Является ли данное уравнение целым уравнением. Тема: Целое уравнение и его корни


Продолжаем разговор про решение уравнений . В этой статье мы подробно остановимся на рациональных уравнениях и принципах решения рациональных уравнений с одной переменной. Сначала разберемся, уравнения какого вида называются рациональными, дадим определение целых рациональных и дробных рациональных уравнений, приведем примеры. Дальше получим алгоритмы решения рациональных уравнений, и, конечно же, рассмотрим решения характерных примеров со всеми необходимыми пояснениями.

Навигация по странице.

Отталкиваясь от озвученных определений, приведем несколько примеров рациональных уравнений. Например, x=1 , 2·x−12·x 2 ·y·z 3 =0 , , - это все рациональные уравнения.

Из показанных примеров видно, что рациональные уравнения, как, впрочем, и уравнения других видов, могут быть как с одной переменной, так и с двумя, тремя и т.д. переменными. В следующих пунктах мы будем говорить о решении рациональных уравнений с одной переменной. Решение уравнений с двумя переменными и их большим числом заслуживают отдельного внимания.

Помимо деления рациональных уравнений по количеству неизвестных переменных, их еще разделяют на целые и дробные. Дадим соответствующие определения.

Определение.

Рациональное уравнение называют целым , если и левая, и правая его части являются целыми рациональными выражениями.

Определение.

Если хотя бы одна из частей рационального уравнения является дробным выражением, то такое уравнение называется дробно рациональным (или дробным рациональным).

Понятно, что целые уравнения не содержат деления на переменную, напротив, дробные рациональные уравнения обязательно содержат деление на переменную (или переменную в знаменателе). Так 3·x+2=0 и (x+y)·(3·x 2 −1)+x=−y+0,5 – это целые рациональные уравнения, обе их части являются целыми выражениями. А и x:(5·x 3 +y 2)=3:(x−1):5 – примеры дробных рациональных уравнений.

Завершая этот пункт, обратим внимание на то, что известные к этому моменту линейные уравнения и квадратные уравнения являются целыми рациональными уравнениями.

Решение целых уравнений

Одним из основных подходов к решению целых уравнений является их сведение к равносильным алгебраическим уравнениям . Это можно сделать всегда, выполнив следующие равносильные преобразования уравнения :

В результате получается алгебраическое уравнение, которое равносильно исходному целому уравнению. Так в самых простых случаях решение целых уравнений сводятся к решению линейных или квадратных уравнений, а в общем случае – к решению алгебраического уравнения степени n . Для наглядности разберем решение примера.

Пример.

Найдите корни целого уравнения 3·(x+1)·(x−3)=x·(2·x−1)−3 .

Решение.

Сведем решение этого целого уравнения к решению равносильного ему алгебраического уравнения. Для этого, во-первых, перенесем выражение из правой части в левую, в результате приходим к уравнению 3·(x+1)·(x−3)−x·(2·x−1)+3=0 . И, во-вторых, преобразуем выражение, образовавшееся в левой части, в многочлен стандартного вида, выполнив необходимые : 3·(x+1)·(x−3)−x·(2·x−1)+3= (3·x+3)·(x−3)−2·x 2 +x+3= 3·x 2 −9·x+3·x−9−2·x 2 +x+3=x 2 −5·x−6 . Таким образом, решение исходного целого уравнения сводится к решению квадратного уравнения x 2 −5·x−6=0 .

Вычисляем его дискриминант D=(−5) 2 −4·1·(−6)=25+24=49 , он положительный, значит, уравнение имеет два действительных корня, которые находим по формуле корней квадратного уравнения :

Для полной уверенности выполним проверку найденных корней уравнения . Сначала проверяем корень 6 , подставляем его вместо переменной x в исходное целое уравнение: 3·(6+1)·(6−3)=6·(2·6−1)−3 , что то же самое, 63=63 . Это верное числовое равенство, следовательно, x=6 действительно является корнем уравнения. Теперь проверяем корень −1 , имеем 3·(−1+1)·(−1−3)=(−1)·(2·(−1)−1)−3 , откуда, 0=0 . При x=−1 исходное уравнение также обратилось в верное числовое равенство, следовательно, x=−1 тоже является корнем уравнения.

Ответ:

6 , −1 .

Здесь еще нужно заметить, что с представлением целого уравнения в виде алгебраического уравнения связан термин «степень целого уравнения». Дадим соответствующее определение:

Определение.

Степенью целого уравнения называют степень равносильного ему алгебраического уравнения.

Согласно этому определению целое уравнение из предыдущего примера имеет вторую степень.

На этом можно бы было закончить с решением целых рациональных уравнений, если бы ни одно но…. Как известно, решение алгебраических уравнений степени выше второй сопряжено со значительными сложностями, а для уравнений степени выше четвертой вообще не существует общих формул корней. Поэтому для решения целых уравнений третьей, четвертой и более высоких степеней часто приходится прибегать к другим методам решения.

В таких случаях иногда выручает подход к решению целых рациональных уравнений, основанный на методе разложения на множители . При этом придерживаются следующего алгоритма:

  • сначала добиваются, чтобы в правой части уравнения был нуль, для этого переносят выражение из правой части целого уравнения в левую;
  • затем, полученное выражение в левой части представляют в виде произведения нескольких множителей, что позволяет перейти к совокупности нескольких более простых уравнений.

Приведенный алгоритм решения целого уравнения через разложение на множители требует детального разъяснения на примере.

Пример.

Решите целое уравнение (x 2 −1)·(x 2 −10·x+13)= 2·x·(x 2 −10·x+13) .

Решение.

Сначала как обычно переносим выражение из правой части в левую часть уравнения, не забыв изменить знак, получаем (x 2 −1)·(x 2 −10·x+13)− 2·x·(x 2 −10·x+13)=0 . Здесь достаточно очевидно, что не целесообразно преобразовывать левую часть полученного уравнения в многочлен стандартного вида, так как это даст алгебраическое уравнение четвертой степени вида x 4 −12·x 3 +32·x 2 −16·x−13=0 , решение которого сложно.

С другой стороны, очевидно, что в левой части полученного уравнения можно x 2 −10·x+13 , тем самым представив ее в виде произведения. Имеем (x 2 −10·x+13)·(x 2 −2·x−1)=0 . Полученное уравнение равносильно исходному целому уравнению, и его, в свою очередь, можно заменить совокупностью двух квадратных уравнений x 2 −10·x+13=0 и x 2 −2·x−1=0 . Нахождение их корней по известным формулам корней через дискриминант не составляет труда, корни равны . Они являются искомыми корнями исходного уравнения.

Ответ:

Для решения целых рациональных уравнений также бывает полезен метод введения новой переменной . В некоторых случаях он позволяет переходить к уравнениям, степень которых ниже, чем степень исходного целого уравнения.

Пример.

Найдите действительные корни рационального уравнения (x 2 +3·x+1) 2 +10=−2·(x 2 +3·x−4) .

Решение.

Сведение данного целого рационального уравнения к алгебраическому уравнению является, мягко говоря, не очень хорошей идеей, так как в этом случае мы придем к необходимости решения уравнения четвертой степени, не имеющего рациональных корней. Поэтому, придется поискать другой способ решения.

Здесь несложно заметить, что можно ввести новую переменную y , и заменить ею выражение x 2 +3·x . Такая замена приводит нас к целому уравнению (y+1) 2 +10=−2·(y−4) , которое после переноса выражения −2·(y−4) в левую часть и последующего преобразования образовавшегося там выражения, сводится к квадратному уравнению y 2 +4·y+3=0 . Корни этого уравнения y=−1 и y=−3 легко находятся, например, их можно подобрать, основываясь на теореме, обратной теореме Виета .

Теперь переходим ко второй части метода введения новой переменной, то есть, к проведению обратной замены. Выполнив обратную замену, получаем два уравнения x 2 +3·x=−1 и x 2 +3·x=−3 , которые можно переписать как x 2 +3·x+1=0 и x 2 +3·x+3=0 . По формуле корней квадратного уравнения находим корни первого уравнения . А второе квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен (D=3 2 −4·3=9−12=−3 ).

Ответ:

Вообще, когда мы имеем дело с целыми уравнениями высоких степеней, всегда надо быть готовым к поиску нестандартного метода или искусственного приема для их решения.

Решение дробно рациональных уравнений

Сначала будет полезно разобраться, как решать дробно рациональные уравнения вида , где p(x) и q(x) – целые рациональные выражения. А дальше мы покажем, как свести решение остальных дробно рациональных уравнений к решению уравнений указанного вида.

В основе одного из подходов к решению уравнения лежит следующее утверждение: числовая дробь u/v , где v – отличное от нуля число (иначе мы столкнемся с , которое не определено), равна нулю тогда и только тогда, когда ее числитель равен нулю, то есть, тогда и только тогда, когда u=0 . В силу этого утверждения, решение уравнения сводится к выполнению двух условий p(x)=0 и q(x)≠0 .

Этому заключению соответствует следующий алгоритм решения дробно рационального уравнения . Чтобы решить дробное рациональное уравнение вида , надо

  • решить целое рациональное уравнение p(x)=0 ;
  • и проверить, выполняется ли для каждого найденного корня условие q(x)≠0 , при этом
    • если выполняется, то этот корень является корнем исходного уравнения;
    • если не выполняется, то этот корень – посторонний, то есть, не является корнем исходного уравнения.

Разберем пример применения озвученного алгоритма при решении дробного рационального уравнения.

Пример.

Найдите корни уравнения .

Решение.

Это дробно рациональное уравнение, причем вида , где p(x)=3·x−2 , q(x)=5·x 2 −2=0 .

Согласно алгоритму решения дробно рациональных уравнений этого вида, нам сначала надо решить уравнение 3·x−2=0 . Это линейное уравнение, корнем которого является x=2/3 .

Осталось выполнить проверку для этого корня, то есть проверить, удовлетворяет ли он условию 5·x 2 −2≠0 . Подставляем в выражение 5·x 2 −2 вместо x число 2/3 , получаем . Условие выполнено, поэтому x=2/3 является корнем исходного уравнения.

Ответ:

2/3 .

К решению дробного рационального уравнения можно подходить с немного другой позиции. Это уравнение равносильно целому уравнению p(x)=0 на переменной x исходного уравнения. То есть, можно придерживаться такого алгоритма решения дробно рационального уравнения :

  • решить уравнение p(x)=0 ;
  • найти ОДЗ переменной x ;
  • взять корни, принадлежащие области допустимых значений, - они являются искомыми корнями исходного дробного рационального уравнения.

Для примера решим дробное рациональное уравнение по этому алгоритму.

Пример.

Решите уравнение .

Решение.

Во-первых, решаем квадратное уравнение x 2 −2·x−11=0 . Его корни можно вычислить, используя формулу корней для четного второго коэффициента , имеем D 1 =(−1) 2 −1·(−11)=12 , и .

Во-вторых, находим ОДЗ переменной x для исходного уравнения. Ее составляют все числа, для которых x 2 +3·x≠0 , что то же самое x·(x+3)≠0 , откуда x≠0 , x≠−3 .

Остается проверить, входят ли найденные на первом шаге корни в ОДЗ. Очевидно, да. Следовательно, исходное дробно рациональное уравнение имеет два корня .

Ответ:

Отметим, что такой подход выгоднее первого, если легко находится ОДЗ, и особенно выгоден, если еще при этом корни уравнения p(x)=0 иррациональные, например, , или рациональные, но с довольно большим числителем и/или знаменателем, к примеру, 127/1101 и −31/59 . Это связано с тем, что в таких случаях проверка условия q(x)≠0 потребует значительных вычислительных усилий, и проще исключить посторонние корни по ОДЗ.

В остальных случаях при решении уравнения , особенно когда корни уравнения p(x)=0 целые, выгоднее использовать первый из приведенных алгоритмов. То есть, целесообразно сразу находить корни целого уравнения p(x)=0 , после чего проверять, выполняется ли для них условие q(x)≠0 , а не находить ОДЗ, после чего решать уравнение p(x)=0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Рассмотрим решение двух примеров для иллюстрации оговоренных нюансов.

Пример.

Найдите корни уравнения .

Решение.

Сначала найдем корни целого уравнения (2·x−1)·(x−6)·(x 2 −5·x+14)·(x+1)=0 , составленного с использованием числителя дроби. Левая часть этого уравнения – произведение, а правая – нуль, поэтому, согласно методу решения уравнений через разложение на множители, это уравнение равносильно совокупности четырех уравнений 2·x−1=0 , x−6=0 , x 2 −5·x+14=0 , x+1=0 . Три из этих уравнений линейные и одно – квадратное, их мы умеем решать. Из первого уравнения находим x=1/2 , из второго – x=6 , из третьего – x=7 , x=−2 , из четвертого – x=−1 .

С найденными корнями достаточно легко выполнить их проверку на предмет того, не обращается ли при них в нуль знаменатель дроби, находящейся в левой части исходного уравнения, а определить ОДЗ, напротив, не так просто, так как для этого придется решать алгебраическое уравнение пятой степени. Поэтому, откажемся от нахождения ОДЗ в пользу проверки корней. Для этого по очереди подставляем их вместо переменной x в выражение x 5 −15·x 4 +57·x 3 −13·x 2 +26·x+112 , получающихся после подстановки, и сравниваем их с нулем: (1/2) 5 −15·(1/2) 4 + 57·(1/2) 3 −13·(1/2) 2 +26·(1/2)+112= 1/32−15/16+57/8−13/4+13+112= 122+1/32≠0 ;
6 5 −15·6 4 +57·6 3 −13·6 2 +26·6+112= 448≠0 ;
7 5 −15·7 4 +57·7 3 −13·7 2 +26·7+112=0 ;
(−2) 5 −15·(−2) 4 +57·(−2) 3 −13·(−2) 2 + 26·(−2)+112=−720≠0 ;
(−1) 5 −15·(−1) 4 +57·(−1) 3 −13·(−1) 2 + 26·(−1)+112=0 .

Таким образом, 1/2 , 6 и −2 являются искомыми корнями исходного дробно рационального уравнения, а 7 и −1 – посторонние корни.

Ответ:

1/2 , 6 , −2 .

Пример.

Найдите корни дробного рационального уравнения .

Решение.

Сначала найдем корни уравнения (5·x 2 −7·x−1)·(x−2)=0 . Это уравнение равносильно совокупности двух уравнений: квадратного 5·x 2 −7·x−1=0 и линейного x−2=0 . По формуле корней квадратного уравнения находим два корня , а из второго уравнения имеем x=2 .

Проверять, не обращается ли в нуль знаменатель при найденных значениях x , достаточно неприятно. А определить область допустимых значений переменной x в исходном уравнении достаточно просто. Поэтому, будем действовать через ОДЗ.

В нашем случае ОДЗ переменной x исходного дробно рационального уравнения составляют все числа, кроме тех, для которых выполняется условие x 2 +5·x−14=0 . Корнями этого квадратного уравнения являются x=−7 и x=2 , откуда делаем вывод про ОДЗ: ее составляют все такие x , что .

Остается проверить, принадлежат ли найденные корни и x=2 области допустимых значений. Корни - принадлежат, поэтому, они являются корнями исходного уравнения, а x=2 – не принадлежит, поэтому, это посторонний корень.

Ответ:

Еще полезным будет отдельно остановиться на случаях, когда в дробном рациональном уравнении вида в числителе находится число, то есть, когда p(x) представлено каким-либо числом. При этом

  • если это число отлично от нуля, то уравнение не имеет корней, так как дробь равна нулю тогда и только тогда, когда ее числитель равен нулю;
  • если это число нуль, то корнем уравнения является любое число из ОДЗ.

Пример.

Решение.

Так как в числителе дроби, находящейся в левой части уравнения, отличное от нуля число, то ни при каких x значение этой дроби не может равняться нулю. Следовательно, данное уравнение не имеет корней.

Ответ:

нет корней.

Пример.

Решите уравнение .

Решение.

В числителе дроби, находящейся в левой части данного дробного рационального уравнения, находится нуль, поэтому значение этой дроби равно нулю для любого x , при котором она имеет смысл. Другими словами, решением этого уравнения является любое значение x из ОДЗ этой переменной.

Осталось определить эту область допустимых значений. Она включает все такие значения x , при которых x 4 +5·x 3 ≠0 . Решениями уравнения x 4 +5·x 3 =0 являются 0 и −5 , так как, это уравнение равносильно уравнению x 3 ·(x+5)=0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 =0 и x+5=0 , откуда и видны эти корни. Следовательно, искомой областью допустимых значений являются любые x , кроме x=0 и x=−5 .

Таким образом, дробно рациональное уравнение имеет бесконечно много решений, которыми являются любые числа, кроме нуля и минус пяти.

Ответ:

Наконец, пришло время поговорить о решении дробных рациональных уравнений произвольного вида. Их можно записать как r(x)=s(x) , где r(x) и s(x) – рациональные выражения, причем хотя бы одно из них дробное. Забегая вперед, скажем, что их решение сводится к решению уравнений уже знакомого нам вида .

Известно, что перенос слагаемого из одной части уравнения в другую с противоположным знаком приводит к равносильному уравнению, поэтому уравнению r(x)=s(x) равносильно уравнение r(x)−s(x)=0 .

Также мы знаем, что можно любое , тождественно равную этому выражению. Таким образом, рациональное выражение в левой части уравнения r(x)−s(x)=0 мы всегда можем преобразовать в тождественно равную рациональную дробь вида .

Так мы от исходного дробного рационального уравнения r(x)=s(x) переходим к уравнению , а его решение, как мы выяснили выше, сводится к решению уравнения p(x)=0 .

Но здесь обязательно надо учитывать тот факт, что при замене r(x)−s(x)=0 на , и дальше на p(x)=0 , может произойти расширение области допустимых значений переменной x .

Следовательно, исходное уравнение r(x)=s(x) и уравнение p(x)=0 , к которому мы пришли, могут оказаться неравносильными, и, решив уравнение p(x)=0 , мы можем получить корни, которые будут посторонними корнями исходного уравнения r(x)=s(x) . Выявить и не включать в ответ посторонние корни можно, либо выполнив проверку, либо проверив их принадлежность ОДЗ исходного уравнения.

Обобщим эту информацию в алгоритм решения дробного рационального уравнения r(x)=s(x) . Чтобы решить дробное рациональное уравнение r(x)=s(x) , надо

  • Получить справа нуль с помощью переноса выражения из правой части с противоположным знаком.
  • Выполнить действия с дробями и многочленами в левой части уравнения, тем самым преобразовав ее в рациональную дробь вида .
  • Решить уравнение p(x)=0 .
  • Выявить и исключить посторонние корни, что делается посредством их подстановки в исходное уравнение или посредством проверки их принадлежности ОДЗ исходного уравнения.

Для большей наглядности покажем всю цепочку решения дробных рациональных уравнений:
.

Давайте рассмотрим решения нескольких примеров с подробным пояснением хода решения, чтобы прояснить приведенный блок информации.

Пример.

Решите дробное рациональное уравнение .

Решение.

Будем действовать в соответствии с только что полученным алгоритмом решения. И сначала перенесем слагаемые из правой части уравнения в левую, в результате переходим к уравнению .

На втором шаге нам нужно преобразовать дробное рациональное выражение в левой части полученного уравнения к виду дроби . Для этого выполняем приведение рациональных дробей к общему знаменателю и упрощаем полученное выражение: . Так мы приходим к уравнению .

На следующем этапе нам нужно решить уравнение −2·x−1=0 . Находим x=−1/2 .

Остается проверить, не является ли найденное число −1/2 посторонним корнем исходного уравнения. Для этого можно сделать проверку или найти ОДЗ переменной x исходного уравнения. Продемонстрируем оба подхода.

Начнем с проверки. Подставляем в исходное уравнение вместо переменной x число −1/2 , получаем , что то же самое, −1=−1 . Подстановка дает верное числовое равенство, поэтому, x=−1/2 является корнем исходного уравнения.

Теперь покажем, как последний пункт алгоритма выполняется через ОДЗ. Областью допустимых значений исходного уравнения является множество всех чисел, кроме −1 и 0 (при x=−1 и x=0 обращаются в нуль знаменатели дробей). Найденный на предыдущем шаге корень x=−1/2 принадлежит ОДЗ, следовательно, x=−1/2 является корнем исходного уравнения.

Ответ:

−1/2 .

Рассмотрим еще пример.

Пример.

Найдите корни уравнения .

Решение.

Нам требуется решить дробно рациональное уравнение, пройдем все шаги алгоритма.

Во-первых, переносим слагаемое из правой части в левую, получаем .

Во-вторых, преобразуем выражение, образовавшееся в левой части: . В результате приходим к уравнению x=0 .

Его корень очевиден – это нуль.

На четвертом шаге остается выяснить, не является ли найденный корень посторонним для исходного дробно рационального уравнения. При его подстановке в исходное уравнение получается выражение . Очевидно, оно не имеет смысла, так как содержит деление на нуль. Откуда заключаем, что 0 является посторонним корнем. Следовательно, исходное уравнение не имеет корней.

7 , что приводит к уравнению . Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно из правой части, то есть, . Теперь вычитаем из обеих частей тройки: . По аналогии , откуда , и дальше .

Проверка показывает, что оба найденных корня являются корнями исходного дробного рационального уравнения.

Ответ:

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.

МОУ «Л-Конобеевская СШ»

Целое уравнение
и его корни.

Конспект урока алгебры в 9 классе с использованием компьютерной презентации и компьютерного тестирования.

Разработала учитель математики Закурдаева Наталья Сергеевна

Цели урока :

Образовательная: усвоить понятия «целое уравнение», «степень уравнения»; научиться решать биквадратные уравнения.

Воспитательная : воспитывать внимательность, наблюдательность, самостоятельность, умение выражать свои мысли.

Развивающая: развивать умение логически мыслить, рассуждать, делать выводы, анализировать.

Тип урока: объяснение нового материала

Ход урока:

    Оргмомент.

II . Устные упражнения. (слайд №1)

1. Решите уравнение:

а) х 2 = 9; б) х 2 = 3; в) х 2 + 4 = 0;

2. Каков знак дискриминанта квадратного уравнения, если оно:

а) имеет один корень,

б) имеет два корня;

в) не имеет корней?

3. Какова степень многочлена:

а) х 2 - Зх 5 + 2 ;

б) 4х – 8 – 2х(3х + 6) - 21;

4. Представьте х 4 в виде квадрата

5. Чему равен х 4 , если х 2 = a

6. Если сегодня в 12.00 пойдёт дождь, можете ли вы утверждать, что через 72 часа будут светить солнце?

7. Вспомните, какие выражения называют целыми?

8. Что называют корнем уравнения?

9. Что значит решить уравнение?

III . Объяснение нового материала.
- Сегодня мы с вами узнаем, какие уравнения называются целыми, как определить степень уравнения, а также познакомимся с новым видом уравнений – биквадратными уравнениями.

Итак, запишем тему урока: «Целое уравнение и его корни». (слайд №2 )

Посмотрите внимательно на эти два уравнения. Из каких выражений они состоят?

(Из целых )

Такие уравнения называются целыми

Опр. Целым уравнением с одной переменной называется уравнение, левая и правая части которого – целые выражения.

Что мы можем сделать с этими уравнениями?

(раскрыть скобки, привести подобные слагаемые – упростить )

Т.е. можем привести их к виду P (x )=0, где P (x

У любого многочлена стандартного вида вы умеете определять степень. Степень можно определить и у уравнения.

Итак, (слайд № 3 )

Опр. Если уравнение с одной переменной записано в виде P (x )=0, где P (x ) - многочлен стандартного вида, то степень этого многочлена называют степенью уравнения. Степенью произвольного целого уравнения называют степень равносильного ему уравнения вида P (x )=0, где P (x ) - многочлен стандартного вида.

Рассмотрим пример

Пример: определим степень уравнения

Выполним необходимые преобразования (слайд №3 )

Степень данного уравнения равна 7

Выполнив необходимые преобразования в заданном уравнении можно (слайд №4 )

Уравнение первой степени можно привести к виду

Уравнение второй степени можно привести к виду

Уравнение третьей степени можно привести к виду

Уравнение четвёртой степени можно привести к виду

и т. д.

Уравнение первой степени по-другому называется… (линейным )

Уравнение второй степени … (квадратным ). От чего зависит количество корней квадратного уравнения? (от дискриминанта )

Учёными доказано, что целое уравнение 2-й степени имеет не более 2-х корней, уравнение 3-й степени имеет не более 3-х корней, уравнение n -ой степени имеет не более n корней.

Для уравнений 3-й и 4-й степени известны формулы нахождения корней, в школьном курсе они не изучаются, но желающие могут с ними познакомиться дополнительно и подготовить небольшое сообщение.

Сделаем небольшой экскурс в историю. (слайд №5, №6 )

Норвежский математик Нильс Абель впервые доказал, что для уравнений пятой степени и более высоких степеней нет общих формул нахождения корней.

Французский математик Эварист Галуа нашёл необходимое и достаточное условие, которому удовлетворяет алгебраическое уравнение, разрешимое в радикалах.

На следующем уроке мы послушаем более подробно сообщение об этих учёных, Серёжа и Света подготовят доклады.

А пока мы вернёмся к уравнениям.

Рассмотрим уравнение вида (слайд №7 )

,

На какое уравнение оно похоже? (на квадратное )

Верно, оно является квадратным относительно х 2 . Такие уравнения называют биквадратными . (слайд №7 )

Опр. Уравнение вида , ,

являющееся квадратным относительно х 2 , называют биквадратным.

- Такие уравнения легко решить методом введения новой переменной.

Пример: Решим уравнение(слайд №7)

Введём новую переменную, х 2 = t , Чему равно х 4 ? (t 2 )

Получим квадратное уравнение

Самостоятельная работа

А сейчас вам предстоит выполнить небольшой тест. Садитесь на свои места за компьютером. Приступайте.

(Обучающий тест из трёх заданий.)

    Рефлексия

Что нового вы узнали сегодня на уроке?

Какое уравнение называется целым?

Как определить степень уравнения?

Какие уравнения называются биквадратными? Каким способом они решаются?

    Домашнее задание.

Стр. 72 – 75 (теоретический материал)

Стр. 76 – 77 № 266 (в, г), 278 (г, д, е)

Стр.78. № 286, 287 (задания на повторение)

Прочитайте домашнее задание. Какие у вас возникли вопросы? (пояснение домашнего задания)

Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

Yandex.RTB R-A-339285-1

Рациональное уравнение: определение и примеры

Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

Определение 1

Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

В различных пособиях можно встретить еще одну формулировку.

Определение 2

Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

А теперь обратимся к примерам.

Пример 1

Рациональные уравнения:

x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x - 1 = 2 + 2 7 · x - a · (x + 2) , 1 2 + 3 4 - 12 x - 1 = 3 .

Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

Определение 3

Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

Определение 4

Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

Пример 2

3 · x + 2 = 0 и (x + y) · (3 · x 2 − 1) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

1 x - 1 = x 3 и x: (5 · x 3 + y 2) = 3: (x − 1) : 5 – это дробно рациональные уравнения.

К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

Решение целых уравнений

Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

  • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
  • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

Пример 3

Необходимо найти корни целого уравнения 3 · (x + 1) · (x − 3) = x · (2 · x − 1) − 3 .

Решение

Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = 0 .

Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = (3 · x + 3) · (x − 3) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = (− 5) 2 − 4 · 1 · (− 6) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

x = - - 5 ± 49 2 · 1 ,

x 1 = 5 + 7 2 или x 2 = 5 - 7 2 ,

x 1 = 6 или x 2 = - 1

Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · (6 + 1) · (6 − 3) = 6 · (2 · 6 − 1) − 3 и 3 · (− 1 + 1) · (− 1 − 3) = (− 1) · (2 · (− 1) − 1) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

Ответ: 6 , − 1 .

Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

Определение 5

Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

  • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
  • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.
Пример 4

Найдите решение уравнения (x 2 − 1) · (x 2 − 10 · x + 13) = 2 · x · (x 2 − 10 · x + 13) .

Решение

Переносим выражение из правой части записи в левую с противоположным знаком: (x 2 − 1) · (x 2 − 10 · x + 13) − 2 · x · (x 2 − 10 · x + 13) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида (x 2 − 10 · x + 13) · (x 2 − 2 · x − 1) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Ответ: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

Пример 5

Есть ли корни у уравнения (x 2 + 3 · x + 1) 2 + 10 = − 2 · (x 2 + 3 · x − 4) ?

Решение

Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

Теперь мы будем работать с целым уравнением (y + 1) 2 + 10 = − 2 · (y − 4) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: - 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

Ответ: - 3 ± 5 2

Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

Решение дробно рациональных уравнений

Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p (x) q (x) = 0 , где p (x) и q (x) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

В основу наиболее употребимого метода решения уравнений p (x) q (x) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p (x) q (x) = 0 может быть сведено в выполнению двух условий: p (x) = 0 и q (x) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p (x) q (x) = 0:

  • находим решение целого рационального уравнения p (x) = 0 ;
  • проверяем, выполняется ли для корней, найденных в ходе решения, условие q (x) ≠ 0 .

Если это условие выполняется, то найденный корень Если нет, то корень не является решением задачи.

Пример 6

Найдем корни уравнения 3 · x - 2 5 · x 2 - 2 = 0 .

Решение

Мы имеем дело с дробным рациональным уравнением вида p (x) q (x) = 0 , в котором p (x) = 3 · x − 2 , q (x) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 - 2 = 5 · 4 9 - 2 = 20 9 - 2 = 2 9 ≠ 0 .

Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

Ответ: 2 3 .

Есть еще один вариант решения дробных рациональных уравнений p (x) q (x) = 0 . Вспомним, что это уравнение равносильно целому уравнению p (x) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p (x) q (x) = 0:

  • решаем уравнение p (x) = 0 ;
  • находим область допустимых значений переменной x ;
  • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.
Пример 7

Решите уравнение x 2 - 2 · x - 11 x 2 + 3 · x = 0 .

Решение

Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = (− 1) 2 − 1 · (− 11) = 12 , и x = 1 ± 2 3 .

Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · (x + 3) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

Ответ​​: x = 1 ± 2 3

Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p (x) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q (x) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

В тех случаях, когда корни уравнения p (x) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p (x) q (x) = 0 . Быстрее сразу находить корни целого уравнения p (x) = 0 , после чего проверять, выполняется ли для них условие q (x) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p (x) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

Пример 8

Найдите корни уравнения (2 · x - 1) · (x - 6) · (x 2 - 5 · x + 14) · (x + 1) x 5 - 15 · x 4 + 57 · x 3 - 13 · x 2 + 26 · x + 112 = 0 .

Решение

Начнем с рассмотрения целого уравнения (2 · x − 1) · (x − 6) · (x 2 − 5 · x + 14) · (x + 1) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

(− 2) 5 − 15 · (− 2) 4 + 57 · (− 2) 3 − 13 · (− 2) 2 + 26 · (− 2) + 112 = − 720 ≠ 0 ;

(− 1) 5 − 15 · (− 1) 4 + 57 · (− 1) 3 − 13 · (− 1) 2 + 26 · (− 1) + 112 = 0 .

Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

Ответ: 1 2 , 6 , - 2

Пример 9

Найдите корни дробного рационального уравнения 5 · x 2 - 7 · x - 1 · x - 2 x 2 + 5 · x - 14 = 0 .

Решение

Начнем работу с уравнением (5 · x 2 − 7 · x − 1) · (x − 2) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ - ∞ , - 7 ∪ - 7 , 2 ∪ 2 , + ∞ .

Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

Корни x = 7 ± 69 10 - принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

Ответ: x = 7 ± 69 10 .

Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p (x) q (x) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

Пример 10

Решите дробное рациональное уравнение - 3 , 2 x 3 + 27 = 0 .

Решение

Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

Ответ: нет корней.

Пример 11

Решите уравнение 0 x 4 + 5 · x 3 = 0 .

Решение

Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · (x + 5) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и - 5 .

Ответ: - ∞ , - 5 ∪ (- 5 , 0 ∪ 0 , + ∞

Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r (x) = s (x) , где r (x) и s (x) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p (x) q (x) = 0 .

Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r (x) = s (x) равносильно уравнение r (x) − s (x) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r (x) − s (x) = 0 в тождественную ему рациональную дробь вида p (x) q (x) .

Так мы переходим от исходного дробного рационального уравнения r (x) = s (x) к уравнению вида p (x) q (x) = 0 , решать которые мы уже научились.

Следует учитывать, что при проведении переходов от r (x) − s (x) = 0 к p (x) q (x) = 0 , а затем к p (x) = 0 мы можем не учесть расширения области допустимых значений переменной x .

Вполне реальна ситуация, когда исходное уравнение r (x) = s (x) и уравнение p (x) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p (x) = 0 может дать нам корни, которые будут посторонними для r (x) = s (x) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r (x) = s (x) :

  • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
  • преобразуем исходное выражение в рациональную дробь p (x) q (x) , последовательно выполняя действия с дробями и многочленами;
  • решаем уравнение p (x) = 0 ;
  • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

Визуально цепочка действий будет выглядеть следующим образом:

r (x) = s (x) → r (x) - s (x) = 0 → p (x) q (x) = 0 → p (x) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

Пример 12

Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

Решение

Перейдем к уравнению x x + 1 - 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p (x) q (x) .

Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

x x + 1 - 1 x - 1 = x · x - 1 · (x + 1) - 1 · x · (x + 1) x · (x + 1) = = x 2 - x - 1 - x 2 - x x · (x + 1) = - 2 · x - 1 x · (x + 1)

Для того, чтобы найти корни уравнения - 2 · x - 1 x · (x + 1) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = - 1 2 .

Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

Подставим полученное значение в исходное уравнение. Получим - 1 2 - 1 2 + 1 = 1 - 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

Ответ: − 1 2 .

Пример 13

Найдите корни уравнения x 1 x + 3 - 1 x = - 2 3 · x .

Решение

Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 - 1 x + 2 3 · x = 0

Проведем необходимые преобразования: x 1 x + 3 - 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 - 1 0 = - 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

Ответ: нет корней.

Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

Пример 14

Решите уравнение 7 + 1 3 + 1 2 + 1 5 - x 2 = 7 7 24

Решение

Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 - x 2 = 7 24 .

Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 - x 2 = 24 7 .

Вычтем из обеих частей 3: 1 2 + 1 5 - x 2 = 3 7 . По аналогии 2 + 1 5 - x 2 = 7 3 , откуда 1 5 - x 2 = 1 3 , и дальше 5 - x 2 = 3 , x 2 = 2 , x = ± 2

Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

Ответ: x = ± 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Рассмотрим уравнение.
31x 3 – 10x = (x – 5) 2 + 6x 2
И левая и правая части уравнения являются целыми выражениями.
Напомним, что подобные уравнения называются целыми уравнениями.
Вернёмся к нашему изначальному уравнению и раскроем скобки, используя формулу квадрата разности.
Перенесем все члены уравнения в левую часть и приведем подобные члены.
Выражения «минус десять икс» и «плюс десять икс» взаимно уничтожаются.
После приведения подобных членов получаем уравнение, в левой части которого стоит многочлен стандартного вида (в общем виде будем называть его «Пэ от икс»), а в правой части - нуль.
Чтобы определить степень целого уравнения, необходимо привести его к виду пэ от икс равно нулю, то есть к уравнению, в левой части которого стоит многочлен стандартного вида, а в правой - нуль.
После этого необходимо определить степень многочлена пэ от икс. Это и будет степенью уравнения.
Рассмотрим пример. Попробуем определить степень данного уравнения.
Раскроем скобки, используя формулу квадрата суммы.
Далее перенесём все члены уравнения в левую часть и приведём подобные члены.
Итак, мы получили уравнение, в левой части которого многочлен стандартного вида второй степени, а в правой нуль. Это значит, что степень данного уравнения – вторая.
От степени уравнения зависит сколько корней оно имеет.
Можно доказать, что уравнение первой степени имеет один корень, уравнение второй степени имеет не более двух корней, уравнение третьей степени – не более трёх корней и так далее.
Степень уравнения также подсказывает нам, каким образом можно это уравнение решить.
Например, уравнение первой степени мы приводим к виду а икс плюс бэ равно цэ, где а не равно нулю.
Уравнение второй степени мы приводим к равносильному уравнению, в левой части которого квадратный трёхчлен, а в правой - нуль. Такое уравнение решается с помощью формулы корней квадратного уравнения или теоремы Виета.
Для решения уравнений более высоких степеней универсального способа нет, но есть основные методы, которые мы рассмотрим на примерах.
Решим уравнение третьей степени икс в третьей степени минус восемь икс во второй степени минус икс плюс восемь равно нулю.
Чтобы решить данное уравнение разложим его левую часть на множители способом группировки и воспользовавшись формулой разности квадратов.
Далее необходимо вспомнить, что произведение равно нули, когда один из множителей равен нулю. На основании этого делаем вывод, что либо икс минус 8 равно нулю, либо икс минус 1 равно нулю, либо икс плюс один равно нулю. Следовательно, корнями уравнения будут числа минус один, один и восемь.
Иногда для решения уравнений степени выше второй удобно использовать введение новой переменной.
Рассмотрим подобный пример.
Если раскрыть скобки, перенести все члены уравнения в левую часть, привести подобные члены и представить левую часть уравнения в виде многочлена стандартного вида, то ни один из известных нам способов не поможет решить это уравнение. В таком случае стоит обратить внимание на то, что в обеих скобках есть одинаковые выражения.
Именно это выражение мы и обозначим новой переменной игрик.
Тогда наше уравнение сведётся к уравнению с переменной игрек..
Далее просто раскроем скобки и перенесём все члены уравнения в левую часть.
Приведём подобные члены и получим уже знакомое нам квадратное уравнение.
Нетрудно найти корни этого уравнения. Игрик один равен шести, игрик два равен минус шестнадцати.
Теперь вернёмся к изначальному уравнению, выполнив обратную замену.
Изначально за игрик мы принимали выражение два икс в квадрате минус икс. А так как у нас два значения переменной игрек, мы получаем два уравнения. В каждом уравнении переносим все члены в левую часть, решаем получившиеся два квадратных уравнения. Корнями первого уравнения являются числа минус одна целая пять десятых и два, а второе уравнение корней не имеет, так как его дискриминант меньше нуля.
Итак, решением данного уравнения четвёртой степени являются числа минус одна целая пять десятых и два.
Особое место в классификации целых уравнений имеет уравнение вида а икс в четвёртой степени плюс бэ икс во второй степени плюс цэ равно нулю. Уравнения такого вида называют биквадратными уравнениями.
Решать подобные уравнения можно с помощью замены переменной.
Рассмотрим на примере.
В данном уравнении обозначим икс квадрат через игрик. При этом стоит обратить внимание, что переменная игрик не может принимать отрицательные значения.
Получим квадратное уравнение, корнями которого являются числа одна двадцать пятая и один.
Выполним обратную замену.
Корни первого уравнения: одна пятая и минус одна пятая, а корни второго: один и минус один.
Таким образом, мы нашли четыре корня исходного биквадратного уравнения.

В данном уроке мы продолжаем углубляться в тему «Уравнение с одной переменной». Напомним, что для того, чтобы решить абсолютно любое уравнение, необходимо найти все подходящие значения аргументов, которые делают уравнение верным равенством. Подходящее значение или значение неизвестных или корни уравнения – всё это синонимы, и необходимо их найти или же доказать, что корней в уравнении нет.

Правда теперь стоит поговорить о том, что такое «целое уравнение » и какое количество корней у него. Поэтому необходимо рассмотреть следующие два примера.

Квадрат разности «х» куб и «х» в пятой степени равняется «х» в шестой степени минус два, умноженное на разность «х» и одного.

Во втором уравнении «х» в четвёртой степени минус один, делённое на четыре, минус «х» в квадрате плюс один, делённое на два, равняется три «х» квадрат.

Если посмотреть внимательно, то обе части этих уравнений самостоятельно являются целыми выражениями. Это и есть целое уравнение. Теперь стоит дать чёткое определение целому уравнению с одной переменной (это такое уравнение, где обе части являются целыми выражениями ).

Что если мы упростим примеры? В первом уравнении для начала раскроем скобки, а после этого перенесём все члены в левую часть и приведём подобные слагаемые. Все сделанные преобразования позволяют найти значение: «х» в пятой степени минус два «х» в кубе плюс два «х» минус один равняется нулю. Во втором уравнении повторяем проделанные операции по преобразованию. Однако изначально избавляемся от знаменателя, умножая уравнение на четыре. В итоге мы получаем, что «х» в четвёртой степени минус четырнадцать «х» в квадрате минус три равняется нулю. Мы сделали ряд трансформаций в первом и втором уравнениях, но они не изменили значения, а лишь привели к равносильным уравнениям.

Напомним, что равносильные уравнения также называют эквивалентными. Эквивалентность создаёт дополнительные свойства уравнения: симметрия (когда первое уравнение равносильно второму, то значит и второе равносильно первому) и транзитивность (если у нас есть три уравнения, где первое равносильно второму, а второе равносильно третьему, то это значит, что первое равносильно третьему в том числе). Удобность равносильности уравнений заключается в том, что над ними можно производить ряд упрощений, которые помогают сделать решение более простым.

В итоге мы видим уравнение следующего вида: «Р» от «х» равно нулю, где «Р» от «х» является многочленом стандартного вида. Абсолютно любое целое уравнение заменятся с помощью равносильного, где одна часть выступает многочленом стандартного вида, а вторая – нулем. Уравнение может иметь формат записи, где «Р» от «х» выступают многочленом стандартного вида. В данном виде степенью уравнения выступает степень многочлена. Если же взять произвольное целое уравнение, то его степенью выступает степень равносильного уравнения, которое имеет вид «Р» от «х» равно нуль. Здесь «Р» от «х» является многочленом стандартного вида. То есть мы получаем, что первое уравнение - уравнение пятой степени, а второе – уравнение четвёртой степени.

Если говорить об элементарном примере, где уравнение имеет одну переменную первой степени, то оно имеет следующий формат: сумма «ах» и «b» равняется нулю. Неизвестной переменной выступает «х», а «а» и «b» являются некоторыми числами. Более того, «а» не может равняться нулю, потому что является коэффициентом при переменной «х» и в ином случае переменная исчезает. Когда сделаем необходимые преобразования, то видим, чему равняется «х» (минус «b», поделённое на «а»). Это и выступает корнем уравнения или его значением (также говорят, что корень удовлетворяет данному уравнению). Может возникнуть вопрос: зачем вообще узнавать, сколько корней у уравнения? Ответ прост: так мы будем понимать, сколько решений оно имеет. Например, преимуществом уравнения первой степени в том, что оно имеет только одно решение (корень).

До того, как мы перейдём к более сложным примерам, необходимо вспомнить, какие операции можно осуществить по преобразованию уравнений. Среди них:

  • Раскрытие скобок в любой части уравнения;
  • Приведение подобных в любой части уравнения;
  • Перенос любого члена в другую часть, предварительно изменив его знак на противоположный;
  • Прибавление одинакового выражения к обеим частям уравнения;
  • Вычитание одинакового выражения у обеих частей уравнений;
  • Умножение и деление на число, не являющееся нулем, обеих частей уравнения. Однако данное свойство может добавить новые корни или избавить от них.

Проведя ряд таких преобразований, мы получаем равносильное уравнение.

Теперь рассмотрим уравнение второй степени. Его можно привести к виду суммы «ах» в квадрате, «bx» и «с», равное нулю. Здесь мы видим переменную «х», а также некоторые числа (в особенности «а» не может быть равно нулю, ведь тогда уравнение второй степени превратиться в уравнение первой степени). Для того чтобы понять, какое число корней имеет уравнение, необходимо найти значение дискриминанта «D», формулой которого является разница «b» в квадрате и четырёх «ас». Когда мы нашли дискриминант, мы понимает, что уравнение может иметь два решения (если дискриминант больше нуля), может иметь один корень (если равен нулю) и не иметь корней (если меньше нуля). Уравнение второй степени не может иметь больше двух корней. В тех случаях, когда есть два решения, доступна формула корня, где «х» равно минус «b» плюс корень из дискриминанта, поделённое на два «а».

Уравнение второй степени или же квадратное уравнение имеет корень, которое обращает трёхчлен в значение нуля или так называемое тождество. Если говорить о коэффициентах, которые используют в квадратном уравнении, то каждый имеет определённое название: «а» выступает старшим коэффициентом, «b» - коэффициент при «х» или второй коэффициент, а «с» - свободный член уравнения. Есть примеры, когда старший коэффициент равен единице, в таком случае квадратное уравнение называется приведённым. Уравнение второй степени может быть полным и неполным. Неполное квадратное уравнение – такое, в котором второй коэффициент или свободный член равен нулю. Что является графиком уравнения второй степени? Совершенно верно, это парабола, которая симметрична относительно оси ординат, и может иметь значение функции от нуля до плюс бесконечности или же от нуля до минус бесконечности. Вспомним по графику, какое количество пересечений парабола может иметь, ведь именно от этого зависит количество корней или решений. Когда пересечение происходит в одной точке, то есть при вершине, то получаем один корень или, как говорят, два совпадающих корня. Когда же парабола встречается с осью абсцисс дважды, то значит у нас два корня или два решений. По ряду принципов можно определить направленность параболы. Положительность основного коэффициента говорит о направлении ветвей вверх. Схожесть старшего и второго коэффициентов говорит о том, что график расположен в левой полуплоскости относительно оси ординат. Различие этих коэффициентов говорит о том, что фигура находится в правой части.

Если говорить об уравнениях более высокой степени, то их также можно привести к основному виду. Например, уравнение третей степени выглядит как сумма произведения «а» и «х» в кубе, «b» и «х» в квадрате, «сх» и d, всё равное нулю. Кубическое уравнение также имеет график функций, который на декартовой системе представлен в виде кубической параболы. Что по поводу уравнения четвёртой степени: сумма произведения «а» и «х» в четвёртой степени, «b» и «х» в кубе, «с» и «х» в квадрате, «dх» и «е». Уравнение четвёртой степени выступает наивысшим, потому что только до четвёртой степени возможно решение в радикалах или при различных значениях коэффициентов. Во всех случаях «а» не может равняться нулю по тому, что уравнение станет более низкой степени. Отметим, что уравнение с n-ой степенью не может иметь более n-ого количества корней . Можно вывести формулы корней для уравнений третей и четвёртой степени, однако они будут очень сложны, и запомнить их будет невозможно для учащегося. Если говорить об уравнениях пятой степени и выше, то там даже формулы корней не выведены. Как тогда можно решить уравнения третей степени и выше?

В данном случае необходимо использовать приёмы, которые помогут упростить решение. Первая подсказка – разложить многочлены на множители. Попробуем применить данный приём на практике, решая пример «х» куб минус восемь «х» квадрат минус «х» плюс восемь равно нулю. Когда сделаем необходимые преобразования (вынесем «х» квадрат за скобки, далее разность «х» и восемь вынести за скобки, напоследок разложим получившуюся формулу). В результате мы видим, что разность «х» и восемь равна нулю, разность «х» и один равна нулю и произведение «х» и один равна нулю. Так мы и доказали, что изначальное уравнение имеет три корня или три значения (восемь, один и минус один).

При решении уравнения выше второй степени, можно порой использовать приём введения новой переменны. Например, есть уравнение, где произведение «х» квадрат минус пять «х» плюс четыре и «х» квадрат минус пять «х» плюс шесть, оно равняется сто двадцати. В данном примере для того чтобы найти решение, необходимо всё перенести в левую часть и раскрыть скобки, сделав необходимые преобразования. Получаем «х» в четвёртой степени минус десять «х» в кубе плюс тридцать пять «х» в кубе минус пятьдесят «х» минус девяносто десть равно нулю. Даже если мы приведём подобные, то уравнение всё равно получится очень сложное, а решить его будет абсолютно невозможно. Поэтому посмотрим внимательнее на формулу и увидим, что разность «х» в квадрате и пять «х» повторяется в обеих скобках. Что если мы введём новую переменную «у» вместо данной части? Тогда мы получаем произведение суммы «у» и четыре и суммы «у» и шести, равное сто двадцати. Упростив, мы получаем квадратное уравнение с корнями минус шестнадцать и шесть. Теперь вместо «у» мы можем подставить разность «х» квадрат и пять «х». Уравнение «х» квадрат минус пять «х» равно минус шестнадцать не имеет корней, потому что дискриминант отрицательный. А второе квадратное уравнение имеет дискриминант выше нуля, поэтому получаем два корня: минус один и шесть.

Метод введения новой переменной позволяет легко решить уравнения четвёртой степени, которые имеют следующий вид: произведение «а» и «х» в четвёртой степени плюс произведение «b» и «х» во второй степени плюс «с» равняется нулю. В данном случае «а» не может равняться нулю. Это пример биквадратного уравнения, потому что уравнение является квадратным относительно «х» в квадрате. Применим теорию на практике, решив уравнение девять «х» в четвёртой степени минус десять «х» во второй степени плюс один равно нулю. Вместо «х» квадрат введём новую переменную «у», тогда выйдет квадратное уравнение с «у», где дискриминант выше нуля, поэтому получаем два корня: одна девятая и один. Теперь подставляем «х» в квадрате и получаем четыре значения корня «х»: минус одна третья, одна третья, минус один и один. Получается, что исходное биквадратное уравнение имеет четыре решения.

В результате урока нам удалось обобщить и создать систему по знаниям в теме “Уравнения”. Теперь учащиеся смогут логически решать сложные примеры, применяя новые приёмы, и анализирую процесс решения. Если осталось дополнительное время, то стоит провести небольшой опрос среди учащихся. Начните с того, чтобы вам дали определение, что такое уравнение с одной переменной. Далее попросите рассказать о процессе решения, и что такое корень, какое количество корней может иметь уравнение. Следующая важная часть знаний – равносильные или эквивалентные уравнения, поэтому необходимо, чтобы учащиеся разложили по полочкам характерные таким уравнениям свойства.