кл. Определите напряжённость электрического поля в точке А, находящейся на расстоянии r = 3 см от точечного заряда. Отрезок, соединяющий заряд и точку А, перпендикулярен силовым линиям однородного электрического поля.


Р е ш е н и е.


Согласно принципу суперпозиции напряжённость электрического поля в точке А равна векторной сумме напряжённостей однородного поля 0 и поля 1 , созданного в этой точке внесённым электрическим зарядом. На рисунке 14.18 показаны эти два вектора и их сумма. По условию задачи векторы 0 и 1 взаимно перпендикулярны. Напряжённость поля точечного заряда

Тогда напряжённость электрического поля в точке А равна:


Задача 4.


В вершинах равностороннего треугольника со стороной а = 3 см находятся три точечных заряда q 1 = q 2 = 10 -9 Кл, q 3 = -2 10 -9 Кл. Определите напряжённость электрического поля в центре треугольника в точке О.



Согласно принципу суперпозиции полей напряжённость поля в точке О равна векторной сумме напряжённостей полей, созданных каждым зарядом в отдельности: 0 = 1 + 2 + 3 , причём где

На рисунке 14.19 показаны векторы напряжённостей 1 , 2 , 3 . Сначала сложим векторы 1 и 2 . Как видно из рисунка, угол между этими векторами равен 120°. Следовательно, модуль суммарного вектора равен модулю l 1 l и направлен в ту же сторону, что и вектор 3 .

Инструкция

Если в электрическое поле, создаваемое зарядом Q, поместить еще один заряд Q0, то оно будет воздействовать на него с определенной силой. Это называется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на положительный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

В зависимости от конкретной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Поэтому напряженность электрического поля относится к векторным физическим величинам.

Поскольку напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E одинаков с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по , которая соединяет эти заряды.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба применяются для графического изображения различных или действий, например, физических сил, движения элементарных частиц и пр.

Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать векторной алгебры в различных вычислениях, например, углов между пространственными прямыми и плоскостями.

Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.

Определите проекции самого вектора , которые можно вычислить по формуле:АВх = (xb - xa) = 3;ABy = (yb - ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb - xa)² + (yb – ya)²) = √13.

Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.

Видео по теме

Для того чтобы определить модуль точечных зарядов одинаковой величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же нужно найти модуль заряда отдельных точечных тел, вносите их в электрическое поле с известной напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Устанавливает количественные и качественные особенности взаимодействия точечных электрических зарядов в вакууме. Однако этот закон не дает ответа на весьма важный вопрос о механизме взаимодействия зарядов, т.е. посредством чего передается действие одного заряда на другой. Поиск ответа на этот вопрос привел английского физика М. Фарадея к гипотезе о существовании электрического поля , справедливость которой была полностью подтверждена последующими исследованиями. Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот.

Все сказанное позволяет дать следующее определение:

  • электрическое поле – это особый вид материи, посредством которого осуществляется взаимодействие электрических зарядов.

Свойства электрического поля

  • Электрическое поле материально, т.е. существует независимо от наших знаний о нем.
  • Порождается электрическим зарядом: вокруг любого заряженного тела существует электрическое поле. Поле, созданное неподвижными электрическими зарядами, называется электростатическим . Электрическое поле может быть создано и переменным магнитным полем. Такое электрическое поле называется вихревым .
  • Обнаружить электрическое поле можно по действию его на электрические заряды с некоторой силой.
  • Электрическое поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме. Таким образом, если один из взаимодействующих зарядов переместить в другую точку пространства, то второй заряд почувствует изменение положения первого заряда не мгновенно, а спустя некоторый промежуток времени \(~\Delta t = \dfrac{l}{c}\), где с - скорость света в вакууме, l - расстояние между зарядами.

Напряженность электрического поля

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства. Электрическое поле обнаруживается по силам, действующим на электрический заряд. Можно утверждать, что мы знаем о поле все, что нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.

Для изучения электрического поля будем использовать пробный заряд.

  • Под пробным зарядом будем понимать положительный точечный заряд, не изменяющий изучаемое электрическое поле.

Пусть электрическое поле создается точечным зарядом q 0 . Если в это поле внести пробный заряд q 1 , то на него будет действовать сила \(~\vec F\).

  • Обратите внимание, что в данной теме мы используем два заряда: источник электрического поля q 0 и пробный заряд q 1 . Электрическое поле действует только на пробный заряд q 1 и не может действовать на свой источник, т.е. на заряд q 0 .

Согласно закону Кулона эта сила пропорциональна заряду q 1:

\(~ F = k \cdot \dfrac{q_0 \cdot q_1}{r^2}\) .

Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд q 1 , к этому заряду в любой точке поля:

\(\dfrac{F}{q_1} = k \cdot \dfrac{q_0}{r^2}\) , -

не зависит от помещенного заряда q 1 и может рассматриваться как характеристика поля. Эту силовую характеристику поля называют напряженностью электрического поля .

Подобно силе, напряженность поля – векторная величина, ее обозначают буквой \(~\vec E\) .

  • Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду:
\(~\vec E = \dfrac{\vec F}{q}\) .
  • Сила, действующая на заряд q со стороны электрического поля, равна\[~\vec F = q \cdot \vec E\] .

Если в точке А заряд q > 0, то векторы \(~\vec E_A\) и \(~\vec F_A\) направлены в одну и ту же сторону; при q < 0 эти векторы направлены в противоположные стороны.

  • От знака заряда q , на который действует поле, не зависит направление вектора \(~\vec E_A\), а зависит направление силы \(~\vec F_A\) (рис. 1, а, б).
Рис. 1
  • В СИ напряженность выражается в ньютонах на кулон (Н/Кл).

Значение напряженности электрического поля, созданного:

Принцип суперпозиции полей

А чему будет равна напряженность в некоторой точке электрического поля, созданного несколькими зарядами q 1 , q 2 , q 3 , …?

Поместим в данную точку пробный заряд q . Пусть F 1 - это сила, с которой заряд q 1 действует на заряд q ; F 2 - это сила, с которой заряд q 2 действует на заряд q и т.д. Из динамики вы знаете, что если на тело действует несколько сил, то результирующая сила равна геометрической сумме сил, т.е.

\(~\vec F = \vec F_1 + \vec F_2 + \vec F_3 + \ldots\) .

Разделим левую и правую часть уравнения на q :

\(~\dfrac{\vec F}{q} = \dfrac{\vec F_1}{q} + \dfrac{\vec F_2}{q} + \dfrac{\vec F_3}{q} + \ldots\) .

Если учтем, что \(\dfrac{ \vec F}{q} = \vec E\), мы получим, так называемый, принцип суперпозиции полей

  • напряженность электрического поля, созданного несколькими зарядами q 1 , q 2 , q 3 , …, в некоторой точке пространства равна векторной сумме напряженностей \(\vec E_1 , \, \vec E_2 , \, \vec E_3\), … полей, создаваемых каждым из этих зарядов:
\(~\vec E = \vec E_1 + \vec E_2 + \vec E_3 + \ldots\) .

Благодаря принципу суперпозиции для нахождения напряженности поля системы точечных зарядов в любой точке достаточно знать выражение для напряженности поля точечного заряда. На рисунке 4, а, б показано, как геометрически определяется напряженность \(~\vec E\) поля, созданного двумя зарядами.

Рис. 4
  • Для определения напряженности поля, создаваемого заряженным телом конечных размеров (не точечных зарядов), нужно поступать следующим образом. Мысленно разделить тело на маленькие элементы, каждый из которых можно считать точечным. Определить заряды всех этих элементов и найти напряженности полей, созданных всеми ими в заданной точке. После этого сложить геометрически напряженности от всех элементов тела и найти результирующую напряженность поля. Для тел сложной формы это трудная, но в принципе разрешимая задача. Для ее решения нужно знать, как заряд распределен на теле.

Линии напряженности

Электрическое поле не действует на органы чувств. Его мы не видим. Тем не менее распределение поля в пространстве можно сделать видимым. Английский физик Майкл Фарадей в 1845 году предложил изображать электрическое поле с помощью силовых линий и получал своеобразные карты, или диаграммы поля.

  • Силовая линия (или линия напряженности) - это воображаемая направленная линия в пространстве, касательная к которой в каждой точке совпадают с направлением вектора напряженности в этой точке (рис. 5).

По картине силовых линий можно судить не только о направлении вектора, но и о его значении. Действительно, для точечных зарядов напряженность поля увеличивается по мере приближения к заряду, а силовые линии при этом сгущаются (рис. 6). Где силовые линии гуще там напряженность больше и наоборот.

  • Число силовых линий, приходящихся на поверхность единичной площади, расположенную нормально к силовым линиям, пропорционально модулю напряженности.

Картины силовых линий

Построить точную картину силовых линий заряженного тела – сложная задача. Нужно сначала вычислить напряженность поля Е (х, у, z ) как функцию координат. Но этого еще мало. Остается непростая задача проведения непрерывных линий так, чтобы в каждой точке линии касательная к ней совпадала с направлением напряженности \(~\vec E\) . Такую задачу проще всего поручить компьютеру, работающему по специальной программе.

Впрочем, строить точную картину распределения силовых линий не всегда необходимо. Иногда достаточно рисовать приближенные картины, не забывая что:

  1. силовые линии - это незамкнутые линии: они начинаются на поверхности положительно заряженных тел (или в бесконечности) и оканчиваются на поверхности отрицательно заряженных тел (или в бесконечности);
  2. силовые линии не пересекаются, так как в каждой точке поля вектор напряженности имеет лишь одно направление;
  3. между зарядами силовые линии нигде не прерываются.

На рисунках 7–10 изображены картины силовых линий: положительно заряженного шарика (рис. 7); двух разноименно заряженных шариков (рис. 8); двух одноименно заряженных шариков (рис. 9); двух пластин, заряды которых равны по модулю и противоположны по знаку (рис. 10).

На рисунке 10 видно, что в пространстве между пластинами вдали от краев пластин силовые линии параллельны: электрическое поле здесь одинаково во всех точках.

  • Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным .

Не следует думать, что линии напряженности – это существующие в действительности образования вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Линии напряженности лишь помогают представить распределение поля в пространстве и не более реальны, чем меридианы и параллели на земном шаре.

Однако силовые линии можно сделать «видимыми». Для этого нужно металлические тела (электроды) соединить с полюсами электростатической машины и погрузить в вязкий диэлектрик (например, в касторовое или вазелиновое масло). В эту жидкость надо насыпать и хорошо перемешать продолговатые частицы изолятора (например, вискозы, асбеста, манной крупы, семян или мелко настриженный волос). При заряжении электродов в жидкости создается достаточно сильное электрическое поле. Под влиянием электрического поля частицы диэлектрика поляризуются: на их концах появляются заряды противоположного знака. Частицы поворачиваются во внешнем поле вдоль линий напряженности, и заряды на их концах взаимодействуют друг с другом. Разно именные заряды притягиваются, а одноименные отталкиваются. В результате частицы диэлектрика вы страиваются вдоль силовых линий (рис. 11).


Рис. 11. Демонстрация силовых линий с помощью нитей вискозы

Литература

  1. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. обучения с 12-летним сроком обучения (базовый и повышенный уровни) /В. В. Жилко, Л. Г. Маркович. - 2-е изд., исправленное. - Минск: Нар. асвета, 2008. - С. 75, 80-85.
  2. Мякишев Г.Я. Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики / Г.Я. Мякишев, А.З. Синяков, Б.А. Слободсков. – М.: Дрофа, 2005. – 476 с.

Как вы уже знаете из курса физики основной школы, электрическое взаимодействие заряженных тел осуществляется посредством электрического поля: каждое заряженное тело создает вокруг себя электрическое поле, которое действует на другие заряженные тела. Представление об электрическом поле ввел английский ученый Майкл Фарадей в первой половине 19-го века.

Электрическое поле в данной точке пространства можно охарактеризовать с помощью силы, действующей со стороны этого поля на точечный заряд, помещенный в данную точку. (Этот заряд должен быть достаточно мал, чтобы создаваемое им поле не изменяло распределения зарядов, которые создают данное поле.)

Как показывает опыт, сила , действующая на заряд q, пропорциональна величине этого заряда. Следовательно, отношение силы к заряду не зависит от величины заряда и характеризует само электрическое поле.

Напряженностью электрического поля в данной точке называют физическую величину, равную отношению силы , действующей со стороны поля на заряд q, помещенный в данную точку поля, к величине этого заряда:

Напряженность поля – векторная величина. Ее направление в каждой точке совпадает с направлением силы, действующей на положительный заряд, помещенный в эту точку.

Единицей напряженности поля является 1 Н/Кл. 1 Н/Кл – небольшая напряженность. Например, напряженность электрического поля вблизи поверхности Земли, обусловленная электрическим зарядом Земли, составляет примерно 130 Н/Кл.

Если известна напряженность поля в данной точке, то можно найти силу , действующую на заряд q, помещенный в эту точку, по формуле

Из формул (1) и (2) следует, что направление напряженности поля в данной точке совпадает с направлением силы, действующей на положительный заряд, помещенный в эту точку.

Напряженность поля точечного заряда

Если внести в поле положительного точечного заряда Q другой положительный заряд, он будет отталкиваться от заряда Q.

Следовательно, напряженность поля положительного точечного заряда во всех точках пространства направлена от этого заряда. На рисунке 51.1 изображены векторы напряженности поля точечного заряда в некоторых точках. Видно, что при удалении от заряда модуль напряженности поля уменьшается.

1. Объясните, почему модуль напряженности поля точечного заряда Q на расстоянии r от заряда выражается формулой

Подсказка. Воспользуйтесь законом Кулона и определением напряженности поля.

2. Чему равна напряженность поля точечного заряда 2 нКл на расстоянии 2 м от него?

3. Модуль напряженности поля точечного заряда на расстоянии 0,5 м от него равен 90 Н/Кл. Чему может быть равен этот заряд?

Принцип суперпозиции полей

Если заряд находится в поле, созданном несколькими зарядами, то каждый из этих зарядов действует на данный заряд независимо от других.

Отсюда следует, что равнодействующая сил, действующих на данный заряд со стороны других зарядов, равна векторной сумме сил, действующих на данный заряд со стороны каждого из остальных зарядов.

Это означает, что справедлив принцип суперпозиции полей:

напряженность поля, созданного несколькими зарядами, равна векторной сумме напряженностей полей, созданных каждым из зарядов:

Используя принцип суперпозиции, можно найти напряженность поля, создаваемого несколькими зарядами.

4. Два точечных заряда расположены на расстоянии 60 см друг от друга. Модуль каждого заряда равен 8 нКл. Чему равен модуль напряженности поля, создаваемого этими зарядами:
а) в точке, расположенной на середине отрезка, соединяющего заряды, если заряды одноименные? разноименные?
б) в точке, находящейся на расстоянии 60 см от каждого заряда, если заряды одноименные? разноименные?

Для каждого из этих случаев сделайте в тетради чертеж, поясняющий решение.

2. Линии напряженности

На примере поля точечного заряда (рис. 51.1) можно заметить, что векторы напряженности электрического поля в разных точках пространства выстраиваются вдоль некоторых линий.

В случае точечного заряда эти линии представляют собой прямые лучи, проведенные из точки, в которой находится заряд. В поле, созданном несколькими зарядами, зти линии будут некоторыми кривыми, причем напряженность поля в каждой точке будет направлена по касательной к одной из таких линий.

Воображаемые линии, касательные к которым в каждой точке совпадают с направлением напряженности электрического поля, называют линиями напряженности электрического поля.

Линии напряженности начинаются на положительных зарядах и заканчиваются на отрицательных. Густота линий напряженности пропорциональна модулю напряженности.

5. Объясните, почему линии напряженности электрического поля не могут пересекаться.

Поля точечных зарядов

6. Объясните, почему линии напряженности электрического поля положительного и отрицательного точечных зарядов имеют вид, изображенный на рисунках 51.2, а и 51.2, б.


7. На рисунке 51.3 изображены линии напряженности поля, созданного одинаковыми по модулю зарядами (разноименными и одноименными). В некоторых точках для наглядности изображены векторы напряженности поля.


а) Перенесите рисунки в тетрадь и обозначьте на них знаки зарядов.
б) Изобразите в тетради линии напряженности поля, созданного двумя одноименными зарядами, которое не совпадает ни с одним из приведенных рисунков.
в) Чему равна напряженность поля в центральной точке рисунка 51.3, б (в середине отрезка, соединяющего заряды? Поясните ваш ответ с помощью закона Кулона.

Поле равномерно заряженной сферы

На рисунке 51.4 изображены линии напряженности электрического поля равномерно заряженной сферы.

Мы видим, что вне сферы зто поле совпадает с полем точечного заряда, ровного суммарному заряду сферы и расположенного в центре сферы.
Можно доказать, что внутри заряженной сферы напряженность поля ровна нулю. (Доказательство этого факта выходит за рамки нашего круга.)

8. На сфере радиусом 5 см находится заряд 6 нКл. Чему равна напряженность поля этого заряда:
а) в центре сферы?
б) на расстоянии 4 см от центра сферы?
в) на расстоянии 10 см от центра сферы?
г) вне сферы на расстоянии 1 см от ближайшей к этой точке поверхности сферы?

Однако напряженность электрического поля внутри заряженной сферы не обязательно равна нулю! Если внутри этой сферы находится заряженное тело, то согласно принципу суперпозиции напряженность электрического поля равна векторной сумме напряженности поля, создаваемого зарядом этого тела, и напряженности поля, создаваемого зарядом сферы.

Внутри сферы поле создается только заряженным телом, находящимся внутри сферы, потому что напряженность поля, созданного заряженной сферой, внутри сферы равна нулю. А в любой точке вне сферы напряженность поля можно найти, складывая векторы напряженности поля, создаваемого телом, расположенным внутри сферы, и поля, создаваемого зарядом сферы.

9. Имеются две концентрические (имеющие общий центр) сферы радиусом 5 см и 10 см. Заряд внутренней сферы равен 6 нКл, а заряд внешней сферы равен –9 нКл. Чему равен модуль напряженности поля в точке, находящейся от общего центра сфер на расстоянии, равном:
а) 3 см; б) 6 см; в) 8 см; г) 12 см; д) 20 см?

Поле равномерно заряженной плоскости

На рисунке 51.5 изображены линии напряженности электрического поля вблизи равномерно заряженной плоской пластины.

Будем считать, что размеры пластины намного больше расстояний от нее до тех точек пространства, в которых мы рассматриваем напряженность поля. В таких случаях говорят о поле равномерно заряженной плоскости.

Напряженность поля равномерно заряженной плоскости практически одинакова (по модулю и по направлению) во всех точках пространства по одну сторону от плоскости. Линии напряженности этого поля представляют собой параллельные прямые, перпендикулярные плоскости и расположенные на равных расстояниях друг от друга. Такое электрическое поле называют однородным.

По другую сторону плоскости изменяется только направление напряженности поля, а ее модуль остается таким же.

10. Напряженность электрического поля, создаваемого большой однородно заряженной пластиной, равна 900 Н/Кл. На расстоянии 40 см от пластины находится точечный заряд, равный по модулю 1 нКл.
а) На каком расстоянии от точечного заряда модуль напряженности его поля равен модулю напряженности поля пластины?
б) На каком расстоянии от плоскости результирующая напряженность поля плоскости и точечного заряда равна нулю, если знак точечного заряда совпадает со знаком заряда плоскости? Если знак точечного заряда противоположен знаку заряда плоскости?

Поле двух разноименно заряженных плоских пластин

Возьмем две одинаковые равномерно заряженные пластины, заряды которых равны по модулю, но противоположны по знаку. Расположим пластины параллельно друг друту на малом расстоянии друг от друга (рис. 51.6).

11. Объясните, почему в пространстве между пластинами напряженность поля в 2 раза больше, чем напряженность поля, создаваемого каждой из пластин, а вне пластин практически равна нулю.
Подсказка. Воспользуйтесь принципом суперпозиции электрических полей.

Как увидеть линии напряженности?

Поставим опыт
Поместим в электрическое поле состоящие из диэлектрика мелкие тела продолговатой формы – кристаллики, частицы манной крупы, мелко настриженные волосы и т. п. В электрическом поле они поворачиваются так, чтобы их более длинная сторона была направлена вдоль вектора напряженности поля. В результате эти тела выстраиваются вдоль линий напряженности, делая их форму видимой. На рисунке 51.7 приведены полученные таким образом «картины» электрических полей, создаваемых заряженным шариком (рис. 51.7, а) и двумя разноименно заряженными шариками (рис. 51.7, б).


Дополнительные вопросы и задания

12. Небольшой заряженный шарик массой 0,2 г подвешен на нити в однородном электрическом поле, напряженность которого направлена горизонтально и равна по модулю 50 кН/Кл.
а) Изобразите на чертеже положение равновесия шарика и силы, действующие на него.
б) Чему равен заряд шарика, если нить отклонена от вертикали на угол 30º?

13. Какова должна быть напряженность поля, чтобы капелька воды радиусом 0,01 мм находилась в этом поле в равновесии, потеряв 10 3 электронов? Как должна быть направлена напряженность поля?