Искусственный интеллект вики. Что такое искусственный интеллект? Инструментарий создания и обучения ИИ обширен

Понятие искусственный интеллект (ИИ или AI) объединяет в себе не только технологии, позволяющие создавать интеллектуальные машины (включая компьютерные программы). ИИ – это также одно из направлений научной мысли.

Искусственный интеллект — определение

Интеллект – это психическая составляющая человека, которая обладает следующими способностями:

  • приспособленческая;
  • обучаемость посредством накопления опыта и знаний;
  • способность применять знания и навыки для управления окружающей средой.

Интеллект объединяет в себе все способности человека к познанию действительности. При помощи него человек мыслит, запоминает новую информацию, воспринимает окружающую среду и так далее.

Под искусственным интеллектом понимается одно из направлений информационных технологий, которое занимается изучением и разработкой систем (машин), наделенных возможностями человеческого интеллекта: способность к обучению, логическому рассуждению и так далее.

В настоящий момент работа над искусственным интеллектом проводится путем создания новых программ и алгоритмов, решающих задачи так же, как это делает человек.

В связи с тем, что определение ИИ эволюционирует по мере развития этого направления, необходимо упомянуть AI Effect. Под ним понимается эффект, который создает искусственный интеллект, достигнувший некоторого прогресса. Например, если ИИ научился выполнять какие-либо действия, то сразу подключаются критики, которые доказывают, что эти успехи не свидетельствуют о наличии мышления у машины.

Сегодня развитие искусственного интеллекта идет по двум независимым направлениям:

  • нейрокибернетика;
  • логический подход.

Первое направление предусматривает исследование нейронных сетей и эволюционных вычислений с точки зрения биологии. Логический подход подразумевает разработку систем, которые имитируют интеллектуальные процессы высокого уровня: мышление, речь и так далее.

Первые работы в области ИИ начали вести в середине прошлого века. Пионером исследований в этом направлении стал Алан Тьюринг , хотя определенные идеи начали высказывать философы и математики в Средние века. В частности, еще в начале 20-го века была представлена механическое устройство, способное решать шахматные задачи.

Но по-настоящему это направление сформировалось к середине прошлого столетия. Появление работ по ИИ предваряли исследования о природе человека, способах познания окружающего мира, возможностях мыслительного процесса и других сферах. К тому времени появились первые компьютеры и алгоритмы. То есть, был создан фундамент, на котором зародилось новое направление исследований.

В 1950 году Алан Тьюринг опубликовал статью, в которой задавался вопросами о возможностях будущих машин, а также о том, способны ли они обойти человека в плане разумности. Именно этот ученый разработал процедуру, названную потом в его честь: тест Тьюринга.

После опубликования работ английского ученого появились новые исследования в области ИИ. По мнению Тьюринга, мыслящей может быть признана только та машина, которую невозможно при общении отличить от человека. Примерно в то же время, когда появилась статься ученого, зародилась концепция, получившая название Baby Machine. Она предусматривала поступательное развитие ИИ и создание машин, мыслительные процессы которых сначала формируются на уровне ребенка, а затем постепенно улучшаются.

Термин «искусственный интеллект» зародился позднее. В 1956 году группа ученых, включая Тьюринга, собралась в американском университете Дартмунда, чтобы обсудить вопросы, связанные с ИИ. После той встречи началось активное развитие машин с возможностями искусственного интеллекта.

Особую роль в создании новых технологий в области ИИ сыграли военные ведомства, которые активно финансировали это направление исследований. Впоследствии работы в области искусственного интеллекта начали привлекать крупные компании.

Современная жизнь ставит более сложные задачи перед исследователями. Поэтому развитие ИИ ведется в принципиально других условиях, если сравнивать их с тем, что происходило в период зарождения искусственного интеллекта. Процессы глобализации, действия злоумышленников в цифровой сфере, развитие Интернета и другие проблемы – все это ставит перед учеными сложные задачи, решение которых лежит в области ИИ.

Несмотря на успехи, достигнутые в этой сфере в последние годы (например, появление автономной техники), до сих пор не утихают голоса скептиков, которые не верят в создание действительно искусственного интеллекта, а не очень способной программы. Ряд критиков опасается, что активное развитие ИИ вскоре приведет к ситуации, когда машины полностью заменят людей.

Направления исследований

Философы пока не пришли к единому мнению о том, какова природа человеческого интеллекта, и каков его статус. В связи с этим в научных работах, посвященных ИИ, встречается множество идей, повествующих, какие задачи решает искусственный интеллект. Также отсутствует единое понимание вопроса, какую машину можно считать разумной.

Сегодня развитие технологий искусственного интеллекта идет по двум направлениям:

  1. Нисходящее (семиотическое). Оно предусматривает разработку новых систем и баз знаний, которые имитируют высокоуровневые психические процессы типа речи, выражения эмоций и мышления.
  2. Восходящее (биологическое). Данный подход предполагает проведение исследований в области нейронных сетей, посредством которых создаются модели интеллектуального поведения с точки зрения биологических процессов. На базе этого направления создаются нейрокомпьютеры.

Определяет способность искусственного интеллекта (машины) мыслить так же, как человек. В общем понимании этот подход предусматривает создание ИИ, поведение которого не отличается от людских действий в одинаковых, нормальных ситуациях. По сути, тест Тьюринга предполагает, что машина будет разумной лишь в том случае, если при общении с ней невозможно понять, кто говорит: механизм или живой человек.

Книги в жанре фантастика предлагают другой метод оценки возможностей ИИ. Настоящим искусственный интеллект станет в том случае, если он будет чувствовать и сможет творить. Однако этот подход к определению не выдерживает практического применения. Уже сейчас, например, создаются машины, которые обладают способностью реагировать на изменения окружающей среды (холод, тепло и так далее). При этом они не могут чувствовать так, как это делает человек.

Символьный подход

Успех в решении задач во многом определяется способностью гибко подходить к ситуации. Машины, в отличие от людей, интерпретируют полученные данные единым образом. Поэтому в решении задач принимает участие только человек. Машина проводит операции на основании написанных алгоритмов, которые исключают применение нескольких моделей абстрагирования. Добиться гибкости от программ удается путем увеличения ресурсов, задействованных в ходе решения задач.

Указанные выше недостатки характерны для символьного подхода, применяемого при разработке ИИ. Однако данное направление развития искусственного интеллекта позволяет создавать новые правила в процессе вычисления. А проблемы, возникающие у символьного подхода, способны решить логические методы.

Логический подход

Этот подход предполагает создание моделей, имитирующих процесс рассуждения. В его основе заложены принципы логики.

Данный подход не предусматривает применение жестких алгоритмов, которые приводят к определенному результату.

Агентно-ориентированный подход

Он задействует интеллектуальных агентов. Этот подход предполагает следующее: интеллект представляет собой вычислительную часть, посредством которой достигаются поставленные цели. Машина играет роль интеллектуального агента. Она познает окружающую среду при помощи специальных датчиков, а взаимодействует с ней посредством механических частей.

Агентно-ориентированный подход уделяет основное внимание разработке алгоритмов и методов, которые позволяют машинам сохранять работоспособность в различных ситуациях.

Гибридный подход

Этот подход предусматривает объединение нейронных и символьных моделей, за счет чего достигается решение всех задач, связанных с процессами мышления и вычислений. Например, нейронные сети могут генерировать направление, в котором двигается работа машины. А статическое обучение предоставляет тот базис, посредством которого решаются задачи.

Согласно прогнозам экспертов компании Gartner , к началу 2020-х годов практически все выпускаемые программные продукты будут использовать технологии искусственного интеллекта. Также специалисты предполагают, что около 30% инвестиций в цифровую сферу будут приходиться на ИИ.

По мнению аналитиков Gartner, искусственный интеллект открывает новые возможности для кооперации людей и машин. При этом процесс вытеснения человека ИИ невозможно остановить и в будущем он будет ускоряться.

В компании PwC считают, что к 2030 году объем мирового валового внутреннего продукта вырастет примерно на 14% за счет быстрого внедрения новых технологий. Причем примерно 50% прироста обеспечит повышение эффективности производственных процессов. Вторую половину показателя составит дополнительная прибыль, полученная за счет внедрения ИИ в продукты.

Первоначально эффект от использования искусственного интеллекта получит США, так как в этой стране созданы лучшие условия для эксплуатации машин на ИИ. В дальнейшем их опередит Китай, который извлечет максимальную прибыль, внедряя подобные технологии в продукцию и ее производство.

Эксперты компании Saleforce заявляют, что ИИ позволит увеличить доходность малого бизнеса примерно на 1,1 триллиона долларов. Причем произойдет это к 2021 году. Отчасти добиться указанного показателя удастся за счет реализации решений, предлагаемых ИИ, в системы, отвечающие за коммуникацию с клиентами. Одновременно с этим будет улучаться эффективность производственных процессов благодаря их автоматизации.

Внедрение новых технологий также позволит создать дополнительные 800 тысяч рабочих мест. Эксперты отмечают, что указанный показатель нивелирует потери вакансий, произошедшие из-за автоматизации процессов. По прогнозу аналитиков, основанных на результатах опроса среди компаний, их расходы на автоматизацию производственных процессов к началу 2020-х годов возрастут примерно до 46 миллиардов долларов.

В России также ведутся работы в области ИИ. На протяжении 10 лет государство профинансировало более 1,3 тысячи проектов в данной сфере. Причем большая часть инвестиций пошло на развитие программ, не связанных с ведением коммерческой деятельности. Это показывает, что российское бизнес-сообщество пока не заинтересовано во внедрении технологий искусственного интеллекта.

В общей сложности на указанные цели в России инвестировали порядка 23 миллиардов рублей. Размер государственных субсидий уступает тем объемам финансирования сферы ИИ, которые демонстрируют другие страны. В США на эти цели каждый год выделяют порядка 200 миллионов долларов.

В основном в России из госбюджета выделяют средства на развитие технологий ИИ, которые затем применяются в транспортной сфере, оборонной промышленности и в проектах, связанных с обеспечением безопасности. Это обстоятельство указывает на то, что в нашей стране чаще инвестируют в направления, которые позволяют быстро добиться определенного эффекта от вложенных средств.

Приведенное выше исследование также показало, что в России сейчас накоплен высокий потенциал для подготовки специалистов, которые могут быть задействованы в разработке технологий ИИ. За 5 последних лет обучение по направлениям, связанным с ИИ, прошли примерно 200 тысяч человек.

Технологии ИИ развиваются в следующих направлениях:

  • решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность;
  • разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством.

В настоящий момент исследователи сосредоточены на разработке технологий, которые решают практические задачи. Пока ученые не приблизились к созданию полноценного искусственного разума.

Разработкой технологиями в области ИИ занимаются многие компании. «Яндекс» не один год применяет их в работе поисковика. С 2016 года российская IT-компания занимается исследованиями в области нейронных сетей. Последние изменяют характер работы поисковиков. В частности, нейронные сети сопоставляют введенный пользователем запрос с неким векторным числом, который наиболее полно отражает смысл поставленной задачи. Иными словами, поиск ведется не по слову, а именно по сути информации, запрашиваемой человеком.

В 2016 году «Яндекс» запустил сервис «Дзен» , который анализирует предпочтения пользователей.

У компании Abbyy недавно появилась система Compreno . При помощи нее удается понять на естественном языке написанный текст. На рынок также сравнительно недавно вышли и другие системы, основанные на технологиях искусственного интеллекта:

  1. Findo. Система способна распознавать человеческую речь и занимается поиском информации в различных документах и файлах, используя при этом сложные запросы.
  2. Gamalon. Эта компания представила систему со способностью к самообучению.
  3. Watson. Компьютер компании IBM, использующий в процессе поиска информации большое количество алгоритмов.
  4. ViaVoice. Система распознавания человеческой речи.

Крупные коммерческие компании не обходят стороной достижения в области искусственного интеллекта. Банки активно внедряют подобные технологии в свою деятельность. При помощи систем, основанных на ИИ, они проводят операции на биржах, ведут управление собственностью и выполняют иные операции.

Оборонная промышленность, медицина и другие сферы внедряют технологии распознавания объектов. А компании, занимающие разработкой компьютерных игр, применяют ИИ для создания очередного продукта.

В течение нескольких последних лет группа американских ученых ведет работу над проектом NEIL , в рамках которого исследователи предлагают компьютеру распознать, что изображено на фотографии. Специалисты предполагают, что таким образом они смогут создать систему, способную самообучаться без внешнего вмешательства.

Компания VisionLab представила собственную платформу LUNA , которая может в режиме реального времени распознавать лица, выбирая их из огромного кластера изображений и видеороликов. Данную технологию сегодня применяют крупные банки и сетевые ретейлеры. При помощи LUNA можно сопоставлять предпочтения людей и предлагать им соответствующие товары и услуги.

Над подобными технологиями работает российская компания N-Tech Lab . При этом ее специалисты питаются создать систему распознавания лиц, основанную на нейронных сетях. По последним данным, российская разработка лучше справляется с поставленными задачами, чем человек.

По мнению Стивена Хокинга, развитие технологий искусственного интеллекта в будущем приведет к гибели человечества. Ученый отметил, что люди из-за внедрения ИИ начнут постепенно деградировать. А в условиях естественной эволюции, когда человеку для выживания необходимо постоянно бороться, этот процесс неминуемо приведет к его гибели.

В России положительно рассматривают вопрос внедрения ИИ. Алексей Кудрин однажды заявил о том, что использование таких технологий позволит примерно на 0,3% от ВПП уменьшить расходы на обеспечение работы государственного аппарата. Дмитрий Медведев предрекает исчезновение ряда профессий из-за внедрения ИИ. Однако чиновник подчеркнул, что использование таких технологий приведет к бурному развитию других отраслей.

По данным экспертов Всемирного экономического форума, к началу 2020-х годов в мире из-за автоматизации производства рабочих мест лишаться около 7 миллионов человек. Внедрение ИИ с высокой долей вероятности вызовет трансформацию экономики и исчезновение ряда профессий, связанных с обработкой данных.

Эксперты McKinsey заявляют, что активнее процесс автоматизации производства будет проходить в России, Китае и Индии. В этих странах в ближайшее время до 50% рабочих потеряют свои местах из-за внедрения ИИ. Их место займут компьютеризированные системы и роботы.

По данным McKinsey, искусственный интеллект заменит собой профессии, предусматривающие физический труд и обработку информации: розничная торговля, гостиничный персонал и так далее.

К середине текущего столетия, как полагают эксперты американской компании, число рабочих мест во всем мире сократится примерно на 50%. Места людей займут машины, способные проводить аналогичные операции с той же или более высокой эффективностью. При этом эксперты не исключают варианта, при котором данный прогноз будет реализован раньше указанного срока.

Другие аналитики отмечают вред, который могут нанести роботы. Например, эксперты McKinsey обращают внимание на то, что роботы, в отличие от людей, не платят налоги. В результате из-за снижения объемов поступлений в бюджет государство не сможет поддерживать инфраструктуру на прежнем уровне. Поэтому Билл Гейтс предложил ввести новый налог на роботизированную технику.

Технологии ИИ повышают эффективность работы компаний за счет снижения числа совершаемых ошибок. Кроме того, они позволяют повысить скорость выполнения операций до того уровня, который не может достигнуть человек.

Указывает: «Проблема состоит в том, что пока мы не можем в целом определить, какие вычислительные процедуры мы хотим называть интеллектуальными. Мы понимаем некоторые механизмы интеллекта и не понимаем остальные. Поэтому под интеллектом в пределах этой науки понимается только вычислительная составляющая способности достигать целей в мире» .

В то же время существует и точка зрения, согласно которой интеллект может быть только биологическим феноменом .

Как указывает председатель Петербургского отделения Российской ассоциации искусственного интеллекта Т. А. Гаврилова, в английском языке словосочетание artificial intelligence не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог intellect .

Участники Российской ассоциации искусственного интеллекта дают следующие определения искусственного интеллекта:

Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект - способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи» .

Нередко искусственным интеллектом называют и простейшую электронику, чтобы обозначить наличие датчиков и автоматический выбор режима работы. Слово искусственный в этом случае означает, что не стоит ждать от системы умения найти новый режим работы в не предусмотренной разработчиками ситуации.

Предпосылки развития науки искусственного интеллекта

История искусственного интеллекта как нового научного направления начинается в середине XX века . К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений - теории алгоритмов - и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг , пишет статью под названием «Может ли машина мыслить?» , в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга .

История развития искусственного интеллекта в СССР и России

В СССР работы в области искусственного интеллекта начались в 1960-х годах . В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым .

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики . По мнению Д. А. Поспелова , науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики . При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х - начала 1960-х годов . Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются .

Подходы и направления

Подходы к пониманию проблемы

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

  • нисходящий (англ. Top-Down AI ), семиотический - создание экспертных систем , баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы : мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (англ. Bottom-Up AI ), биологический - изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер .

Последний подход, строго говоря, не относится к науке о ИИ в смысле, данном Джоном Маккарти, - их объединяет только общая конечная цель.

Тест Тьюринга и интуитивный подход

Эмпирический тест был предложен Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence ) , опубликованной в 1950 году в философском журнале «Mind ». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.

Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы - ввести человека в заблуждение, заставив сделать неверный выбор ». Все участники теста не видят друг друга.

  • Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга , который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).
  • Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить . Так, хозяин Эндрю Мартина из «Двухсотлетнего человека » начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из Звёздного пути , будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию .

Однако последний подход вряд ли выдерживает критику при более детальном рассмотрении. К примеру, несложно создать механизм, который будет оценивать некоторые параметры внешней или внутренней среды и реагировать на их неблагоприятные значения. Про такую систему можно сказать, что у неё есть чувства («боль» - реакция на срабатывание датчика удара, «голод» - реакция на низкий заряд аккумулятора, и т. п.). А кластеры, создаваемые картами Кохонена , и многие другие продукты «интеллектуальных» систем можно рассматривать как вид творчества.

Символьный подход

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп , первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.

Успешность и эффективность решения новых задач зависит от умения выделять только существенную информацию, что требует гибкости в методах абстрагирования. Тогда как обычная программа устанавливает один свой способ интерпретации данных, из-за чего её работа и выглядит предвзятой и чисто механической. Интеллектуальную задачу в этом случае решает только человек, аналитик или программист, не умея доверить этого машине. В результате создается единственная модель абстрагирования, система конструктивных сущностей и алгоритмов. А гибкость и универсальность выливается в значительные затраты ресурсов для не типичных задач, то есть система от интеллекта возвращается к грубой силе.

Основная особенность символьных вычислений - создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.

Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.

Логический подход

Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.

Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог . Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных на языке логических предикатов.

Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщённые сведения с помощью правил и процедур логического вывода, и в том числе логических правил определения понятий, выражающих определённые знания как конкретные и обобщённые сведения.

В целом исследования проблем искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлены на создание, развитие и эксплуатацию интеллектуальных информационных систем , включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.

Агентно-ориентированный подход

Последний подход, развиваемый с начала 1990-х годов , называется агентно-ориентированным подходом , или подходом, основанным на использовании интеллектуальных (рациональных) агентов . Согласно этому подходу, интеллект - это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков , и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов .

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений .

Гибридный подход

Основная статья: Гибридный подход

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Модели и методы исследований

Символьное моделирование мыслительных процессов

Основная статья: Моделирование рассуждений

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений . Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем , на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована , то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем , принятие решений и теория игр , планирование и диспетчеризация , прогнозирование .

Работа с естественными языками

Немаловажным направлением является обработка естественного языка , в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод .

Представление и использование знаний

Направление инженерия знаний объединяет задачи получения знаний из простой информации , их систематизации и использования. Это направление исторически связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных - одна из базовых проблем интеллектуального анализа данных . Существуют различные подходы к решению этой проблемы, в том числе - на основе нейросетевой технологии , использующие процедуры вербализации нейронных сетей .

Машинное обучение

Проблематика машинного обучения касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития ИИ . В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя , назвав её: «Индуктивная машина вывода» .

Робототехника

Основная статья: Интеллектуальная робототехника

Машинное творчество

Основная статья: Машинное творчество

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки , литературных произведений (часто - стихов или сказок), художественное творчество . Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач , предложенная в 1946 году Г. С. Альтшуллером , положила начало таким исследованиям.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

Другие области исследований

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх , нелинейное управление , интеллектуальные системы информационной безопасности .

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ .

Современный искусственный интеллект

Можно выделить два направления развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта );
  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества (см. Сильный и слабый искусственный интеллект ).

Но в настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области ИИ.

Применение

Турнир RoboCup

Некоторые из самых известных ИИ-систем:

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Психология и когнитология

Методология когнитивного моделирования предназначена для анализа и принятия решений в плохо определённых ситуациях. Была предложена Аксельродом .

Основана на моделировании субъективных представлений экспертов о ситуации и включает: методологию структуризации ситуации: модель представления знаний эксперта в виде знакового орграфа (когнитивной карты) (F, W), где F - множество факторов ситуации, W - множество причинно-следственных отношений между факторами ситуации; методы анализа ситуации. В настоящее время методология когнитивного моделирования развивается в направлении совершенствования аппарата анализа и моделирования ситуации. Здесь предложены модели прогноза развития ситуации; методы решения обратных задач.

Философия

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве.

Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?»

Термин «сильный искусственный интеллект» ввёл Джон Сёрль , его же словами подход и характеризуется:

Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум .

При этом нужно понять, возможен ли «чистый искусственный» разум («метаразум»), понимающий и решающий реальные проблемы и, вместе с тем, лишённый эмоций, характерных для человека и необходимых для его индивидуального выживания.

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

Этика

Научная фантастика

Тема ИИ рассматривается под разными углами в творчестве Роберта Хайнлайна : гипотеза возникновения самоосознания ИИ при усложнении структуры далее определённого критического уровня и наличии взаимодействия с окружающим миром и другими носителями разума («The Moon Is a Harsh Mistress», «Time Enough For Love», персонажи Майкрофт, Дора и Ая в цикле «История будущего»), проблемы развитии ИИ после гипотетического самоосознания и некоторые социально-этические вопросы («Friday»). Социально-психологические проблемы взаимодействия человека с ИИ рассматривает и роман Филипа К. Дика «Снятся ли андроидам электроовцы? », известный также по экранизации «Бегущий по лезвию».

В творчестве фантаста и философа Станислава Лема описано и во многом предвосхищено создание виртуальной реальности, искусственного интеллекта, нанороботов и многих других проблем философии искусственного интеллекта. Особенно стоит отметить футурологию Сумма технологии . Кроме того, в приключениях Ийона Тихого неоднократно описываются взаимоотношения живых существ и машин: бунт бортового компьютера с последующими неожиданными событиями (11 путешествие), адаптация роботов в человеческом обществе («Стиральная трагедия» из «Воспоминаний Ийона Тихого»), построение абсолютного порядка на планете путём переработки живых жителей (24-ое путешествие), изобретения Коркорана и Диагора («Воспоминания Ийона Тихого»), психиатрическая клиника для роботов («Воспоминания Ийона Тихого»). Кроме того, существует целый цикл повестей и рассказов Кибериада , где почти всеми персонажами являются роботы, которые являются далёкими потомками роботов, сбежавших от людей (людей они именуют бледнотиками и считают их мифическими существами).

Фильмы

Начиная практически с 60-х годов вместе с написанием фантастических рассказов и повестей, снимаются фильмы об искусственном интеллекте. Многие повести авторов, признанных во всём мире, экранизируются и становятся классикой жанра, другие становятся вехой в развитии кинофантастики , например Терминатор и Матрица .

См. также

Примечания

  1. FAQ от Джона Маккарти , 2007
  2. М. Эндрю. Реальная жизнь и искусственный интеллект // «Новости искусственного интеллекта», РАИИ, 2000
  3. Гаврилова Т. А. Хорошевский В. Ф. Базы знаний интеллектуальных систем: Учебник для вузов
  4. Аверкин А. Н., Гаазе-Рапопорт М. Г., Поспелов Д. А. Толковый словарь по искусственному интеллекту. - М.:Радио и связь, 1992. - 256 с.
  5. Г. С. Осипов. Искусственный интеллект: состояние исследований и взгляд в будущее
  6. Ильясов Ф. Н. Разум искусственный и естественный // Известия АН Туркменской ССР, серия общественных наук. 1986. № 6. С. 46-54.
  7. Алан Тьюринг, Могут ли машины мыслить?
  8. Интеллектуальные машины С. Н. Корсакова
  9. Д. А. Поспелов. Cтановление информатики в России
  10. К истории кибернетики в СССР. Очерк первый , Очерк второй
  11. Jack Copeland. What is Artificial Intelligence? 2000
  12. Alan Turing, «Computing Machinery and Intelligence », Mind, vol. LIX, no. 236, October 1950, pp. 433-460.
  13. Обработка естественного языка :
  14. Приложения обработки естественного языка, включают информационный поиск (в том числе: анализ текста и машинный перевод):
  15. Горбань П. А. Нейросетевое извлечение знаний из данных и компьютерный психоанализ
  16. Машинное обучение :
  17. Алан Тюринг обсуждал как центральную тему уже в 1950, в его классической статье Computing Machinery and Intelligence. ()
  18. (pdf scanned copy of the original) (version published in 1957, An Inductive Inference Machine, " IRE Convention Record, Section on Information Theory, Part 2, pp. 56-62)
  19. Робототехника :
  20. , pp. 916–932
  21. , pp. 908–915
  22. Проект Blue Brain - Искусственный мозг
  23. Mild-Mannered Watson Skewers Human Opponents on Jeopardy
  24. 20Q.net Inc
  25. Axelrod R. The Structure of Decision: Cognitive Maps of Political Elites. - Princeton. University Press, 1976
  26. Джон Сёрль. Разум мозга - компьютерная программа?
  27. Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики. - М .: УРСС, 2005. - ISBN 5-354-00993-6
  28. ИИ как фактор глобального риска
  29. …поведет тебя в Жизнь Вечную
  30. http://www.rc.edu.ru/rc/s8/intellect/rc_intellect_zaharov_2009.pdf Православный взгляд на проблему искусственного интеллекта
  31. Гарри Гаррисон. Выбор по Тьюрингу. - М .: Эксмо-Пресс, 1999. - 480 с. - ISBN 5-04-002906-3

Литература

  • Компьютер учится и рассуждает (ч. 1) // Компьютер обретает разум = Artificial Intelligence Computer Images / под ред. В. Л. Стефанюка. - Москва: Мир , 1990. - 240 с. - 100 000 экз. - ISBN 5-03-001277-X (рус.); ISBN 705409155 (англ.)
  • Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Фёдоров. - М .: Изд-во МГТУ им. Н. Э. Баумана, 2001. - 352 с. - (Информатика в техническом университете). - 3000 экз. - ISBN 5-7038-1727-7
  • Корсаков С.Н. Начертание нового способа исследования при помощи машин, сравнивающих идеи / Под ред. А.С. Михайлова. - М .: МИФИ, 2009. - 44 с. - 200 экз. -

Указывает: «Проблема состоит в том, что пока мы не можем в целом определить, какие вычислительные процедуры мы хотим называть интеллектуальными. Мы понимаем некоторые механизмы интеллекта и не понимаем остальные. Поэтому под интеллектом в пределах этой науки понимается только вычислительная составляющая способности достигать целей в мире» .

В то же время существует и точка зрения, согласно которой интеллект может быть только биологическим феноменом .

Как указывает председатель Петербургского отделения Российской ассоциации искусственного интеллекта Т. А. Гаврилова, в английском языке словосочетание artificial intelligence не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть английский аналог intellect .

Участники Российской ассоциации искусственного интеллекта дают следующие определения искусственного интеллекта:

Одно из частных определений интеллекта, общее для человека и «машины», можно сформулировать так: «Интеллект - способность системы создавать в ходе самообучения программы (в первую очередь эвристические) для решения задач определённого класса сложности и решать эти задачи» .

Нередко искусственным интеллектом называют и простейшую электронику, чтобы обозначить наличие датчиков и автоматический выбор режима работы. Слово искусственный в этом случае означает, что не стоит ждать от системы умения найти новый режим работы в не предусмотренной разработчиками ситуации.

Предпосылки развития науки искусственного интеллекта

История искусственного интеллекта как нового научного направления начинается в середине XX века . К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений - теории алгоритмов - и были созданы первые компьютеры.

Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг , пишет статью под названием «Может ли машина мыслить?» , в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга .

История развития искусственного интеллекта в СССР и России

В СССР работы в области искусственного интеллекта начались в 1960-х годах . В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым .

В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.

До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики . По мнению Д. А. Поспелова , науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики . При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х - начала 1960-х годов . Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются .

Подходы и направления

Подходы к пониманию проблемы

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Почти каждый автор, пишущий книгу об ИИ, отталкивается в ней от какого-либо определения, рассматривая в его свете достижения этой науки.

  • нисходящий (англ. Top-Down AI ), семиотический - создание экспертных систем , баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы : мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (англ. Bottom-Up AI ), биологический - изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер .

Последний подход, строго говоря, не относится к науке о ИИ в смысле, данном Джоном Маккарти, - их объединяет только общая конечная цель.

Тест Тьюринга и интуитивный подход

Эмпирический тест был предложен Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence ) , опубликованной в 1950 году в философском журнале «Mind ». Целью данного теста является определение возможности искусственного мышления, близкого к человеческому.

Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы - ввести человека в заблуждение, заставив сделать неверный выбор ». Все участники теста не видят друг друга.

  • Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга , который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).
  • Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить . Так, хозяин Эндрю Мартина из «Двухсотлетнего человека » начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из Звёздного пути , будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию .

Однако последний подход вряд ли выдерживает критику при более детальном рассмотрении. К примеру, несложно создать механизм, который будет оценивать некоторые параметры внешней или внутренней среды и реагировать на их неблагоприятные значения. Про такую систему можно сказать, что у неё есть чувства («боль» - реакция на срабатывание датчика удара, «голод» - реакция на низкий заряд аккумулятора, и т. п.). А кластеры, создаваемые картами Кохонена , и многие другие продукты «интеллектуальных» систем можно рассматривать как вид творчества.

Символьный подход

Исторически символьный подход был первым в эпоху цифровых машин, так как именно после создания Лисп , первого языка символьных вычислений, у его автора возникла уверенность в возможности практически приступить к реализации этими средствами интеллекта. Символьный подход позволяет оперировать слабоформализованными представлениями и их смыслами.

Успешность и эффективность решения новых задач зависит от умения выделять только существенную информацию, что требует гибкости в методах абстрагирования. Тогда как обычная программа устанавливает один свой способ интерпретации данных, из-за чего её работа и выглядит предвзятой и чисто механической. Интеллектуальную задачу в этом случае решает только человек, аналитик или программист, не умея доверить этого машине. В результате создается единственная модель абстрагирования, система конструктивных сущностей и алгоритмов. А гибкость и универсальность выливается в значительные затраты ресурсов для не типичных задач, то есть система от интеллекта возвращается к грубой силе.

Основная особенность символьных вычислений - создание новых правил в процессе выполнения программы. Тогда как возможности не интеллектуальных систем завершаются как раз перед способностью хотя бы обозначать вновь возникающие трудности. Тем более эти трудности не решаются и наконец компьютер не совершенствует такие способности самостоятельно.

Недостатком символьного подхода является то, что такие открытые возможности воспринимаются не подготовленными людьми как отсутствие инструментов. Эту, скорее культурную проблему, отчасти решает логическое программирование.

Логический подход

Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.

Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог . Базы знаний, записанные на языке Пролог, представляют наборы фактов и правил логического вывода, записанных на языке логических предикатов.

Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщённые сведения с помощью правил и процедур логического вывода, и в том числе логических правил определения понятий, выражающих определённые знания как конкретные и обобщённые сведения.

В целом исследования проблем искусственного интеллекта в рамках логического подхода к проектированию баз знаний и экспертных систем направлены на создание, развитие и эксплуатацию интеллектуальных информационных систем , включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем.

Агентно-ориентированный подход

Последний подход, развиваемый с начала 1990-х годов , называется агентно-ориентированным подходом , или подходом, основанным на использовании интеллектуальных (рациональных) агентов . Согласно этому подходу, интеллект - это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков , и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов .

Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно тщательнее изучаются алгоритмы поиска пути и принятия решений .

Гибридный подход

Основная статья: Гибридный подход

Гибридный подход предполагает, что только синергетическая комбинация нейронных и символьных моделей достигает полного спектра когнитивных и вычислительных возможностей. Например, экспертные правила умозаключений могут генерироваться нейронными сетями, а порождающие правила получают с помощью статистического обучения. Сторонники данного подхода считают, что гибридные информационные системы будут значительно более сильными, чем сумма различных концепций по отдельности.

Модели и методы исследований

Символьное моделирование мыслительных процессов

Основная статья: Моделирование рассуждений

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений . Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем , на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована , то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем , принятие решений и теория игр , планирование и диспетчеризация , прогнозирование .

Работа с естественными языками

Немаловажным направлением является обработка естественного языка , в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод .

Представление и использование знаний

Направление инженерия знаний объединяет задачи получения знаний из простой информации , их систематизации и использования. Это направление исторически связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных - одна из базовых проблем интеллектуального анализа данных . Существуют различные подходы к решению этой проблемы, в том числе - на основе нейросетевой технологии , использующие процедуры вербализации нейронных сетей .

Машинное обучение

Проблематика машинного обучения касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития ИИ . В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя , назвав её: «Индуктивная машина вывода» .

Робототехника

Основная статья: Интеллектуальная робототехника

Машинное творчество

Основная статья: Машинное творчество

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыки , литературных произведений (часто - стихов или сказок), художественное творчество . Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач , предложенная в 1946 году Г. С. Альтшуллером , положила начало таким исследованиям.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

Другие области исследований

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программирование интеллекта в компьютерных играх , нелинейное управление , интеллектуальные системы информационной безопасности .

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ .

Современный искусственный интеллект

Можно выделить два направления развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта );
  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества (см. Сильный и слабый искусственный интеллект ).

Но в настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области ИИ.

Применение

Турнир RoboCup

Некоторые из самых известных ИИ-систем:

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Психология и когнитология

Методология когнитивного моделирования предназначена для анализа и принятия решений в плохо определённых ситуациях. Была предложена Аксельродом .

Основана на моделировании субъективных представлений экспертов о ситуации и включает: методологию структуризации ситуации: модель представления знаний эксперта в виде знакового орграфа (когнитивной карты) (F, W), где F - множество факторов ситуации, W - множество причинно-следственных отношений между факторами ситуации; методы анализа ситуации. В настоящее время методология когнитивного моделирования развивается в направлении совершенствования аппарата анализа и моделирования ситуации. Здесь предложены модели прогноза развития ситуации; методы решения обратных задач.

Философия

Наука «о создании искусственного разума» не могла не привлечь внимание философов. С появлением первых интеллектуальных систем были затронуты фундаментальные вопросы о человеке и знании, а отчасти о мироустройстве.

Философские проблемы создания искусственного интеллекта можно разделить на две группы, условно говоря, «до и после разработки ИИ». Первая группа отвечает на вопрос: «Что такое ИИ, возможно ли его создание, и, если возможно, то как это сделать?» Вторая группа (этика искусственного интеллекта) задаётся вопросом: «Каковы последствия создания ИИ для человечества?»

Термин «сильный искусственный интеллект» ввёл Джон Сёрль , его же словами подход и характеризуется:

Более того, такая программа будет не просто моделью разума; она в буквальном смысле слова сама и будет разумом, в том же смысле, в котором человеческий разум - это разум .

При этом нужно понять, возможен ли «чистый искусственный» разум («метаразум»), понимающий и решающий реальные проблемы и, вместе с тем, лишённый эмоций, характерных для человека и необходимых для его индивидуального выживания.

Напротив, сторонники слабого ИИ предпочитают рассматривать программы лишь как инструмент, позволяющий решать те или иные задачи, которые не требуют полного спектра человеческих познавательных способностей.

Этика

Научная фантастика

Тема ИИ рассматривается под разными углами в творчестве Роберта Хайнлайна : гипотеза возникновения самоосознания ИИ при усложнении структуры далее определённого критического уровня и наличии взаимодействия с окружающим миром и другими носителями разума («The Moon Is a Harsh Mistress», «Time Enough For Love», персонажи Майкрофт, Дора и Ая в цикле «История будущего»), проблемы развитии ИИ после гипотетического самоосознания и некоторые социально-этические вопросы («Friday»). Социально-психологические проблемы взаимодействия человека с ИИ рассматривает и роман Филипа К. Дика «Снятся ли андроидам электроовцы? », известный также по экранизации «Бегущий по лезвию».

В творчестве фантаста и философа Станислава Лема описано и во многом предвосхищено создание виртуальной реальности, искусственного интеллекта, нанороботов и многих других проблем философии искусственного интеллекта. Особенно стоит отметить футурологию Сумма технологии . Кроме того, в приключениях Ийона Тихого неоднократно описываются взаимоотношения живых существ и машин: бунт бортового компьютера с последующими неожиданными событиями (11 путешествие), адаптация роботов в человеческом обществе («Стиральная трагедия» из «Воспоминаний Ийона Тихого»), построение абсолютного порядка на планете путём переработки живых жителей (24-ое путешествие), изобретения Коркорана и Диагора («Воспоминания Ийона Тихого»), психиатрическая клиника для роботов («Воспоминания Ийона Тихого»). Кроме того, существует целый цикл повестей и рассказов Кибериада , где почти всеми персонажами являются роботы, которые являются далёкими потомками роботов, сбежавших от людей (людей они именуют бледнотиками и считают их мифическими существами).

Фильмы

Начиная практически с 60-х годов вместе с написанием фантастических рассказов и повестей, снимаются фильмы об искусственном интеллекте. Многие повести авторов, признанных во всём мире, экранизируются и становятся классикой жанра, другие становятся вехой в развитии кинофантастики , например Терминатор и Матрица .

См. также

Примечания

  1. FAQ от Джона Маккарти , 2007
  2. М. Эндрю. Реальная жизнь и искусственный интеллект // «Новости искусственного интеллекта», РАИИ, 2000
  3. Гаврилова Т. А. Хорошевский В. Ф. Базы знаний интеллектуальных систем: Учебник для вузов
  4. Аверкин А. Н., Гаазе-Рапопорт М. Г., Поспелов Д. А. Толковый словарь по искусственному интеллекту. - М.:Радио и связь, 1992. - 256 с.
  5. Г. С. Осипов. Искусственный интеллект: состояние исследований и взгляд в будущее
  6. Ильясов Ф. Н. Разум искусственный и естественный // Известия АН Туркменской ССР, серия общественных наук. 1986. № 6. С. 46-54.
  7. Алан Тьюринг, Могут ли машины мыслить?
  8. Интеллектуальные машины С. Н. Корсакова
  9. Д. А. Поспелов. Cтановление информатики в России
  10. К истории кибернетики в СССР. Очерк первый , Очерк второй
  11. Jack Copeland. What is Artificial Intelligence? 2000
  12. Alan Turing, «Computing Machinery and Intelligence », Mind, vol. LIX, no. 236, October 1950, pp. 433-460.
  13. Обработка естественного языка :
  14. Приложения обработки естественного языка, включают информационный поиск (в том числе: анализ текста и машинный перевод):
  15. Горбань П. А. Нейросетевое извлечение знаний из данных и компьютерный психоанализ
  16. Машинное обучение :
  17. Алан Тюринг обсуждал как центральную тему уже в 1950, в его классической статье Computing Machinery and Intelligence. ()
  18. (pdf scanned copy of the original) (version published in 1957, An Inductive Inference Machine, " IRE Convention Record, Section on Information Theory, Part 2, pp. 56-62)
  19. Робототехника :
  20. , pp. 916–932
  21. , pp. 908–915
  22. Проект Blue Brain - Искусственный мозг
  23. Mild-Mannered Watson Skewers Human Opponents on Jeopardy
  24. 20Q.net Inc
  25. Axelrod R. The Structure of Decision: Cognitive Maps of Political Elites. - Princeton. University Press, 1976
  26. Джон Сёрль. Разум мозга - компьютерная программа?
  27. Пенроуз Р. Новый ум короля. О компьютерах, мышлении и законах физики. - М .: УРСС, 2005. - ISBN 5-354-00993-6
  28. ИИ как фактор глобального риска
  29. …поведет тебя в Жизнь Вечную
  30. http://www.rc.edu.ru/rc/s8/intellect/rc_intellect_zaharov_2009.pdf Православный взгляд на проблему искусственного интеллекта
  31. Гарри Гаррисон. Выбор по Тьюрингу. - М .: Эксмо-Пресс, 1999. - 480 с. - ISBN 5-04-002906-3

Литература

  • Компьютер учится и рассуждает (ч. 1) // Компьютер обретает разум = Artificial Intelligence Computer Images / под ред. В. Л. Стефанюка. - Москва: Мир , 1990. - 240 с. - 100 000 экз. - ISBN 5-03-001277-X (рус.); ISBN 705409155 (англ.)
  • Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б. Фёдоров. - М .: Изд-во МГТУ им. Н. Э. Баумана, 2001. - 352 с. - (Информатика в техническом университете). - 3000 экз. - ISBN 5-7038-1727-7
  • Корсаков С.Н. Начертание нового способа исследования при помощи машин, сравнивающих идеи / Под ред. А.С. Михайлова. - М .: МИФИ, 2009. - 44 с. - 200 экз. -

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Технологические направления ИИ. Данные Deloitte

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Основные коммерческие сферы применения технологий искусственного интеллекта

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

Основные коммерческие сферы применения технологий искусственного интеллекта в банках

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

Раскрыть сложное преступление за день. Полиция берет ИИ на вооружение

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Самый известный способ определить, есть ли у машины интеллект - это тест Тьюринга, предложенный в 1950 году математиком Аланом Тьюрингом. Во время теста человек разговаривает с компьютером и должен определить, кто ведёт беседу - машина или человек. Если машина способна имитировать разговор - значит, она обладает интеллектом. Сегодня тест Тьюринга уже : прошлым летом его прошёл чат-бот Eugene Goostman, да и тест постоянно критикуют. Look At Me собрал восемь других способов определить, есть ли у машины интеллект.

Тест Лавлейс 2.0


Этот тест назван в честь Ады Лавлейс, математика из XIX века, которую считают первым в истории программистом. Он призван определить наличие интеллекта у машины через способность её к творчеству. Первоначально тест предложили в 2001 году: тогда машина должна была создать произведение искусства, которое разработчик машины принял бы за созданное человеком. Так как чётких критериев успеха нет, тест получается слишком неточным.

В прошлом году профессор Марк Рейдел из Технологического института Джорджии обновил тест, чтобы сделать его менее субъективным. Теперь машина должна создать произведение в определённом жанре и в определённых творческих рамках, заданных человеком-судьёй. Проще говоря, это должно быть произведение искусства в конкретном стиле. Скажем, судья может попросить машину нарисовать маньеристскую картину в духе Пармиджанино или написать джазовое произведение в духе Майлза Дэвиса. В отличие от оригинального теста, машины работают в заданных рамках, и поэтому судьи могут оценивать результат более объективно.

Испытание IKEA


Машине показывают картинку и спрашивают, например, где на ней находится чашка, - и дают несколько вариантов ответа. Все варианты ответов правильные (на столе, на подстилке, перед стулом, слева от лампы) , но некоторые из них могут быть более человеческими, чем другие (скажем, из всего перечисленного человек скорее ответит «на столе») . Кажется, что это простое задание, но на самом деле способность описать, где находится объект по отношению к другим объектам - важнейший элемент человеческого разума. Здесь играют роль множество нюансов и субъективных суждений, от размера объектов до их роли в конкретной ситуации - в общем, контекст. Люди проделывают это интуитивно, а машины сталкиваются с проблемами.

Схемы Винограда


Чат-боты, проходящие тест Тьюринга, умело обманывают судей и заставляют поверить, что они - люди. По словам Гектора Левеска, профессора информатики в Университете Торонто, такой тест лишь показывает, как легко обмануть человека, особенно в короткой текстовой переписке. Но из теста Тьюринга невозможно понять, есть ли у машины интеллект или хотя бы понимание языка.