Энергия аннигиляции вещества и антивещества. Получение антиматерии

История

К концу войны немецкие учёные, инженеры и технологи сумели определить главные направления развития военной техники будущего, сделать своеобразный эскиз вооружений и армий конца XX века . Сам термин вундерваффе изобретён не конструкторами-оружейниками, а пропагандистами Имперского министерства пропаганды Геббельса . Делалось это в большей мере для достижения психологического эффекта, поддержания боевого духа войск и подавления панических настроений среди населения.

Признанным на Западе экспертом по изучению вундерваффе является журналист Игор Витковски , среди книг которого есть и «Правда о вундерваффе» .

Примеры

Реактивные самолеты

Массовое применение реактивных истребителей могло бы затруднить действия авиации союзников. Однако выпущено было небольшое количество этих истребителей, для которых к тому же остро не хватало топлива. Германские машины также страдали от множества технических проблем, которые успешно разрешить не удалось.

Реактивные и динамореактивные противотанковые ручные гранатомёты

Применение ручных гранатомётов серьезно затруднило действия войск союзников, особенно при штурме городов.

Противотанковые управляемые ракетные снаряды

Массированное применение новых ОВ могло дать выигрыш в тактических операциях, а в случае применения таких ОВ в боеголовках баллистических ракет могло принести отдельные политические выигрыши. Тем не менее, ввиду значительного превосходства союзников в стратегической авиации (обладавшей широкими возможностями доставки ОВ на территорию Германии), любая мыслимая химическая война была бы невыгодна для Германии.

Попытка создания ядерного оружия

Косвенным подтверждением является работа немецких ученых в программе обогащения урана в СССР и разработка ими полного процесса обогащения урана (центрифугированием) . Однако следует заметить, что в Германии эти проекты всерьёз не рассматривались и в условиях напряжённой войны финансировались крайне скудно. Кроме того, в Германии не было необходимых запасов урана ; Шпеер писал, что в связи с введением эмбарго на поставки вольфрама из Португалии летом 1943 года уран использовался в производстве сердечников бронебойных подкалиберных снарядов . Официально проект атомной бомбы был свёрнут осенью 1942 года , но учёные продолжали разработку ядерных корабельных реакторов .

Согласно немецкому исследователю ядерных проектов Третьего Рейха Райнеру Карльшу, весной 1945 года нацисты не только изготовили, но и опробовали своё ядерное оружие, взорвав экспериментальные заряды на балтийском острове Рюген . В интервью «Комсомольской правде » он сказал следующее:

Они [нацисты] называли бомбу «Вундерваффе», что значит «чудо-оружие». Её взрыв привел к тотальным разрушениям в радиусе пятисот метров. Погибли многие сотни военнопленных, на которых, собственно, и испытывали бомбу.

Данная версия не соответствует никаким иным представлениям о германской ядерной программе и может рассматриваться лишь как весьма сомнительная.

Подземное боевое средство

Существуют предположения, что в конце Второй мировой войны испытывалось подземно-подводное боевое средство Midgard-Schlange («Змей Мидгарда»).

Применение «Змея Мидгарда» в проектах представлялось как стратегическое средство для вывода из строя портов Великобритании.

В массовой культуре

К слову, в самом сериале, главный герой - майор, барон фон Швальцкопф XII - практически в каждой серии опробует очередное секретное оружие кайзера на своих подчинённых.

  • Новое секретное оружие фюрера - газ с наркозоподобными стимулирующими свойствами - становится завязкой сюжета в фильме «Крепкий орешек ».
  • В российском интернет-сленге употребляется искажённый вариант «Вундервафля », ставший популярным благодаря энциклопедии мемов «Луркоморье ». Таким словом называют любое сверхмощное оружие, но чаще всего - абсолютно нелепое, возможность реализации которого в реальности исключается.
  • В игре Call of duty Black ops и в Call of duty World at war присутствует Wunderwaffe DG-2 -- электровинтовка, созданная нацисткими учеными на заводе Великан. Встречается только в зомби-режиме и используется, соответственно, против зомби, причём очень эфективно.

См. также

Примечания

  1. Юрков Е., Рогожина Н., Министерство образования РФ Раздел 2. Заимствования // Русское слово в мировой культуре: X Конгресс Международной ассоциации преподавателей русского языка и литературы, Санкт-Петербург, 30 июня - 5 июля 2003 г. : русский язык и русская речь сегодня: старое, новое, взаимствованное / под ред. К. А. Роговой. - Научное изд.. - СПб. : Политехника, 2003. - С. 467. - 566 с. - ISBN 5-7325-0754-X
  2. Военное дело - «Вундерваффе» на YouTube
  3. Witkowski, Igor Truth about the Wunderwaffe / translated by Bruce Wenham. - Translated from the Polish. - Warsaw: European History Press, 2003. - 300 с. - ISBN 8-3882-5916-4
  4. Salewski, Michael; Schulze-Wegener, Guntram Die Detsche Rüstung im 6. Kriegsjahr // Kriegsjahr 1944: im Grossen und im Kleinen (нем.) . - Stuttgart: Franz Steiner Verlag, 1995. - Т. 12. - С. 133. - 342 с. - (Historische Mitteilungen). - ISBN 3-5150-6674-8
  5. Schabel, Ralf Die Suche nach Wunderwaffen die Luftrüstung in der Endphase des Zweiten Weltkrieges // Die Illusion der Wunderwaffen (нем.) . - München: Oldenbourg Wissenschaftsverlag, 1994. - Т. 35. - С. 283. - 316 с. - (Beiträge zur Militär- und Kriegsgeschichte). - ISBN 3-4865-5965-6
  6. Frischler, Kurt Wunderwaffen (нем.) . - Wien: Molden, 1965. - С. 296. - 319 с.
  7. Witkowski, Igor Prawda o Wunderwaffe (польск.) . - Warszawa: Wydawn. WiS-2, 2002. - Т. 1. - С. 110,115,186. - 311 с. - ISBN 8-3882-5914-8
  8. Авиация второй мировой > Бомбардировщики > Me.410B
  9. Лаговский В. Взорвал ли Гитлер атомную бомбу? . Комсомольская правда (17.03.2005). Архивировано из первоисточника 6 мая 2012.
  10. Гаррос А., Евдокимов А. (Голово)ломка: роман. - СПб. : Лимбус Пресс, 2002. - С. 84. - 267 с. - (От заката до рассвета). - ISBN 5-8370-0186-7

Ссылки

Категории:

  • Журналистика
  • Журналистский жаргон
  • Нацистская пропаганда
  • Военная техника Германии периода Второй мировой войны
  • Публицистика

Wikimedia Foundation . 2010 .

Самые известные попытки создать чудо-оружие связаны, конечно, с гитлеровской Германией. В середине 20 века Германия действительно обладала высоким научно-техническим потенциалом и могла вести передовые военные разработки. И некоторые новые образцы вооружения, которые эффективно применялись в ходе войны, немцам удалось создать. В третьем рейхе появилась первая управляемая бомба, первый противотанковый гранатомёт, там же стали устанавливать на танки приборы ночного видения. Правда, большинство образцов немецкого вундерваффе не оправдали вложенных в них сил и средств, а некоторые вообще так ни разу и не были применены. Так что парадоксальным образом разработка чудо-оружия не только не помогла, а, скорее, помешала немцам выиграть войну.

Танк «Маус»

Сверхтяжёлый танк «Маус» (т. е. «Мышь») стал одним из символов несбывшихся надежд нацистов на вундерваффе. Это самый тяжёлый из когда-либо построенных танков, его масса — 189 тонн. Танк был вооружён мощной 128-мм пушкой и имел лобовую броню 200 мм. Экипаж танка составлял 6 человек.

«Маус»

Разработка сверхтяжёлого танка с самого начала была глупой идеей. Она началась ещё в 1942 г., но до самого конца войны танки так и не были запущены в серийное производство. Производство танка отнимало огромное количество ресурсов, при этом сам танк был слишком медленным и слишком тяжёлым. Вес танка не позволял ему преодолевать мосты через реки и поэтому пришлось оснастить его специальным оборудованием для перемещения по дну. А броня, хотя и была весьма толстой, не могла гарантировать защиту танка от мощных противотанковых орудий и бомб.

Танк так ни разу не принял участие в боевых действиях. Единственный сохранившийся до наших дней экземпляр находится в танковом музее подмосковной Кубинки.

Интересно, что немцы разработали проект ещё более тяжёлого танка «Ратте» («Крыса») массой аж 1000 тонн, но даже прототип этого танка так и не был построен.

Летающее крыло

Самолёт Horten H1, известный также как «летающее крыло» был ещё одной крайне необычной разработкой. Этот самолёт был оснащён турбореактивными двигателями, однако, в отличие от более массовых реактивных самолётов, которые тоже разрабатывались во время войны, Horten H1 имел необычную конструкцию, без традиционного фюзеляжа.

Horten H1 (реконструкция)

Такая форма обеспечивала самолёту улучшенные аэродинамические качества, а главное — малую радиолокационную заметность. Американские бомбардировщики, сделанные по технологии «стелс» много лет спустя, будут иметь похожую форму.

Самолёт мог достигать скорости 1000 км/ч, имел дальность полёта 1000 км и мог нести 2 мощные авиабомбы массой 1000 кг. К концу войны немцы успели построить лишь 2 летающих образца, завод с недостроенными самолётами был захвачен американцами.

Вихревые и звуковые пушки

На протяжении войны немцы экспериментировали с необычными пушками, которые должны были поражать противника искусственными вихрями или даже просто звуком. Построенная нацистами вихревая пушка работала так: сгоравший газ раскручивал турбину, которая воздавала искусственный вихрь, через сопло «выстреливавший» в определённом направлении.

вихревая пушка нацистов

Немцы надеялись, что при помощи искусственных торнадо можно будет сбивать вражеские самолёты, однако надежды не оправдались. Максимальная дальность «стрельбы» составляла всего около 300 м., что было явно недостаточно для противодействия вражеской авиации. Вдобавок к этому скорость перемещения искусственного вихря была невелика, а эффект быстро падал с увеличением расстояния. Пушка эффектно сносила на небольшой дистанции деревянные постройки и даже кирпичные стены, но в реальном бою была малоприменима.

Также немцы построили экспериментальную звуковую пушку, которая, предположительно, должна была выводить из строя и даже убивать пехоту противника звуковыми волнами. Пушка действительно работала — попавший под её воздействие человек терял сознание и мог даже погибнуть, но только на небольшом расстоянии — до 50 м. Попытки увеличить дальность действия к успеху не привели, так что от мощных звуковых волн страдал бы в первую очередь сам персонал пушки, а не противник. В результате пушка была признана непригодной к использованию в боевых условиях.

Другое «вундерваффе» нацистов

Фантазия у немецких конструкторов была богатой и они оставили массу других проектов и прототипов «чудо-оружия». Среди них были, например, такие.

Подводный танк «Seeteufel» («Морской чёрт») предполагалось использовать для совершения диверсий. Танк был способен передвигаться по земле и под водой, экипаж его составлял 2 человека, скорость под водой — 10 узлов, а дальность — около 1000 морских миль. До конца войны успели построить и испытать лишь прототип.

Суборбитальный бомбардировщик «Серебряная птица», согласно планам нацистов, должен был набирать высоту до 260 км., выходя в верхние слои атмосферы, затем планировать к цели и сбрасывать на противника до 4500 кг бомб. Предполагаемая дальность полёта превышала 20 тыс. км. Прототип не был построен.

Вообще, немцы сделали немало попыток приспособить ракетные технологии для создания «чудо-оружия». Помимо хорошо известных баллистических ракет «Фау-2», которые активно применялись на заключительном этапе войны, были разработаны проекты управляемых зенитных и противотанковых ракет, пилотируемых ракет (пилот должен был в последний момент выпрыгнуть с парашютом), ракет для установки на подводные лодки, разные варианты реактивных самолётов.

одна из немецких зенитных ракет

Однако все эти проекты были слишком несовершенны, чтобы действительно оказать влияние на ход войны.

Поистине фантастическим проектом была «солнечная пушка». Она предполагала размещение на орбите большого зеркала размером 2 км, которое могло бы фокусировать луч света на вражеских городах.

« Антиматерия физически и химически ничем не отличается от материи. Собственно, это та же материя, только вывернутая наизнанку. Для проционидов наши физические и химические справочники пригодны так же, как и для нас. Они описывают те же самые закономерности, те же самые реакции с теми же самыми элементами. Только для них наша материя является антиматерией. Вопрос, с какой стороны смотреть».(Кшиштоф Борунь, «Антимир», 1963)

Мысль о возможности существования антивещества была высказана еще в эпоху классической физики, в конце XIX века

Водород и антиводород по своему строению совершенно идентичны — они состоят из адрона и лептона. В первом случае положительно заряженный протон, состоящий из трех кварков (двух верхних и одного нижнего), и отрицательно заряженный электрон образуют атом хорошо знакомого нам водорода. Антиводород состоит из отрицательно заряженного антипротона, который, в свою очередь, построен из трех соответствующих антикварков и положительно заряженного позитрона (античастицы электрона)

Аннигиляция электрона и позитрона в случае низких энергий порождает как минимум два (это обусловлено сохранением импульса) фотона. Этот процесс схематически можно изобразить с помощью так называемой диаграммы Фейнмана. При превышении определенного энергетического порога аннигиляция может происходить с рождением «виртуальных» фотонов, которые вновь быстро распадаются на пары электронов и позитронов

Компьютерная модель аннигиляции вещества и антивещества. Красные линии — фотоны, разлетающиеся в противоположных направлениях при аннигиляции позитронов, а желтые — частицы, образующиеся при аннигиляции антипротонов. Треки исходят из одной точки — это свидетельство того, что антипротоны и позитроны образуют атомы антиводорода (эксперимент ATHENA в ЦЕРН)

Времяпроекционная камера эксперимента PANDA международного центра FAIR в Дармштадте

Открытие античастиц по праву считается крупнейшим достижением физики ХХ столетия. Оно впервые доказало нестабильность материи на самом глубинном, самом фундаментальном уровне. До этого все были уверены, что вещество нашего мира сложено из элементарных частиц, которые никогда не исчезают и не рождаются заново. Эта простая картина ушла в прошлое, когда без малого 80 лет назад было доказано, что электрон и его положительно заряженный двойник при встрече исчезают, рождая кванты электромагнитного излучения. Позднее выяснилось, что частицам микромира вообще свойственно превращаться друг в друга, причем многими способами. Открытие античастиц положило начало коренной трансформации фундаментальных представлений о природе материи.

Мысль о возможности существования антивещества впервые была высказана в 1898 году — англичанин Артур Шустер опубликовал в журнале Nature весьма туманную заметку, вероятно, вдохновленную недавним открытием электрона. «Если существует отрицательное электричество, — вопрошал Шустер, — то почему бы не существовать отрицательно заряженному золоту, такому же желтому, с той же точкой плавления и с таким же спектром?» А дальше у него — впервые в мировой научной литературе — появляются и слова «антиатом» и «антивещество». Шустер предполагал, что антиатомы притягиваются друг к другу гравитационными силами, но отталкиваются от обычной материи.

Антиэлектроны впервые были замечены в эксперименте опять-таки до момента своего официального открытия. Это сделал ленинградский физик Дмитрий Скобельцин, который в 1920-х годах исследовал рассеяние гамма-лучей на электронах в камере Вильсона, помещенной в магнитное поле. Он заметил, что некоторые треки вроде бы электронного происхождения искривляются не туда, куда положено. Дело, разумеется, в том, что гамма-квант при взаимодействии с веществом может давать начало электрону и позитрону, которые в магнитном поле закручиваются в противоположных направлениях. Скобельцин этого, естественно, не знал и объяснить странный эффект не смог, но в 1928 году доложил о нем на международной конференции в Кембридже. По занятному совпадению, годом ранее в совет кембриджского колледжа Св. Иоанна избрали молодого физика-теоретика Поля Дирака, чьи исследования со временем позволили объяснить эти аномалии.

Уравнение Дирака

В 1926 году австриец Эрвин Шредингер сформулировал уравнение, описывающее поведение нерелятивистских частиц, подчиняющихся квантовой механике, — дифференциальное уравнение, решения которого определяют состояния частицы. Уравнение Шредингера описывало частицу, которая не имеет собственного углового импульса — спина (иначе говоря, не ведет себя как волчок). Однако в 1926 году уже было известно, что электроны обладают спином, который может иметь два различных значения: грубо говоря, ось электронного волчка ориентируется в пространстве лишь в двух противоположных направлениях (спустя год аналогичное доказательство было получено и для протонов). Тогда же швейцарский теоретик Вольфганг Паули обобщил уравнение Шредингера для электрона, так чтобы оно позволяло учитывать спин. Таким образом, спин сперва открыли экспериментально, а потом искусственно навязали шредингеровскому уравнению.

В релятивистской механике Эйнштейна формула для энергии свободной частицы выглядит сложнее, нежели в ньютоновской. Перевести эйнштейновскую формулу в квантовое уравнение несложно, это проделали и Шредингер, и трое его современников. Но решения такого уравнения показывают, что вероятность нахождения частицы в определенной точке может оказаться отрицательной, что не имеет физического смысла. Возникают и другие неприятности, обусловленные тем, что математическая структура нового уравнения (его называют уравнением Клейна-Гордона) расходится с теорией относительности (на формальном языке, оно не является релятивистски инвариантным).

Вот над этой задачей в 1927 году и задумался Дирак. Для сохранения инвариантности он включил в уравнение не квадраты операторов энергии и импульса, а их первую степень. Чтобы записать уравнение в таком виде, пришлось изначально ввести в него более сложные, чем у Паули, матрицы размером 4х4. У этого уравнения обнаружились четыре равноправных решения, причем в двух случаях энергия электрона положительна, а в двух — отрицательна.

Тут-то и возникла загвоздка. Первая пара решений интерпретировалась просто — это обычный электрон в каждом из возможных спиновых состояний. Если добавить в уравнение Дирака электромагнитное поле, то легко получится, что электрон обладает правильным магнитным моментом. Это был гигантский успех теории Дирака, которая без всяких дополнительных предположений наделила электрон и спином, и магнитным моментом. Однако в первое время никто не мог решить, что делать с остальными решениями. И в ньютоновской, и в эйнштейновской механике энергия свободной частицы никогда не бывает отрицательной, и частицы с энергией меньше нуля вызывали недоумение. К тому же было непонятно, почему обычные электроны не переходят в предсказанные теорией Дирака состояния с заведомо меньшей энергией, в то время как электроны в оболочках атомов такой возможности не упускают.

Поиски смысла

Через два года Дирак нашел очень красивую интерпретацию парадоксальных решений. В соответствии с принципом Паули два электрона (как и любые частицы с полуцелым спином) не могут одновременно находиться в одинаковом квантовом состоянии. По мысли Дирака, все состояния с отрицательной энергией в норме уже заполнены, а переход в эти состояния из зоны положительных энергий запрещен принципом Паули. Поэтому дираковское море электронов с отрицательной энергией в принципе ненаблюдаемо, но лишь до тех пор, пока в нем нет свободных вакансий. Такую вакансию можно создать, если вышибить электрон с отрицательного энергетического уровня на положительный (например, достаточно мощным квантом электромагнитного излучения). Поскольку электронное море потеряет единицу отрицательного заряда, появившаяся вакансия (Дирак назвал ее дыркой) будет вести себя в электрическом поле как частица с плюсовым зарядом. По этой же логике падение электрона из нормального состояния в такую дырку ведет к исчезновению и электрона, и дырки, сопровождающемуся испусканием одного фотона.

А как проявляют себя дираковские дырки в реальном мире? Сначала Дирак отождествлял их с протонами, о чем в 1930 году и написал в Nature. Это было как минимум странно — протон в 2000 раз тяжелее электрона. Будущий академик и нобелевский лауреат Игорь Тамм и будущий отец атомной бомбы Роберт Оппенгеймер выдвинули и более серьезное возражение, заметив, что тогда каждый атом водорода стоит перед угрозой исчезновения, а этого в природе не происходит. Дирак вскоре отказался от этой гипотезы и в сентябре 1931 года выступил со статьей, где предсказал, что дырки, если их удастся обнаружить, окажутся совершенно новыми частицами, неизвестными экспериментальной физике. Он предложил назвать их антиэлектронами.

Дираковская модель ушла в историю после создания квантовой электродинамики и квантовой теории поля, которые приписывают частицам и античастицам одинаковую реальность. Из квантовой электродинамики следует также, что встреча свободного электрона с антиэлектроном влечет за собой рождение не менее пары квантов, так что в этой части модель попросту неверна. Как нередко бывает, уравнение Дирака оказалось много умнее интерпретации, предложенной его создателем.

Открытие антиэлектрона

Как уже было сказано, позитроны фактически наблюдал еще Дмитрий Скобельцин. В 1930 году с ними столкнулся аспирант Калифорнийского технологического института Чунг-Яо Чао, исследовавший прохождение гамма-квантов сквозь свинцовую фольгу. В этом эксперименте возникали электронно-позитронные пары, после чего новорожденные позитроны аннигилировали с электронами атомных оболочек и порождали вторичное гамма-излучение, которое и зарегистрировал Чао. Однако многие физики усомнились в результатах, и эта работа признания не получила.

Руководителем Чао был президент Калтеха, нобелевский лауреат Роберт Милликен, который в те времена занимался космическими лучами (он и предложил этот термин). Милликен считал их потоком гамма-квантов и потому ожидал, что они будут расколачивать атомы на электроны и протоны (нейтрон открыли позже, в 1932 году). Милликен предложил проверить эту гипотезу Карлу Андерсону, другому своему аспиранту и к тому же приятелю Чао. Тот, подобно Скобельцину, решил воспользоваться камерой Вильсона, соединенной с очень мощным электромагнитом. Андерсон тоже получил треки заряженных частиц, которые внешне не отличались от треков электронов, но были изогнуты в обратном направлении. Сначала он приписал их электронам, которые движутся не сверху вниз, а снизу вверх. Для контроля он установил в центре камеры свинцовую пластинку толщиной 6 мм. Оказалось, что над пластиной величины импульсов частиц с треками электронного типа в два с лишним раза превышают эти показатели в нижней части камеры — отсюда следовало, что все частицы движутся сверху вниз. Этот же прием доказал, что частицы с аномальной закруткой не могут быть протонами — те бы застряли в свинцовом экране.

В конце концов Андерсон пришел к выводу, что почти все аномальные треки принадлежат каким-то легким частицам с положительным зарядом. Однако Милликен в это не поверил, а Андерсон без одобрения шефа не хотел публиковаться в научной печати. Поэтому он ограничился коротким письмом в популярный журнал Science News Letter и приложил к нему фотографию аномального трека. Согласившийся с интерпретацией Андерсона редактор предложил назвать новую частицу позитроном. Этот снимок был опубликован в декабре 1931 года.

Теперь вспомним, что Дирак обнародовал гипотезу о существовании антиэлектрона еще в сентябре. Однако и Андерсон, и Милликен почти ничего не знали о его теории и вряд ли понимали ее суть. Поэтому Андерсону не пришло в голову отождествить позитрон с дираковским антиэлектроном. Он еще долго пытался убедить Милликена в собственной правоте, но, так не достигнув успеха, в сентябре 1932 года опубликовал в журнале Science заметку о своих наблюдениях. Однако в этой работе речь идет все-таки не о двойнике электрона, а лишь о положительно заряженной частице неизвестного вида, масса которой много меньше массы протона.

Следующий шаг к идентификации антиэлектрона сделали в месте его предсказания — в Кембридже. Английский физик Патрик Блэкетт и его итальянский коллега Джузеппе Оккиалини занимались исследованием космических лучей в знаменитой Кавендишской лаборатории, возглавляемой великим Резерфордом. Оккиалини предложил оснастить камеру Вильсона электронной схемой (придуманной его соотечественником Бруно Росси), включавшей камеру в случае одновременного срабатывания счетчиков Гейгера, один из которых был установлен над камерой, а другой — под ней. К осени 1932 года партнеры получили около 700 фотографий треков, которые можно было приписать заряженным частицам космического происхождения. Среди них имелись и V-образные трековые пары, порожденные расходящимися в магнитном поле электронами и позитронами.

Блэкетт знал о предсказанном Дираком антиэлектроне, но не принимал его теорию всерьез. Сам Дирак тоже не разглядел своей гипотетической частицы на снимках Блэкетта. В итоге Блэкетт и Оккиалини правильно интерпретировали свои фотоснимки лишь позднее, когда ознакомились с сентябрьской публикацией Андерсона. Свои выводы они представили в статье со скромным заголовком «Фотографии треков проникающей радиации», добравшейся до редакции журнала Proceedings of the Royal Society 7 февраля 1933 года. К этому времени Андерсон узнал о конкурентах из Кавендиша и вполне адекватно изложил свои результаты в четырехстраничной статье «Положительный электрон», которая поступила в журнал Physical Review 28 февраля. Поскольку приоритет Андерсона был установлен предыдущими публикациями, он один и получил за открытие позитрона Нобелевскую премию (в 1936 году, совместно с первооткрывателем космических лучей Виктором Гессом). Блэкетт был удостоен этой награды 12 годами позже (с формулировкой «За усовершенствование методов наблюдений на камере Вильсона и за открытия в области ядерной физики и космической радиации»), а вот Оккиалини премией обошли — считается, что по политическим соображениям.

Вскоре исследования позитрона двинулись вперед семимильными шагами. Парижский физик Жан Тибо наблюдал электронно-позитронные пары земного происхождения, порожденные торможением в свинце гамма-квантов от радиоактивного источника. Он доказал, что у обеих частиц отношение заряда к массе по абсолютной величине совпадает с очень высокой точностью. В 1934 году Фредерик Жолио и Ирен Кюри обнаружили, что позитроны возникают и при радиоактивном распаде. Так что к середине 30-х годов ХХ века существование предсказанных Дираком антиэлектронов превратилось в установленный факт.

Антинуклоны

Механизм порождения позитронов космическими лучами установлен давно. В основном первичное космическое излучение состоит из протонов с энергией более 1 ГэВ, которые при столкновениях с ядрами атомов в верхних слоях атмосферы порождают пионы и прочие нестабильные частицы. Пионы дают начало новым распадам, в ходе которых появляются гамма-кванты, которые при торможении в веществе производят электронно-позитронные пары.

Достаточно быстрые протоны при столкновении с атомными ядрами способны непосредственно порождать антипротоны и антинейтроны. В середине ХХ века физики уже не сомневались в возможности подобных превращений и искали их следы во вторичных космических лучах. Результаты некоторых наблюдений вроде бы можно было интерпретировать как аннигиляцию антипротонов, но без полной уверенности. Поэтому американские физики предложили проект сооружения протонного ускорителя на 6 ГэВ, на котором, согласно теории, было возможно получить оба типа антинуклонов. Эта машина, названная беватроном, была запущена в Лаборатории имени Лоуренса в Беркли в 1954 году. Спустя год Оуэн Чемберлен, Эмилио Сегре и их коллеги получили антипротоны, обстреливая протонами медную мишень. Еще через год другая группа физиков на той же установке зарегистрировала антинейтроны. В 1965 году в ЦЕРН и в Брукхейвенской национальной лаборатории были синтезированы ядра антидейтерия, сложенные из антипротона и антинейтрона. А вначале 1970-х из СССР пришло сообщение, что на 70-ГэВ протонном ускорителе Института физики высоких энергий синтезированы ядра антигелия-3 (два антипротона и антинейтрон) и антитрития (антипротон и два антинейтрона); в 2002 году несколько ядер легкого антигелия были получены и в ЦЕРН. Дальше дело пока не двинулось, так что синтез хотя бы одного ядра антизолота — дело неблизкого будущего.

Рукотворное антивещество

Ядра ядрами, но для настоящего антивещества требуются полноценные атомы. Простейший из них — атом антиводорода, антипротон плюс позитрон. Такие атомы были впервые созданы в ЦЕРН в 1995 году — через 40 лет после открытия антипротона. Вполне возможно, что это были первые атомы антиводорода за время существования нашей Вселенной после Большого взрыва — в природных условиях вероятность их рождения практически нулевая, а существование внеземных технологических цивилизаций все еще под вопросом.

Этот эксперимент был осуществлен под руководством немецкого физика Вальтера Олерта. В ЦЕРН тогда действовало накопительное кольцо LEAR, в котором хранились низкоэнергетические (всего-то 5,9 МэВ) антипротоны (оно проработало с 1984 по 1996 год). В эксперименте группы Олерта антипротоны направляли на струю ксенона. После столкновения антипротонов с ядрами этого газа возникали электронно-позитронные пары, и некоторые позитроны крайне редко (с частотой 10−17%!) объединялись с антипротонами в атомы антиводорода, движущиеся почти что со скоростью света. Незаряженные антиатомы больше не могли вращаться внутри кольца и вылетали по направлению к двум детекторам. В первом приборе каждый антиатом ионизировался, и освобожденный позитрон аннигилировал с электроном, порождая пару гамма-квантов. Антипротон уходил во второй детектор, который до исчезновения этой частицы успевал определить ее заряд и скорость. Сопоставление данных с обоих детекторов показало, что в эксперименте было синтезировано не меньше 9 атомов антиводорода. Вскоре релятивистские атомы антиводорода были созданы и в Фермилабе.

С лета 2000 года в ЦЕРН действует новое кольцо AD (Antiproton Decelerator). В него поступают антипротоны с кинетической энергией 3,5 ГэВ, которые замедляются до энергии в 100 МэВ и затем используются в разнообразных экспериментах. Антивеществом там занялись группы ATHENA и ATRAP, которые в 2002 году стали разово получать десятки тысяч атомов антиводорода. Эти атомы возникают в особых электромагнитных бутылках (так называемых ловушках Пеннинга), где смешиваются поступающие из AD антипротоны и рождающиеся при распаде натрия-22 позитроны. Правда, жизнь нейтральных антиатомов в такой ловушке измеряется всего лишь микросекундами (зато позитроны и антипротоны могут храниться там месяцами!). В настоящее время отрабатываются технологии более длительного хранения антиводорода.

В беседе с «ПМ» руководитель группы ATRAP (проект ATHENA уже завершен), профессор Гарвардского университета Джеральд Габриэлс подчеркнул, что, в отличие от LEAR, установка AD позволяет синтезировать относительно медленные (как говорят физики, холодные) атомы антиводорода, с которыми намного проще работать. Сейчас ученые пытаются еще сильнее охладить антиатомы и перевести их позитроны на уровни с меньшей энергией. Если это получится, то появится возможность дольше удерживать антиатомы в силовых ловушках и определять их физические свойства (к примеру, спектральные характеристики). Эти показатели можно будет сопоставить со свойствами обычного водорода и понять наконец, чем антивещество отличается от вещества. Работы еще непочатый край.

Небольшой коллайдер в Нью-Йорке называют релятивистским, он разгоняет частицы до 300 тысяч километров в секунду. Но прежде чем ученые воскликнули "Эврика", ионы золота столкнулись сотни миллионов раз. В науке всегда так, большие новости готовят годами.

Столкновение ионов лоб в лоб приводит к таким температурам, что солнце по сравнению с ними кажется комнатным калорифером. Коллайдер лаборатории Брукхэвен зафиксировал 4 триллиона градусов, это вселенский рекорд! Солнце в 250 тысяч раз холоднее.

"Мы пытаемся воспроизвести состояние Вселенной через несколько милисекунд после Большого взрыва. Тогда мы сможем понять, как частицы материализовались", - объясняет Хэнк Кроуфорд, глава совета научного сообщества "Стар".

Новорожденную после Большого взрыва Вселенную ученые сравнивают с неким подобием супа. Сейчас они пытаются разгадать, как первозданная масса превратилась во все то, что нас окружает.

"Иногда мы не задумываемся о том, что в полностью симметричной и совершенной Вселенной для нас просто не было бы места. Если бы ранняя Вселенная произвела одинаковое количество вещества и антивещества, произошла бы аннигиляция и Вселенная состояла только из радиации", - говорит Дмитрий Харзеев, научный сотрудник национальной лаборатории Брукхэвен, член научного сообщества "Стар".

Почему этого не произошло? Что и как нарушило вселенскую симметрию? Почему люди, горы и океаны состоят из материи, а не сделаны из ее зеркального отражения - антиматерии. Куда она исчезла?

Ответ все ближе, ведь "странное ядро антиматерии", содержащее невиданные ранее "странные кварки" - это самый тяжелый фрагмент того антимира, из которого мог бы состоять и наш. Материя и антиматерия очень похожи по свойствам.

"Если бы смогли повторить Большой взрыв еще раз, может быть, мы состояли из антиматерии и удивлялись мистическим свойствам материи", - рассуждает Дмитрий Харзеев.

Мистика еще и в том, что антиматерию не только крайне сложно найти, но и невозможно сохранить. Наша Вселенная и Антивселенная при встрече агрессивно себя ведут.

"Просто произойдет выделение электромагнитной ядерной энергии", - говорит Алексей Лебедев, научный сотрудник национальной лаборатории Брукхэвен.

Возле коллайдера на всякий случай установлены знаки радиоактивной опасности, вокруг - толстые бетонные стены. Ядерные взрывы, пусть и наноразмеров - это рутинная работа ускорителя и ученых. Каждый из них, в том числе около 60 российских исследователей, теперь являются соавторами открытия вселенского масштаба с широкой перспективой.

"Есть гипотеза, что антиматерию можно будет использовать как источник энергии, возможно, через тысячи лет. Но пока мы не уверены в этом", - резюмирует Хэнк Кроуфорд.

Почти всё, что мы детектируем на Земле и с помощью искусственных спутников, представляет собой вещество. Антивещество получается на Земле с помощью ускорителей высоких энергий. Так, например, были получены антипротоны, ядра антидейтрона, антигелия, антиатомы.
Астрономическими методами непосредственное наблюдение антиматерии невозможно, т.к. фотоны, рождающиеся при взаимодействии частиц антиматерии между собой, неотличимы от фотонов, рождающихся при взаимодействии частиц материи. Причина в том, что фотон является истинно нейтральной частицей и. В принципе материю от антиматерии можно отличить по наблюдению нейтрино ν и антинейтрино , однако в настоящее время такие наблюдения малореальны.
Если бы в ближайшем окружении Земли были области, в которых доминировала антиматерия, это должно было бы проявляться в виде аннигиляционных γ-квантов, которые образуются при аннигиляции материи и антиматерии. Важным аргументом в пользу преобладания материи над антиматерией являются космические лучи. Они являются частицами материи - протоны, электроны, атомные ядра, сделанные из протонов и нейтронов.
Образование частиц антивещества наблюдается в результате взаимодействия высокоэнергичных частиц космического излучения с атмосферой Земли. Античастицы образуются в областях с повышенной концентрацией энергии. Так, например, образование античастиц происходит в ядрах активных галактик. Как правило, в таких случаях частицы антиматерии появляются вместе с частицами материи. На следующей стадии происходит образование и аннигиляция частиц вещества и антивещества. Так, например, фотон с энергией больше 1 МэВ может в поле атомного ядра образовать электрон-позитронную пару. Образовавшийся позитрон при встрече с электроном аннигилирует, образуя чаще 2 и реже 3 γ-кванта.
Проблема существования антивещества во Вселенной является фундаментальной проблемой физики, которая связана с проблемой образования и развития Вселенной.
Существуют различные гипотезы относительно того, почему наблюдаемая Вселенная почти полностью состоит из материи. Существуют ли области Вселенной, в которых преобладает антиматерия? Можно ли использовать антиматерию? Причина очевидной асимметрии вещества и антивещества в видимой Вселенной одна из самых больших нерешенных загадок в современной физике. Процесс, посредством которого возникает эта асимметрия между частицами и античастицами называется бариогенезисом.
До 50-х годов ХХ века преобладало мнение, что во Вселенной одинаковое количество материи и антиматерии. Однако в середине 60-х годов работы в области теории Большого Взрыва поколебали эту точку зрения. Действительно, если в первые моменты существования горячей и плотной Вселенной количество частиц и античастиц было одинаковым, то их аннигиляция привела бы к тому, что во Вселенной осталось бы только излучение. В настоящее время большинство физиков согласно с тем, что в результате нарушения СР‑симметрии во Вселеннойв первые мгновения эволюции частиц образовалось несколько больше, чем античастиц – примерно одна частица на 10 9 пар частица-античастица. В итоге после аннигиляции осталось небольшое количество частиц.
Другая возможность объяснить доминирование вещества в «ближней» Вселенной это предположить, что антивещество сосредоточено в дальних плохо исследованных областях Вселенной. В 1979 году Флойд Стекер (Floyd Stecker)предположил, что асимметрия вещества и антивеществамогла возникнуть спонтанно в первые моменты после Большого взрыва, когда вещество и антивещество разлетелись в разные стороны.
Так как электромагнитное излучение одинаковым образом взаимодействует как с материей, так и с антиматерией, планеты, звезды и галактики из материи и антиматерии в электромагнитном излучении выглядят одинаково. Поэтому нужны другие методы поиска антивещества во Вселенной. Одним из таких методов является наблюдение антиядер в космическом пространстве. Это должны быть антиядра с массовым числом A > 4. Если бы удалось зарегистрировать вблизи Земли ядра антигелия, мы получили бы достаточно сильное свидетельство в пользу существования во Вселенной областей повышенного содержания антивещества.
Почему для поиска антиматерии следует искать ядра антигелия или более тяжелые ядра? Дело в том, что антипротоны могут образовываться при взаимодействии ультрарелятивистских протонов или других ядер космических лучей. В энергетическом спектр таких антипротонов (обычно их называют вторичными) должен наблюдаться широкий максимум в области 2 ГэВ. Другими источниками антипротонов, которые называют первичными, могут быть аннигиляция гипотетических суперсимметричных частиц, из которых, как предполагается состоит темная материя, – нейтралино и/или испарение «первичных» черных дыр. Парная аннигиляция нейтралино может приводить к рождению кварк-антикварковых струй, с последующей их адронизацией и образованием антипротонов. Первичные черные дыры могли образовываться в ранней Вселенной. Такие черные дыры с массой 10 14-15 могут довольно интенсивно испарять частицы (излучение Хокинга). Вклад таких первичных антипротонов в регистрируемый энергетический спектр можно пытаться обнаружить в низкоэнергетичной области < 1 ГэВ.
Поток вторичных антипротонов можно оценить в зависимости от принятой модели Галактики. Он достигает максимума при энергии ~10 ГэВ. В области энергией до нескольких сотен ГэВ по характеру спектра есть надежда получить информацию как о бариогенезе так и/или об аннигиляции суперсимметричных частиц и/или WIMPов.
Образование антидейтронов под действием космических лучей существенно менее вероятно. Спектр вторичных антидейтронов должен быть сдвинут в область бóльших энергий по сравнению со спектром вторичных антипротонов и быстро спадать при уменьшении энергии. Для первичных антидейтронов, образующихся при аннигиляции частиц темной материи и/или испарении первичных черных дыр, максимум спектра ожидается при энергии < 1 ГэВ. Таким образом, области первичных и вторичных антидейтронов должны быть хорошо разделены.
Вероятность образования ядер антигелия под действием космических лучей исчезающе мало. Действительно, для этого должны в одном месте и практически одновременно образоваться два антипротона и два антинейтрона, причем их относительные скорости дожны быть малы. В 1997 г. Паскаль Шардонэ (Pascal Chardonnet) оценил вероятность такого события. Согласно его оценкам, одно ядро антигелия может образоваться на 10 15 ультрарелятивистских протонов космических лучей. Среднее время ожидания такого события составляет 15 миллиардов лет, что сопоставимо с возрастом Вселенной.
Если во Вселенной на ранней стадии эволюции действительно образовались области пространства, в которых преобладает материя или антиматерия, то они должны разделяться, т.к. на границе этих областей образуется световое давление, которое разделяет вещество и антивещество. На границе между областями с материей и антиматерией должна происходить аннигиляция, соответственно излучаться анигиляционные гамма-кванты. Однако современные гамма-телескопы такое излучение не фиксируют. Исходя из чувствительности телескопов, были проведены оценки. Согласно им, области антивещества не могут ближе 65 миллионов световых лет. Таким образом, таких областей нет не только в нашей галактике, но и в нашем скоплении галактик, включающей в себя кроме Млечного пути еще 50 других галактик.
Регистрация ядер антигелия образовавшихся на таких расстояниях представляет собой сложную проблему. Не так просто ядру антигелия долететь с такого далекого расстояния до детектора и быть зарегистрированным. В частности, оно может «запутаться» в галактических и межгалактических магнитных полях и таким образом никогда не отлететь далеко от места своего образования. Кроме того, антигелию постоянно будет грозить опасность аннигиляции. И, наконец, детектор не слишком большая мишень, чтобы в него можно было легко попасть с такого гигантского расстояния. Поэтому эффективность регистрации ядер антигелия крайне низка.
В условиях «путешествия» антигелия очень много неясного, что не позволяет оценить вероятности регистрации ядер . Всегда сохраняется возможность того, что будь детектор чуть более чувствительный, и открытие бы произошло.
Ясно только, что время «путешествия» антиядра небольшой энергии может быть меньше, чем время существования Вселенной. Поэтому охотиться надо за высокоэнергетичными антиядрами. Кроме того, у таких ядер больше шансов преодолеть галактический космический ветер.
Что касается позитронов и антипротонов, то их тоже могут излучать гипотетические области антиматерии и давать вклад в измеряемые вблизи Земли спектры. По сравнению с антипротонами позитроны сложнее регистрировать. Это связано с тем, что потоки протонов, которые являются источником фона, в 10 3 больше, чем потоки позитронов. Сигналы от позитронов, прилетевших от областей антиматерии, могут «потонуть» в сигналах от позитронов, возникших в результате других процессов. Между тем, происхождение позитронов в космических лучах также до конца не известно. Есть ли в космических лучах первичные позитроны? Есть ли связь между избытком антипротонов и позитронов? Для прояснения ситуации необходимо измерение спектров позитронов в широком энергетическом диапазоне.
Первый запуск прибора для исследования космических лучей в верхние слои атмосферы с помощьювоздушного шара осуществилв 1907 году Виктор Гесс . Вплоть до начала 50-х годов ХХ века изучение космических лучей было источником наиболее важных открытий в физике частиц. Начиная с 1979 г. в таких экспериментах наблюдались антипротоны (Bogomolov, E. A. et al. 1979, Proc. 16th Int. Cosmic Ray Conf. (Kyoto), vol. 1, p.330; Golden, R. L. et al. 1979, Phys. Rev. Lett., 43, 1196). Они открыли новые возможности в исследовании антиматерии и темной материи.В современных исследованиях космических лучей используются методики, разработанной для экспериментов на ускорителях.
До последнего времени почти вся информация об античастицах в космических лучах была получена с помощью детекторов, запускаемых в высокие слои атмосферы на воздушных шарах. При этом возникло подозрение, что антипротонов больше, чем следовало из оценок вероятности их возникновения в результате взаимодействия космических лучей с межзвездной средой (вторичных антипротонов). Предлагаемые для объяснения «избыточных» антипротонов механизмы давали различные предсказания для энергетических спектров антипротонов. Однако непродолжительное время полёта воздушного шара и наличие остатков земной атмосферы ограничивали возможности такого рода экспериментов. Данные имели большую неопределённость, кроме того, не простирались по энергии далее 20 ГэВ.
Для регистрации античастиц используются большие воздушные шары (до 3 млн. кубических метров), способные поднять на высоту ~40 км тяжелые детекторы массой до 3 т. Как правило, как Монгольфье они открыты внизу, и теряют гелий, при падении наружной температуры. В большинстве случаев продолжительность полета не превышает 24 часа. Кроме того, температуры атмосферы, после быстрого уменьшения с нуля до 20–25 км, начинает расти, достигая максимума на высоте ~40 км, после чего начинает снова уменьшаться. Так как при понижении температуры наружного воздуха объем воздушного шара уменьшается, максимальная высота подъема не может быть выше, чем ~40 км. На этой высоте атмосфера еще довольно плотная, и поток антипротонов с энергиями в несколько десятков ГэВ, образующихся при взаимодействии первичных космических лучей с остаточной атмосферой, превышает поток антипротонов, образующихся в галактической среде. Для более высоких энергий зарегистрированных частиц ошибки становятся слишком большими, чтобы получить надежные результаты.
В последнее время начали осуществляться более длительные полеты (до 20 дней). В них также используются открытые шары, но потери гелия были существенно снижены, за счет того, что запуски шаров-зондов осуществлялись в очень высоких широтах, вблизи полюсов, во время полярного дня. Однако, масса их полезной нагрузки, при полетах на высоту 40км не превышает 1 т. Это слишком мало для измерения потоков антивещества при высоких энергиях. Для реализации сверхдлительных полетов на воздушных шарах (около100 дней) предполагается использовать и закрытые шары. Они толще и тяжелее, не теряют гелия и могут выдержать разность давлений внутри и снаружи. Они могут поднимать относительно легкие инструменты, менее 1 т.


Рис. 20.1. Запуск шара-зонда с физической аппаратурой.


Рис. 20.2. Детектор космического излучения BESS-Polar II. Спектрометр (1) с солнечными батареями (2).

Поиск антигелия с помощью спектрометров на воздушных шарах осуществлялся в рамках эксперимента BESS (B alloon-borne E xperiment with S uperconducting S pectrometer) (рис. 20.2). С 1993 г. по 2000 г. спектрометры BESS неоднократно запускались в верхние слои атмосферы в северной Канаде. Длительность полетов была около одних суток. Спектрометр постоянно совершенствовался и повышалась чувствительность. Суммарная чувствительность для отношения гелий/антигелий, достигнутая в этой серии полетов ~6.8×10 −7 в диапазоне жесткости 1-14 ГВ. В эксперименте BESS-TeV (2001 г.) диапазон жесткости спектрометра был увеличен до 500 ГВ и достигнута чувствительность 1.4×10 −4 . Для увеличения статистики в 2004-2008 гг. многодневные полеты усовершенствованных спектрометров (0.6-20 ГВ) осуществлялись в Антарктике. В 2004-2005 гг – в полете BESS-Polar I, длившемся 8.5 дней, была достигнута чувствительность 8×10 −6 . В 2007-2008 гг. в полете BESS-Polar II (длительность измерений 24.5 дня) была достигнута чувствительность 9.8×10 −8 . Суммарная чувствительность с учетом всех полетов BESS достигла величины 6.7×10 −8 . Ни одного ядра антигелия обнаружено не было.
Магнитный спектрометр, который использовался в полете BESS-Polar II состоит сверхпроводящего соленоидального магнита со сверхтонкими стенками, центрального трекера (JET/IDC), время-пролетного годоскопа (TOF) и черенковского детектора (рис. 20.3).

Рис. 20.3. Спектрометр эксперимента BESS-Polar II в разрезе.

Время-пролетный годоскоп позволяет измерять скорость (β) и энергетические потери (dE/dx). Он состоит из верхнего и нижнего пластиковых сцинтилляционных счетчиков, составленных из 10 и 12 сцинтилляционных полосок (100×950×10 мм). Временное разрешение системы времени пролета ~70 пс. Кроме того, есть еще третий сцинтилляционный счетчик (Middle-TOF), который находится внутри соленоида и состоит из 64 стержней пластикового сцинтиллятора. Он позволяет понизить энергетический порог регистрации, за счет частиц, которые не способны пролететь нижнюю часть соленоида.
Дрейфовые камеры находятся в однородном поле магнита. По 28 точкам, в каждой с точностью 200 мкм, рассчитывается кривизна траектории влетающей в спектрометр частицы, что позволяет определить eё магнитную жесткость R = pc/Ze и знак заряда.
Аэрогелиевый черенковский счетчик позволяет сепарировать сигналы от антипротонов и антидейтронов от фона e - /μ - .


Рис. 20.4. Идентификация частиц в установке BESS.

Идентификация частиц проводится по массе (рис. 20.4), которая связана с измеренными с помощью время-пролетных счетчиков и дрейфовых камер жесткостью R, скоростью частицы β и потерями энергии dE/dx соотношением

Для этого выделяются соответствующие области на двумерных распределениях dE/dx – |R| и β -1 – R.

Антипротонный радиационный пояс Земли

Коллаборацией PAMELA был обнаружен радиационный пояс вокруг Земли в области Южной Атлантической аномалии. Были измерены спектры антипротонов и протонов непосредственно в радиационном поясе и вне радиационного пояса (рис. 20.5, 20.6).
Показано, что антипротоны, которые регистрировались детекторными установками, установленными на баллонах и спутниках имеют вторичное происхождение. Они образуются в результате взаимодействия галактических космических лучей с межзвездным веществом или атмосферой в реакции pp → ppp. Однако существенно больший вклад вносит распад альбедных антинейтронов (антинейтронов, поток которых направлен от Земли), возникающих в реакции
pp → ppn. Эти антинейтроны проходят сквозь геомагнитное поле и распадаются, образуя антипротоны → + e + + ν e . Часть из образовавшихся антипротонов может быть захвачена магнитосферой,образуя радиационный пояс антипротонов. Так же как основным источником радиационного пояса протонов является распад нейтронов альбедо, так и распад антинейтронов приводит к образованию пояса антипротонов.
Из экспериментальных данных следует, что плотность антипротонов в радиационном поясе на 3–4 порядка больше, чем плотность антипротонов вне радиационного пояса. Форма спектра антипротонов, образованных непосредственно в результате взаимодействия галактических космических лучей практически совпадает с формой спектра антипротонов вне радиационного пояса антипротонов.
Проблема обнаружения антиматерии во Вселенной далека от решения. Активный поиск антиматерии предусмотрен в программах космических телескопов Ферми и др.