Линейное уравнение с одной переменной - спиши у антошки. Как решать линейные уравнения? Примеры решения линейных уравнений

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

Самостоятельные на темы: "Числовые и алгебраические выражения", "Математический язык и математическая модель", "Линейное уравнение с одной переменной", "Координатная прямая и плоскость", "Линейные уравнения с двумя переменными", "Линейная функция и ее график", "Системы двух линейных уравнений с двумя переменными", "Степень с натуральным показателем и её свойства", "Стандартный вид одночлена", "Сложение и вычитание одночлена", "Умножение одночленов", "Возведение одночлена в натуральную степень", "Деление одночлена на одночлен", "Разложение многочлена на множители"


Самостоятельная работа №1 (1 четверть), "Числовые и алгебраические выражения"

Вариант I.


$8\frac{5}{9}*4,8 -\frac{2}{9}* 2,1$.


$3х - 6у + 5$, если заданы $x= 0,5$ и $y=\frac{2}{3}$.

3.Найдите значение $x$, при котором выражение $5х-3$ будет равно выражению $х - 4$.

Вариант II.

1. Вычислите значение выражения наиболее рациональным способом.
$3\frac{3}{4} * 5,6 -\frac{1}{4}* 1,9$.

2. Найдите значение данного выражения.
$х - 8у - 9$, если заданы $x= 0,9$ и $y=\frac{5}{6}$.

3.Найдите значение $x$, при котором выражение $6х - 7$ будет равно выражению $х - 5$.

Вариант III.

1. Вычислите значение выражения наиболее рациональным способом.
$1\frac{7}{9}* 7,6 -\frac{1}{9}* 4,9$.

2. Найдите значение данного выражения.
$х - 8у - 11$, если заданы $x= 2,4$ и $y=\frac{6}{8}.$

3. Найдите значение $y$, при котором выражение $3у - 2$ будет равно выражению $y + 8$.

Самостоятельная работа №2 (1 четверть)
"Математический язык", "Математическая модель"

Вариант I.

1. Переведите предложение на математический язык: разность кубов чисел $a$ и $b$.


Произведение числа на самое себя равно возведению этого числа в квадрат.


Сумма числа $3\frac{3}{4}$ и произведения чисел $5\frac{4}{8}$ и $\frac{1}{8}$.


Портной сшил 3 платья. На каждое платье потребовалось $х$ метра ткани. Потом он сшил ещё 10 костюмов. На каждый костюм потребовалось на 2 метра больше ткани, чем на платье. Сколько ткани потребовалось на пошив всех платьев и костюмов?

Вариант II.

1. Переведите предложение на математический язык. сумма квадратов чисел x и y.

2. Переведите на математический язык следующее свойство.
Если умножить число на $-1$, то получим тоже число, но с противоположным знаком.

3. Перепишите предложение в виде числового выражения. Вычислите его значение.

Разность числа $3\frac{5}{8}$ и частного чисел $2\frac{5}{8}$ и $1\frac{1}{2}$.

4. Составьте математическую модель данной ситуации.
а) Два пешеход пошли в противоположных направлениях. Скорость первого пешехода равна $х$ км/час. Скорость второго пешехода - больше на 2 км/час. Какое расстояние они пройдут через 3 часа? За какое время второй пешеход пройдет 10 км?

Вариант III.

1. Переведите предложение на математический язык: произведение числа 3 и разности чисел $n$ и $m$.

2. Переведите на математический язык следующее свойство: если разделить единицу на дробь, то в результате мы получим дробь, обратную данной.

3. Перепишите предложение в виде числового выражения. Вычислите его значение:
Сумма числа $6\frac{5}{8}$ и частное чисел $1\frac{5}{9}$ и $\frac{2}{9}$.

4. Составьте математическую модель данной ситуации.
Катер отплыл от пристани вниз по течению. Скорость реки равна $x$ км/час. Скорость катера - больше на 2 км/час. За какое время катер пройдет 10 км? Сколько времени ему понадобиться для возвращения обратно?

Самостоятельная работа №3 (1 четверть)
"Линейное уравнение с одной переменной"

Вариант I.


а) $5z - 4 = 2\frac{3}{4}z + 2$.

Б) $\frac{4х + 2}{3} =\frac{5х + 1}{6}$.


Спортсмен пробегает некоторую дистанцию за 18 минут. Если он увеличит скорость на 3 км/час, то ту же дистанцию он пробежит на 4 минуты быстрее. Найдите скорость спортсмена.

Вариант II.

1. Решите уравнения с одной переменной.
а) $3z - 2 = 1\frac{3}{6}z +1$.

Б) $\frac{5y + 3}{7}=\frac{3y + 8}{4}$.

2. Составьте уравнение к данной задаче и решите ее.
Машина проезжает из города в село за 4 часа. Если он увеличит скорость на 20 км/час, то эту же дорогу он проезжает за 3 часа. Найдите скорость автомобиля.

Вариант III.

1. Решите уравнения с одной переменной.
а) $4х - 6 = 2\frac{5}{8}х + 3$.

Б) $\frac{2y + 7}{2}=\frac{4y + 3}{5}$.

2. Составьте уравнение к данной задаче и решите ее.
Катер проплывает от пристани до порта за 30 минут. Если он увеличит скорость на 10 км/час, то проплывет, такое же расстояние за 20 минут. Найдите скорость катера.

Самостоятельная работа №4 (1 четверть) "Координатная прямая"

Вариант I.


X (-2); Y (-6,5); Z (3,8).

2. Укажите на координатной прямой указанный промежуток.
а) [-2,5; 0]; б) ; [-∞; 0].

3. Сколько натуральных чисел принадлежат заданному промежутку [-30; -5]?

Вариант II.

1. Укажите на координатной прямой следующие три точки:
X (3); Y (-5); Z (-3,8).


а) ; б) ; .

3. Сколько натуральных чисел принадлежат заданному промежутку ?

Вариант III.

1. Укажите на координатной прямой следующие три точки:
X (-7); Y (2); Z (3,8).

2. Укажите на координатной прямой указанный промежуток:
а) ; б) [-2; 4]; [-1; +∞].

3. Сколько натуральных чисел принадлежат заданному промежутку [-52; -4]?

Самостоятельная работа №5 (1 четверть) "Координатная плоскость"

Вариант I.


E (-2; 5); F (5; -3); H (-3; -5).


А (-4; 0); В (5; 8); С (-5; -4).

3. Постройте на координатной плоскости XOY прямую с координатами С(-4;2) и D(3;0).

Вариант II.

1. Без построения рисунка укажите, в какой координатной плоскости находятся точки?
E (3; 6); F (-8; 7); H (4; 4).

2. Постройте треугольник, если известны координаты его вершин
А (5; 3); В (-5; -2); С (-3; 0).

3. Постройте на координатной плоскости XOY прямую с координатами С(-2;6) и D(7;-2).

Вариант III.

1. Без построения рисунка укажите, в какой координатной плоскости находятся точки?
E (-2; -4); F (4; 6); H (3; -2).

2. Постройте треугольник, если известны координаты его вершин
А (7; -3); В (2; 6); С (-2; 1).

3. Постройте на координатной плоскости XOY прямую с координатами С(6;-4) и D(-3;6).

Самостоятельная работа №6 (1 четверть) "Линейные уравнения с двумя переменными"

Вариант I.

1. Постройте график функции: $5x + y -4 = 0$.

2. Постройте графики двух функций и найдите точку пересечения: $х + 5у = 7$; $x - 4y =-2$.

3. Для уравнения: $х + 2y - 4 = 0$ найдите ординату точки с абсциссой равной 4.

Вариант II.

1. Постройте график функции: $3x - y + 6 = 0$.

2. Постройте графики двух функций и найдите точку пересечения: $2х - 5у = 8$; $2x - y = 0$.

3. Для уравнения: $2х + 4y - 5 = 0$ найдите ординату точки с абсциссой равной 5.

Вариант III.

1. Постройте график функции: $2x - 2y - 6 = 0$.

2. Постройте графики двух функций и найдите точку пересечения: $2х + 2у = 10$; $x - 2y = 5$.

3. Для уравнения: $х + 4y - 2 = 0$ найдите ординату точки с абсциссой равной 5.

Самостоятельная работа №7 (1 четверть) "Линейная функция и ее график"

Вариант I.

1. Задано линейное уравнение: $x - 2y - 4 = 0$. Преобразуйте его к виду: $y = kx + m$. Найдите значения $k$ и $m$.


а) $y = 6х - 2$, при $х = 2$; б) $y = -3x + 5$, при $х = 3$.

3. Постройте график функции: $у = 3\frac{5}{8}х -\frac{1}{2}$.

4. Задано линейное уравнение: $у = 4 - 3х$. Вычислите значение аргумента, при котором оно принимает значения:
а) 3; б) -2; в) -1,1.

5. В какой точке пересекаются две линейные функции: $y = 3х - 12$ и $y = -2x + 3$?

6. На заданном промежутке $[-3; +3]$ найдите наибольшее и наименьшее значение функции $y=-5x + 4$.

Вариант II.

1. Задано линейное уравнение: $2x - 3y - 5 = 0$. Преобразуйте его к виду: $y = kx + m$. Найдите значения $k$ и $m$.

2. Найдите значение функции, если известно значение аргумента.
а) $y = 2х + 2$, при $х = 1$; б) $y = 3x - 6$, при $х = 4$.

3. Постройте график функции: $у = 4\frac{2}{3}х - \frac{3}{6}$.

4. Задано линейное уравнение: $у = 5 + 2х$. Вычислите значение аргумента, при котором оно принимает значения:
а) -2; б) -4; в) -2,6.

5. В какой точке пересекаются две линейные функции: $y = 2х - 5$ и $y = -3x + 10$?

6. На заданном промежутке $[-2; +6]$ найдите наибольшее и наименьшее значение функции $y=-2x - 2$.

Вариант III.

1. Задано линейное уравнение: $3x - y + 2 = 0$. Преобразуйте его к виду $y = kx + m$. Найдите значения $k$ и $m$.

2. Найдите значение функции, если известно значение аргумента.
а) $y = -2х +5$, при $х = 3$; б) $y = -2x + 6$, при $х = -1$.

3. Постройте график функции: $у = 2\frac{1}{4}х + \frac{2}{3}$.

4. Задано линейное уравнение: $у = 3 +2х$. Вычислите значение аргумента, при котором оно принимает значения:
а) -1; б) -4; в) 2.

5. В какой точке пересекаются две линейные функции: $y = -2х +4$ и $y = -4x - 2$?

6. На заданном промежутке $$ найдите наибольшее и наименьшее значение функции $y=3x-5$.

Самостоятельная работа №1 (2 четверть) "Системы двух линейных уравнений с двумя переменными"

Вариант I

1. Задана система уравнений. Выясните, какая пара чисел (4;0), (3;4), (0;5) является решением данной системы уравнений.
$\begin {cases} 2x+y=10, \\ 4x-2y=4. \end {cases}$


$\begin {cases} x-y=2, \\ 3x+3y=6. \end {cases}$


а) $\begin {cases} x=-y, \\ 3x-y=8. \end {cases}$

Б) $\begin {cases} x=2y, \\ 2x+4y=40. \end {cases}$


а) $\begin {cases} x=y+4, \\ -x=-3y-4. \end {cases}$

Б) $\begin {cases} x=4y, \\ 2x+4y=24. \end {cases}$

5. Решите задачу.
Сумма двух чисел равна 9, а разность равна 1. Найдите эти числа.

6. Решите задачу.
Заданы 2 числа. Сумма этих чисел равна 80. Если первое число уменьшить в 2 раза, а второе число увеличить в 2 раза, то в сумме получим 115. Чему равны эти числа?

Вариант II

1. Задана система уравнений. Выясните, какая пара чисел (2;6), (-3;4), (2;4) является решением данной системы уравнений.
$\begin {cases} 5x-3y=-2, \\ 3x+y=10. \end {cases}$

2. Заданную систему уравнений решите графическим способом.
$\begin {cases} 2x-2y=6, \\ x-y=1. \end {cases}$

3. Заданы системы уравнений. Решите их методом постановки.
а) $\begin {cases} x=-0,5y, \\ 3x-y=15. \end {cases}$

Б) $\begin {cases} x=-3y, \\ 3x+4y=10. \end {cases}$

4. Решите заданные системы уравнений методом алгебраического сложения.
а) $\begin {cases} x=2y-1, \\ x-3y=-4. \end {cases}$

Б) $\begin {cases} x=4y, \\ 2x-4y=4. \end {cases}$

5. Решите задачу.
Сумма двух чисел равна 10, а разность утроенного первого числа и второго равна 2. Найдите эти числа.

6. Решите задачу.
Два фермера за июль собрали 300 кг ягод. В августе первый фермер собрал в 2 раза больше ягод, а второй - в два раза меньше, чем он собрал за июль. По сколько кг ягод собирали фермеры в каждом месяце, если за август они вместе собрали 450 кг?

Вариант III

1. Задана система уравнений. Выясните, какая пара чисел (2;6), (3;-2), (2;4) является решением данной системы уравнений.
$\begin {cases} 2x-4y=14, \\ -3x+y=-11. \end {cases}$

2. Заданную систему уравнений решите графическим способом.
$\begin {cases} 5x+5y=-5, \\ 5x+y=3. \end {cases}$

3. Заданы системы уравнений. Решите их методом постановки.
а) $\begin {cases} x=-y, \\ 3x-2y=5. \end {cases}$

Б) $\begin {cases} x+y=4, \\ 3x+4y=12. \end {cases}$

4. Решите заданные системы уравнений методом алгебраического сложения.
а) $\begin {cases} x=y+1, \\ x-2y=1. \end {cases}$

Б) $\begin {cases} x=2y, \\ x-4y=12. \end {cases}$

5. Решите задачу.
Сумма двух чисел равна 10, а разность равна -2. Найдите эти числа.

6. Решите задачу.
Катер проплывает расстояние между двумя деревнями за 4 часа по течению и за 6 часов против течения. Найдите скорость катера и течения реки, если расстояние между деревнями равно 60 км.

Самостоятельная работа №2 (2 четверть) "Степень с натуральным показателем и её свойства"

Вариант I.


а) 3,4 * 3,4 * 3,4 * 3,4.
б) а * а * а * а * а * а * а.

2. Вычислите:
а) $5^3$.
б) $7^3- 4^4$.

3. Решите уравнения:
а) $5x^3=320$.
б) $3^{x-3}=81$.

4. Найдите объем куба и его площадь, если его ребро равно 4 см.


а) $x^3* x^5$.
б) $x^6* x^4$.
в) $(a^3)^6$.

6. Вычислите: $\frac{2^6*(2^3)^2}{2^4}$.

7. Заданы выражения. Возведите их в степень.
а) $(4z^3)^3$.
б) $(6x^3y^3)^2$.
в) $\frac{(2a^3)^4}{(b^2)^3}$.

Вариант II.

1. Запишите данные выражения в виде степени:
а) 5,1 * 5,1 * 5,1 * 5,1.
б) d * d * d * d * d * d * d * d.

2. Вычислите:
а) $4^5$.
б) $8^2- 6^3$.

3. Решите уравнения:
а) $2y^2=162$.
б) $4^{x-3}=64$.

4. Найдите объем куба и длину его ребра, если площадь поверхности равна 216 см 2 .

5. Заданы выражения. Представьте их в виде степени:
а) $y^4* y^3$.
б) $z^6* z^2$.
в) $(b^4)^5$.

6. Вычислите: $\frac{3^6*(3^2)^3}{3^4}$.


а) $(2y^2)^4$.
б) $(5x^2z^3)^3$.
в) $\frac{(3c^4)^5}{(d^2)^2}$.

Вариант III.

1. Запишите данные выражения в виде степени:
а) 6,2 * 6,2 * 6,2.
б) z* z * z* z .

2. Вычислите:
а) $6^4$.
а) $5^2- 3^4$.

3. Решите уравнения:
а) $2f^4=512$.
б) $3^{x-1}=81$.

4. Объем куба равен 125 см 3 . Найдите длину ребра куба и его площадь.

5. Заданы выражения. Представьте их в виде степени:
а) $z^4* z^2$.
б) $\frac{y^5}{y^2}$.
в) $(c^4)^6$.

6. Вычислите:
$\frac{4^6*(4^3)^3}{4^5}$.

7. Заданы выражения. Возведите их в степень:
а) $(3a^2)^2$.
б) $(5z^3)^2$.
в) $\frac{(2d^5)^6}{(c^2)^3}$.

Самостоятельная работа №1 (3 четверть) "Стандартный вид одночлена", "Сложение и вычитание одночлена"

Вариант I.

5 3 x 3 y 4 * (-3x 2 y 4).

2. Упростите: 5ab 3 - 3ab 3 + 4ab 3 .

3. Упростите заданное выражение и найдите его значение при $y=2$, $t= 0,5$.
-4t 3 y 2 + 3y 2 - 2t 2 + 3t 2 + y 2 .


Автобус с туристами проехал 2 ⁄ 9 пути на скорости 60 км/час, 4 ⁄ 9 пути он проехал со скоростью 50 км/час. Остальные 18 км он проехал со скоростью 60 км/час. Какое расстояние проехал туристический автобус?

Вариант II.

1. Заданный одночлен приведите к стандартному виду.

3 4 y 3 x 2 * 3y 4 x 5 .

2. Упростите: 2cd 4 - 3cd 4 + 7cd 4 .

3. Упростите заданное выражение и найдите его значение при $d=0,3$; $e= 2$.
5d 3 e 2 + 2d 2 - 2e 2 + 4d 2 + e 2

4. Решите задачу, выделяя три этапа математического моделирования.
Спортсмен пробежал 3 ⁄ 8 пути со скоростью 12 км/час, 1 ⁄ 8 пути пробежал со скоростью 15 км/час. Остальные 5 км он пробежал со скоростью 10 км/час. Какое расстояние пробежал спортсмен?

Вариант III.

1. Заданный одночлен приведите к стандартному виду.

5 3 a 2 b 3 * 2y 3 a 3 .

2. Упростите: 4mn 2 + 5mn 2 - 6mn 2 .

3. Упростите заданное выражение и найдите его значение при t= - 1 ⁄ 2 , $u= 6$.
-3t 3 u 2 + 5t 2 - 7t 3 u 2 + 3t 2 + u 2 .

4. Решите задачу, выделяя три этапа математического моделирования.
Велосипедист проехал 1 ⁄ 5 пути со скоростью 25 км/час, 3 ⁄ 5 пути со скоростью 30 км/час. Остальные 10 км он проехал со скоростью 18 км/час. Какое расстояние проехал спортсмен?

Самостоятельная работа №2 (3 четверть) "Умножение одночленов", "Возведение одночлена в натуральную степень", "Деление одночлена на одночлен"

Вариант I.

1. Вычислите.
а) 3n 3 m 2 *(- 4m 3 n 4).
б) 2 ⁄ 7 x 2 y 4 * 1 ⁄ 3 x 3 y 4 .

2. Решите задачу.
Заданы 2 квадрата. Сторона большего квадрата в 1,5 раза больше стороны меньшего квадрата. А площадь большего квадрата на 125 см 2 больше площади меньшего квадрата. Найдите стороны квадратов.
3. Разделите одночлен на одночлен: $\frac{(-6a^4b)^3}{3a^3}$.
4. Упростите выражение: $\frac{(3x^3d^2)^3}{(xd^2)^2}$.

Вариант II.

1. Вычислите.
а) 5y 2 z 3 * (- 6y 4 z 4).

Б) 3 ⁄ 8 a 4 b 2 * 1 ⁄ 8 a 2 b 3 .

2. Разделите одночлен на одночлен: $\frac{5b^4d^2}{7b^2}$.

3. Упростите выражение: $\frac{(5c^3z^4)^2}{cz^3}$.

Вариант III.

1. Вычислите.
а) - 6tu 2 * 5t 4 u 3 .

Б) 5 ⁄ 9 x 2 y 3 * 1 ⁄ 9 x 2 y 2 .

2. Разделите одночлен на одночлен: $\frac{14z^4e^3}{7z^3}$.

3. Упростите выражение: $\frac{(8t^5u^5)^2}{4t^3}$.

Самостоятельная работа №1 (4 четверть) "Разложение многочлена на множители"

Вариант I.

1. Вычислите следующее выражение наиболее рациональным способом: 4,5 2 - 2,5 2 .

2. Решите заданное уравнение: $(3х + 5)(2х - 2) = 0$.

3. Вычислите выражение наиболее рациональным способом: $\frac{346^2- 146^2}{50 * 512}$.

4. Разложите следующее выражения на множители:
a) 4y + 8y 2 .
б) 7z 5 - 21z 2 .
в) 6a 2 b 5 c + 24 ab 2 c - 8 a 2 b 3 .

5. Решите уравнение: 3y 2 - 9 y =0.

Вариант II.

1. Вычислите следующее выражение наиболее рациональным способом: 12,5 2 - 7,5 2 .

2. Решите заданное уравнение: $(4y + 6)(y - 3) = 0$.

3. Вычислите выражение наиболее рациональным способом: $\frac{{456}^2-{256}^2}{1200 * 1024}$.


a) 2z + 6z 2 .
б) 8y 5 - 24y 3 .
в) 2abc -3 a 2 b 2 + 4 a 2 b 3 c.
5. Решите уравнение: 6y 2 + 4y =0.

Вариант III.

1. Вычислите следующее выражение наиболее рациональным способом: 8,2 2 - 4,2 2 .

2. Решите заданное уравнение: $(2z - 3)(z + 5) = 0$.

3. Вычислите выражение наиболее рациональным способом: $\frac{{663}^2-{363}^2}{40 * 243}$.

4. Разложите следующее выражения на множители.
a) 3x + 9x 2 .
б) 12y 4 - 26y 2 .
в) 3x 2 y 5 z+12xy 2 z - 9x 2 y 3 z.

5. Решите заданное уравнение: 5a 2 + 10a =0.

Вариант I.
1. 40,6.
2. 2,5.
3. $х=-0,25$.
Вариант II.
1. $20,525$.
2. $-14\frac{23}{30}$.
3. $х=0,4$.
Вариант III.
1. $12\frac{87}{90}$.
2. $-14,6$.
3. $y=5$.

Вариант I.
1. $a^3-b^3$.
2. Для любого числа $a$, верно утверждение $a*a=a^2$.
3. $3\frac{3}{4}+5\frac{4}{8}*\frac{1}{8}=4,4375$.
4. $13x+20$.
Вариант II.
1. $x^2+y^2$.
2. Для любого числа $a$, верно утверждение $a*(-1)=-a$.
3. $3\frac{5}{8}-2\frac{5}{8}:\frac{1}{2}=-1\frac{5}{8}$.
4. Пройдут расстояние $(6х+6)$. Второму пешеходу понадобится $\frac{10}{x+2}$ часов.
Вариант III.
1. $3(n-m)$.
2. Для любых чисел $a$, $b$ верно утверждение $1:(\frac{a}{b})=\frac{b}{a}$.
3. $6\frac{5}{8}+1\frac{5}{9}:\frac{2}{9}=-\frac{3}{8}$.
4. Катер пройдет 10 км за $\frac{5}{x+1}$. Для возвращения на пристань понадобиться 5 часов.

Вариант I.
1.
а) $z=\frac{8}{3}$.
б) $x=-1$.
2. 10.5 км/ч.
Вариант II.
1.
а) $z=2$.
б) $y=-44$.
2. 60 км/ч.
Вариант III.
1.
а) $6\frac{6}{11}$.
б) -14,5.20 км/ч.
2. 20 км/ч.

Вариант I.

Вариант II.
3. 43.
Вариант III.
3. В этом промежутке нет натуральных чисел.

Вариант I.
2. $x=2$, $y=1$.
3. $y=0$.
Вариант II.
2. $x=-1$, $y=-2$.
3. $y=-1,25$.
Вариант III.
2. $x=5$, $y=0$.
3. $y=-0,75$.

Вариант I.
1. $y=0,5x+2$.
2.
a) $y=10$.
б) $y=-4$.
4.
a) $x=\frac{1}{3}$.
б) $x=2$.
в) $x=1,7$.
5. Точка с координатами $x=3$, $y=-3$.
6. $y_{min}=-11$, $y_{max}=19$.
Вариант II.
1. $y=\frac{2}{3}x-\frac{5}{3}$.
2.
a) $y=4$.
б) $y=6$.
4.
a) $x=-3,5$.
б) $x=-4,5$.
в) $x=-3,8$.
5. Точка с координатами $x=3$, $y=1$.
6. $y_{min}=2$, $y_{max}=-14$.
Вариант III.
1. $y=3x+2$.
2.
a) $y=-1$.
б) $y=8$.
4.
a) $x=-2$.
б) $x=3,5$.
в) $x=-0,5$.
5. Точка с координатами $x=-3$, $y=10$.
6. $y_{min}=-5$, $y_{max}=16$.

Вариант I.
1. Точка с координатами (3;4).
2. Точка с координатами (2;0).
3.
a) $x=2$, $y=-2$.
б) $x=10$, $y=5$.
4.
a) $x=4$, $y=0$.
б) $x=8$, $y=2$.
5. Одно число - это 5, другое число - это 4.
6. Одно число - это 30, другое число - это 50.
Вариант II.
1. Точка с координатами (2;4).
2. Нет точки пересечения.
3.
a) $x=3$, $y=-6$.
б) $x=6$, $y=-2$.
4.
a) $x=5$, $y=3$.
б) $x=4$, $y=1$.
5. Одно число - это 3, другое число - это 7.
6. В июле первый фермер собрал 200 кг, второй - 100 кг. В августе первый фермер собрал 400 кг, второй - 50 кг.
Вариант III.
1. Точка с координатами (3;-2).
2. Точка с координатами (1;-2).
3.
a) $x=1$, $y=-1$.
б) $x=4$, $y=0$.
4.
a) $x=1$, $y=0$.
б) $x=-12$, $y=-6$.
5. Одно число - это 4, другое число - это 6.
6. Скорость катера составляет 12,5 км/ч. Скорость течения реки составляет 2,5 км/ч.

Вариант I.
1. а) $(3,4)^4$; б) $a^7$.
2. а) 125; б) 87.
3. а) $x=4$; б) $x=7$.
4. $V=64 {см}^3$. $S=96 {см}^2$.
5. а) $x^8$; б) $x^{10}$; в) $a^{18}$.
6. 256.
7. а) $64z^9$; б) $36x^6y^6$; в) $\frac{16a^{12}}{b^6}$.
Вариант II.
1. а) $(5,1)^4$; б) $d^8$.
2. а) 1024; б) -152.
3. а) $y=9$; б) $x=6$.
4. $V=216 {см}^3$; $a=6 см$.
5. а) $y^7$; б) $z^8$; в) $b^{20}$.
6. 6561.
7. а) $16y^8$; б) $125x^6z^9$; в) $\frac{243c^{20}}{d^4}$.
Вариант III.
1. а) $(6,2)^3$; б) $z^4$.
2. а) 1296; б) -56.
3. а) $f=4$; б) $x=5$.
4. $a=5 см$. $S=150 {см}^2$.
5. а) $z^6$; б) $y^3$; в) $c^24$.
6. 64.
7. а) $9a^4$; б) $25z^6$; в) $\frac{64d^{30}}{c^6}$.

Вариант I.
1. $-375x^5y^8$.
2. $6ab^3$.
3. 3,25.
4. 54 км.
Вариант II.
1. $243x^7y^7$.
2. $6cd^4$.
3. -2,92.
4. 10 км.
Вариант III.
1. $-250a^5b^3y^3$.
2. $3mn^2$.
3. 83.
4. 50 км.

Вариант I.
1. а) $-12n^7m^5$; б) $\frac{2}{21}x^5y^8$.
2. 10 см и 15 см.
3. $-72a^9b^3$.
4. $27x^7d^4$.
Вариант II.
1. a) $-30y^6z^7$ б) $\frac{3}{64}a^6b^5$.
2. $\frac{5}{7}b^2d^2$.
3. $25c^5Z^5$.
Вариант III.
1. $-30t^5u^5$; б) $\frac{5}{81}x^4y^4$.
2. $2ze^3$.
3. $16t^7u^{10}$.

Вариант I.
1. 14.
2. $3x^2+2x-5=0$.
3. $\frac{123}{32}$.
4. а) $4y(1+2y)$; б) $7z^2(z^3-3)$; в) $2ab(3ab^4c+12bc-4ab^2)$.
5. $y=3$.
Вариант II.
1. 25.
2. $2y^2-3y-9=0$.
3. $\frac{89}{768}$.
4. а) $2z(1+3z)$; б) $8y^3(y^2-3)$; в) $ab(2c-3ab+4ab^2c)$.
5. $y=-\frac{2}{3}$.
Вариант III.
1. 49,6.
2. $2z^2+7z-15=0$.
3. $\frac{2565}{81}$.
4. а) $3x(1+3x)$; б) $2y^2(6y^2-13)$; в) $3xy^2z(xy^3+4-3xy)$.
5. $a=-2$.

ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Линейным уравнением с одной переменной, называется равенство, содержащее только одну переменную.

Приведем примеры линейных уравнений:

3 х =12 или 10 у -20=0 или 8 а +3=0

Решить уравнение – это значит найти все корни уравнения или докозать, что их нет. Другими словами, решить линейное уравнение – это значит найти все значения переменной, при каждом из которых уравнение обращается в верное числовое равенство. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

Так уравнение 3 х =12 имеет корень х =4, так как 3*4=12 – верное равенство, и следует отметить – других корней нет.

Вообще линейным уравнением с одной переменной х называют уравнение вида ax + b = 0 .

b – «свободный член».

Коэффициенты это какие-то числа, а решить уравнение - это значит найти значение x, при котором выражение ax + b = 0 верно.

Например, имеем линейное уравнение 3 x – 6 = 0. Решить его – это значит найти, чему должен быть равен x , чтобы 3 x – 6 было равно 0. Выполняя преобразования, получим:

3 x = 6

x = 2

Таким образом выражение 3 x – 6 = 0 верно при x = 2 (Проверка 3 * 2 – 6 = 0)

2 – это корень данного уравнения. Когда решают уравнение, то находят его корни.

Коэффициенты a и b могут быть любыми числами, однако бывают такие их значения, когда корень линейного уравнения с одной переменной не один.

Если a = 0 , то ax + b = 0 превращается в b = 0 . Здесь x «уничтожается». Само же выражение b = 0 может быть истинным только в том случае, если знание b – это 0. То есть уравнение 0* x + 3 = 0 неверно, т. к. 3 = 0 – это ложное утверждение. Однако 0* x + 0 = 0 верное выражение. Отсюда делается вывод, если a = 0 и b ≠ 0 линейное уравнение с одной переменной корней не имеет вообще, но если a = 0 и b = 0 , то корней у уравнения бесконечное множество. Если b = 0 , а a ≠ 0 , то уравнение примет вид ax = 0 . Понятно, что если a ≠ 0 , но в результате умножения получается 0 , то значит x = 0 . То есть корнем этого уравнения является 0.

Расмсмотрим наиболее часто встречающийся случай, когда a ≠ 0

1) ax + b = 0 , значит ax = - b (мы просто перенесли слагаемое b из левой части в правую с противоположным знаком) Вспомни это правило

2) ax = - b , значит

x = –b / a . Вспомни это правило

Значение x в данном случае будет зависеть от значений a и b. При этом оно будет одним единственным. То есть нельзя при одних и тех же коэффициентах получить два или более разных значений x . Например,

–8.5 x – 17 = 0

x = 17 / –8.5

x = –2

Никакое другое число, кроме –2 нельзя получить, деля 17 на –8.5

Бывают уравнения, которые с первого взгляда непохожи на общий вид линейного уравнения с одной переменной, однако легко преобразуются к нему. Например,

–4.8 + 1.3 x = 1.5 x + 12

Если перенести все в левую часть, то в правой останется 0:

–4.8 + 1.3 x – 1.5 x – 12 = 0

Линейные уравнения. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Линейные уравнения.

Линейные уравнения - не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

Обычно линейное уравнение определяется, как уравнение вида:

ax + b = 0 где а и b – любые числа.

2х + 7 = 0. Здесь а=2, b=7

0,1х - 2,3 = 0 Здесь а=0,1, b=-2,3

12х + 1/2 = 0 Здесь а=12, b=1/2

Ничего сложного, правда? Особенно, если не замечать слова: "где а и b – любые числа" ... А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

Что напрягает и подрывает доверие к математике, да...) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

Как узнать линейное уравнение по внешнему виду? Это, смотря какой внешний вид.) Фишка в том, что линейными уравнениями называются не только уравнения вида ax + b = 0 , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. А кто ж его знает, сводится оно, или нет?)

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное , это важно! А деление на число, или дробь числовая – это пожалуйста! Например:

Это линейное уравнение. Здесь есть дроби, но нет иксов в квадрате, в кубе и т.д., и нет иксов в знаменателях, т.е. нет деления на икс . А вот уравнение

нельзя назвать линейным. Здесь иксы все в первой степени, но есть деление на выражение с иксом . После упрощений и преобразований может получиться и линейное уравнение, и квадратное, и всё, что угодно.

Получается, что узнать линейное уравнение в каком-нибудь замудрёном примере нельзя, пока его почти не решишь. Это огорчает. Но в заданиях, как правило, не спрашивают о виде уравнения, правда? В заданиях велят уравнения решать. Это радует.)

Решение линейных уравнений. Примеры.

Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом. Имеет смысл по ссылке сходить, правда?) Тем более, там тоже примеры решения линейных уравнений имеются.

Для начала рассмотрим самый простой пример. Безо всяких подводных камней. Пусть нам нужно решить вот такое уравнение.

х - 3 = 2 - 4х

Это линейное уравнение. Иксы все в первой степени, деления на икс нету. Но, собственно, нам без разницы, какое это уравнение. Нам его решать надо. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) - в правой.

Для этого нужно перенести - 4х в левую часть, со сменой знака, разумеется, а - 3 - в правую. Кстати, это и есть первое тождественное преобразование уравнений. Удивлены? Значит, по ссылке не ходили, а зря...) Получим:

х + 4х = 2 + 3

Приводим подобные, считаем:

Что нам не хватает для полного счастья? Да чтобы слева чистый икс был! Пятёрка мешает. Избавляемся от пятёрки с помощью второго тождественного преобразования уравнений. А именно - делим обе части уравнения на 5. Получаем готовый ответ:

Пример элементарный, разумеется. Это для разминки.) Не очень понятно, к чему я тут тождественные преобразования вспоминал? Ну ладно. Берём быка за рога.) Решим что-нибудь посолиднее.

Например, вот это уравнение:

С чего начнём? С иксами - влево, без иксов - вправо? Можно и так. Маленькими шажочками по длинной дороге. А можно сразу, универсальным и мощным способом. Если, конечно, в вашем арсенале имеются тождественные преобразования уравнений.

Задаю вам ключевой вопрос: что вам больше всего не нравится в этом уравнении?

95 человек из 100 ответят: дроби ! Ответ правильный. Вот и давайте от них избавимся. Поэтому начинаем сразу со второго тождественного преобразования . На что нужно умножить дробь слева, чтобы знаменатель сократился напрочь? Верно, на 3. А справа? На 4. Но математика позволяет нам умножать обе части на одно и то же число . Как выкрутимся? А умножим обе части на 12! Т.е. на общий знаменатель. Тогда и тройка сократится, и четвёрка. Не забываем, что умножать надо каждую часть целиком . Вот как выглядит первый шаг:

Раскрываем скобки:

Обратите внимание! Числитель (х+2) я взял в скобки! Это потому, что при умножении дробей, числитель умножается весь, целиком! А теперь дроби и сократить можно:

Раскрываем оставшиеся скобки:

Не пример, а сплошное удовольствие!) Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо! И применяем это преобразование:

Приводим подобные:

И делим обе части на 25, т.е. снова применяем второе преобразование:

Вот и всё. Ответ: х =0,16

Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали два (всего два!) тождественных преобразования – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Совершенно любыми. Именно поэтому я про эти тождественные преобразования всё время занудно повторяю.)

Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью тождественных преобразований до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения.

Но... Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать...) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.

Особые случаи при решении линейных уравнений.

Сюрприз первый.

Предположим, попалось вам элементарнейшее уравнение, что-нибудь, типа:

2х+3=5х+5 - 3х - 2

Слегка скучая, переносим с иксом влево, без икса - вправо... Со сменой знака, всё чин-чинарём... Получаем:

2х-5х+3х=5-2-3

Считаем, и... опаньки!!! Получаем:

Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да...) Тупик?

Спокойствие! В таких сомнительных случаях спасают самые общие правила. Как решать уравнения? Что значит решить уравнение? Это значит, найти все значения икса, которые, при подстановке в исходное уравнение, дадут нам верное равенство.

Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких иксах это получается. Какие значения икса можно подставлять в исходное уравнение, если эти иксы всё равно посокращаются в полный ноль? Ну же?)

Да!!! Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите - можете проверить.) Поподставляйте любые значения икса в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее.

Вот вам и ответ: х - любое число.

Ответ можно записать разными математическими значками, суть не меняется. Это совершенно правильный и полноценный ответ.

Сюрприз второй.

Возьмём то же элементарнейшее линейное уравнение и изменим в нём всего одно число. Вот такое будем решать:

2х+1=5х+5 - 3х - 2

После тех же самых тождественных преобразований мы получим нечто интригующее:

Вот так. Решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред - вполне веское основание для правильного решения уравнения.)

Опять соображаем, исходя из общих правил. Какие иксы, при подстановке в исходное уравнение, дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё посократится, останется бред.)

Вот вам и ответ: решений нет.

Это тоже вполне полноценный ответ. В математике такие ответы частенько встречаются.

Вот так. Сейчас, надеюсь, пропажа иксов в процессе решения любого (не только линейного) уравнения вас нисколько не смутит. Дело уже знакомое.)

Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.