Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон

Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).

Пусть дан прямоугольный треугольник, стороны которого а , b и с (рис. 267).

Построим на его сторонах квадраты. Площадиэтих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М’К’О’Р’ (рис. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на риунках 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый изкоторых равен прямоугольному треугольнику АВС. Квадрат М’К’О’Р’ разбился на четырёхугольник (он на рисунке 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые ∠1 + ∠2 = 90°, откуда ∠3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на рисунке 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на рисунке 269 этот квадрат тоже заштрихован), равна площади квадрата М’К’О’Р’, равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;

b 2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.

Например:

а) если даны катеты а = 4 см, b = 3 см, то можно найти гипотенузу (с ):

с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 = 5(см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках ABC и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,

то катет а треугольника ABC меньше катета а 1 треугольника А 1 В 1 C 1 .

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,

а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,

т. е. а 2 а 1 2 . Откуда а а 1 .

Измерены одной единицей, то квадрат числа, выражающего гипотенузу равен сумме квадратов чисел, выра жающих катеты.

Эту теорему обыкновенно выражают сокращенно так:

Квадрат гипотенузы равен сумме квадратов катетов.

Это соотношение было впервые замечено греческим геометром Пифагором (VI в. до н.э.) и носит поэтому его имя - теорема Пифагора .

Теорема .

острого угла , равен сумме квадратов двух других сторон без удвоенного произведения какой-нибудь из этих сторон на ее отрезок от вершины острого угла до высоты.

Пусть B С - сторона треугольника AB С (черт. 1 и черт. 2), лежащая против острого угла A , и BD - высота опущенная на какую-либо из остальных сторон, например, на A С (или на ее продолжение).Требуется доказать, что:

BC 2 = AB 2 + A С 2 - 2 A С. A D.

Из прямоугольных треугольников BDС и AB D выводим:

BC 2 = BD 2 +D С 2 [ 1 ] ;

BD 2 = AB 2 - A D 2 [ 2] .

С другой стороны: D С = AС-A D (черт. 1) или D С = A D -AС (черт. 2). В обоих случаях для D С 2 получим одно и то же выражение:

D С 2 = (A С -A D) 2 = A С 2 - 2A С . A D + A D 2 ;

D С 2 = (A D -A С ) 2 = A D 2 - 2A D . A С + A С 2 .

Подставив в равенство вместо BD 2 и D С 2 их выражения из равенств и , получим:

BC 2 = AB 2 - A D 2 + A С 2 - 2 A С . A D + A D 2 .

Это равенство, после сокращения членов -A D 2 и + A D 2 , и есть то самое, которое требовалось доказать.

Замечание. Доказанная теорема остается верной и тогда, когда угол С прямой. Тогда отрезок СD обратится в ноль, т.е. AС станет равна AD, и мы будем иметь:

BC 2 = AB 2 + A С 2 - 2A С 2 = AB 2 - A С 2 .

Что согласуется с теоремой о квадрате гипотенузы .

Теорема.

В треугольнике квадрат стороны, лежащей против тупого угла , равен сумме квадратов двух других сторон, сложенных с удвоенным произведением какой-нибудь из этих сторон на отрезок ее продолжения от вершины тупого угла до высоты. Доказательство аналогично предыдущему.

Следствие.

Из трех последних теорем выводим, что квадрат стороны треугольника равен, меньше или больше суммы квадратов других сторон, смотря по тому, будет ли противолежащий угол прямой, острый или тупой.

Отсюда следует обратное предложение: Угол треугольника окажется прямым, острым или тупым, смотря по тому, будет ли квадрат противолежащей стороны равен, меньше или больше суммы квадратов других сторон.

Вычисление высоты треугольника по его сторонам.

Обозначим высоту , опущенную на сторону а треугольника AB С , через h a . Чтобы вычислить ее, предварительно из уравнения:

b 2 = a 2 + с 2 - 2 a с .

находим отрезок основания с’:

.

После чего из DABD определяем высоту, как катет:

.

Таким же путем можно определить высоты h b и h с, опущенные на стороны b и с.

Вычисление медиан треугольника по его сторонам.

Пусть даны стороны треугольника AB С и требуется вычислить его медиану BD . Для этого продолжим ее на расстояние DE = BD и точку E соединим с A и С . Тогда получим параллелограмм ABCE .

Применяя к нему предыдущую теорему, найдем: BE 2 = 2 AB 2 + 2 B С 2 - A С 2 .

Стороны треугольника и угол , противолежащий стороне .

Следствие 1.Следствие из теоремы косинусов (о связи диагоналей и сторон параллелограмма).Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

d 1 2 + d 2 2 = 2 a 2 + 2 b 2

Следствие 2.Следствие из теоремы косинусов об определении вида треугольника.

Пусть с- наибольшая сторона треугольника.

Если с 2 =а 2 +b 2 , то угол против с=90 градусов и треугольник прямоугольный.

Если с 2 <а 2 +b 2 , то угол против с<90 градусов и треугольник остроугольный.

Если с 2 >а 2 +b 2 , то угол против с>90 градусов и треугольник тупоугольный.

Формула 1.Формулы для вычисления длины медианы треугольника.

или

Формула 2. , угол лежит напротив стороны а.

9. Теорема синусов. Следствие теоремы синусов(о радиусе описанной окружности).

Теорема 1 . Теорема синусов – стороны треугольника пропорциональны синусам противолежащих углов.

где , , - стороны треугольника, - соответственно противолежащие им углы.

Следствие 1.Следствие из теоремы синусов (о радиусе описанной окружности). Диаметр описанной окружности около треугольника равен отношению стороны треугольника к синусу противоположного угла.

где , , - стороны треугольника, - соответственно противолежащие им углы, а - радиус окружности, описанной вокруг треугольника.

10. Свойства прямоугольного треугольника

Теорема Пифагора . В любом прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Синус угла х – это отношение противолежащего катета к гипотенузе.

Косинус угла х – это отношение прилежащего катета к гипотенузе.

Тангенс угла х – э то отношение противолежащего катета к прилежащему.

Котангенс угла х – это отношение прилежащего катета к противолежащему.

Свойство высоты прямоугольного треугольника, опущенного на гипотенузу.

Свойство: 1. В любом прямоугольном треугольнике, высота, опущенная из прямого угла(на гипотенузу), делит прямоугольный треугольник, на три подобных треугольника.

Свойство: 2. Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу(или среднему геометрическому тех отрезков на которые высота разбивает гипотенузу).

Свойство: 3. Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Свойство: 4. Катет против угла в 30 градусов равен половине гипотенузы.

Формула 1. , где гипотенуза;

Формула 2. , где гипотенуза; , катеты.

Свойство: 5. В прямоугольном треугольнике медиана проведенная к гипотенузе, равна ее половине и равна радиусу описанной окружности.

Свойство: 6. Зависимость между сторонами и углами прямоугольного треугольника:

11. Свойство диаметра перпендикулярного хорде.

Свойство: 1. Диаметр перпендикулярный хорде делит эту хорду пополам.

12. Свойство дуг, заключенных между параллельными хордами.

Свойство: 1. Дуги, заключенные между параллельными хордами, равны.

13. Свойства касательной.

Определение . Касательная – прямая, имеющая только одну точку пересечения с окружностью.

Свойство: 1. Касательная к окружности перпендикулярна к радиусу проведенного в точку касания.

Свойство: 2. Две касательные проведенные из одной точки к окружности – равны.

14. Определение вписанного угла, центрального угла. Измерение их величин. Свойство вписанного угла, его связь с центральным углом, опирающимся на туже хорду.

Определение 1 . Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность – вписанный угол.

Определение 2 . Центральный угол в окружности – плоский угол с вершиной в ее центре.

Угол, вписанный в окружность, равен половине соответствующего центрального угла.

Градусной мерой дуги окружности называется градусная мера соответствующего центрального угла.

Свойство: 1. Все вписанные углы, опираются на одну и ту же дугу, равны между собой.

Свойство: 2. Вписанный угол, опирающийся на диаметр прямой.

15. Угол с вершиной внутри круга; угол с вершиной вне круга; угол межу касательной и хордой. Измерение их величин.

Свойство: 1. Угол, вершина которого лежит внутри круга, измеряется полусуммой двух дуг, из которых одна заключается между его сторонами, а другая между продолжениями сторон.

Свойство: 2. Угол, вершина которого лежит вне круга, измеряется полуразностью двух дуг, заключенных между его сторонами.

Свойство: 3. Угол, составленный касательной и хордой, измеряется половиной дуги заключенной внутри него.

16. Свойство хорд, пересекающихся в круге.

Свойство: 1. Если хорды, АВ и СD окружности пересекаются в точке S, то AS ВS=DS CS.

17. Свойство секущей и касательной, проведенной из одной точки.

Свойство: 1. Произведение отрезков секущей окружности равно квадрату отрезка касательной, проведенной из той же точки.

18. Свойство секущих, проведенных из одной точки.

Если из одной точки P к окружности проведены две секущие, пересекающие окружность в точках A,B,C,D соответственно, то AP ВP=CP DP.

19. Свойства вписанного и описанного четырехугольника.

Свойство: 1. Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равна 180 градусов.

Свойство: 2. Четырехугольник можно описать около окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

20. Правильный многогранник. Формулы для вычисления радиусов вписанной и описанной окружности.

Определение 1. Правильныймногоугольник - это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.Площадь правильного многоугольника

Формула 1.Для радиуса окружности, описанной около правильного n-угольника.

Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними, c 2 = a 2 + b 2 – 2ab cos C. Доказательство: Обозначим АВ = с, ВС = а, АС = b. Из вершины А опустим перпендикуляр АD. Тогда АD = b sin C, CD = b cos C, BD = a – b cos C. По теореме Пифагора имеем c 2 = (a – b cos C) 2 + (b sin C) 2 = a 2 – 2ab cos C + b 2 cos 2 C + b 2 sin 2 C = a 2 + b 2 – 2ab cos C. Самостоятельно рассмотрите случаи прямого и тупого угла С.
























Упражнение 12 Ответ: а) острый; При каких значениях угла А квадрат стороны треугольника, лежащей против этого угла: а) меньше суммы квадратов двух других сторон; б) равен сумме квадратов двух других сторон; в) больше суммы квадратов двух других сторон? б) прямой;в) тупой.








Упражнение 17 Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. Доказательство. По теореме косинусов имеем Складывая эти равенства и учитывая, что косинус угла ADC равен минус косинус угла BAD, получим требуемое утверждение.




Пусть в треугольнике ABC AB = c, AC = b, BC = a. Докажите, что для медианы m c, проведенной из вершины C, имеет место формула Доказательство. По теореме косинусов, примененной к треугольникам ACD и BCD, имеем: Складывая эти равенства, получим равенство из которого непосредственно следует искомая формула. Упражнение 19




Пусть в треугольнике ABC AC = b, BC = a. Докажите, что для биссектрисы l c, проведенной из вершины C, имеет место формула где c, c – отрезки на которые биссектриса делит сторону AB Доказательство. По теореме косинусов, примененной к треугольникам ACD и BCD, имеем: Умножим первое равенство на a, второе на b и вычтем из первого равенства второе. Делая тождественные преобразования, получим равенство из которого непосредственно следует искомая формула. Упражнение 22



Упражнение 27 Можно ли описать окружность около четырехугольника со сторонами 1 см, 2 см, 3 см, 4 см? Более точная формулировка: существует ли четырехугольник со сторонами 1 см, 2 см, 3 см, 4 см, около которого можно описать окружность? Решение. Около четырехугольника ABCD можно описать окружность в случае, если По теореме косинусов Откуда Следовательно, такой четырехугольник существует.