Шар касательная плоскость к шару. Урок «Сфера

Поверхность определяется как множество точек , координаты которых удовлетворяют определённому виду уравнений:

F (x , y , z) = 0 (1) {\displaystyle F(x,\,y,\,z)=0\qquad (1)}

Если функция F (x , y , z) {\displaystyle F(x,\,y,\,z)} непрерывна в некоторой точке и имеет в ней непрерывные частные производные, по крайней мере одна из которых не обращается в нуль, то в окрестности этой точки поверхность, заданная уравнением (1), будет правильной поверхностью .

Помимо указанного выше неявного способа задания , поверхность может быть определена явно , если одну из переменных, например, z, можно выразить через остальные:

z = f (x , y) (1 ′) {\displaystyle z=f(x,y)\qquad (1")}

Более строго, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.

Пусть на плоскости с прямоугольной системой координат u и v задан квадрат , координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) (параметрическое задание поверхности). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u", v") были различными соответствующие точки (x, у, z) и (x", у", z").

Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью . Это вызывает необходимость дальнейшего обобщения понятия поверхности.

Подмножество пространства, у каждой точки которого есть окрестность, являющаяся простой поверхностью , называется правильной поверхностью .

Поверхность в дифференциальной геометрии

Геликоид

Катеноид

Метрика не определяет однозначно форму поверхности. Например, метрики геликоида и катеноида , параметризованных соответствующим образом, совпадают, то есть между их областями существует соответствие, сохраняющее все длины (изометрия). Свойства, сохраняющиеся при изометрических преобразованиях, называются внутренней геометрией поверхности. Внутренняя геометрия не зависит от положения поверхности в пространстве и не меняется при её изгибании без растяжения и сжатия (например, при изгибании цилиндра в конус) .

Метрические коэффициенты E , F , G {\displaystyle E,\ F,\ G} определяют не только длины всех кривых, но и вообще результаты всех измерений внутри поверхности (углы, площади, кривизна и др.). Поэтому всё, что зависит только от метрики, относится к внутренней геометрии.

Нормаль и нормальное сечение

Векторы нормали в точках поверхности

Одной из основных характеристик поверхности является её нормаль - единичный вектор, перпендикулярный касательной плоскости в заданной точке:

m = [ r u ′ , r v ′ ] | [ r u ′ , r v ′ ] | {\displaystyle \mathbf {m} ={\frac {[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]}{|[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]|}}} .

Знак нормали зависит от выбора координат.

Сечение поверхности плоскостью, содержащей нормаль поверхности в заданной точке, образует некоторую кривую, которая называется нормальным сечением поверхности. Главная нормаль для нормального сечения совпадает с нормалью к поверхности (с точностью до знака).

Если же кривая на поверхности не является нормальным сечением, то её главная нормаль образует с нормалью поверхности некоторый угол θ {\displaystyle \theta } . Тогда кривизна k {\displaystyle k} кривой связана с кривизной k n {\displaystyle k_{n}} нормального сечения (с той же касательной) формулой Мёнье :

k n = ± k cos θ {\displaystyle k_{n}=\pm k\,\cos \,\theta }

Координаты орта нормали для разных способов задания поверхности приведены в таблице:

Координаты нормали в точке поверхности
неявное задание (∂ F ∂ x ; ∂ F ∂ y ; ∂ F ∂ z) (∂ F ∂ x) 2 + (∂ F ∂ y) 2 + (∂ F ∂ z) 2 {\displaystyle {\frac {\left({\frac {\partial F}{\partial x}};\,{\frac {\partial F}{\partial y}};\,{\frac {\partial F}{\partial z}}\right)}{\sqrt {\left({\frac {\partial F}{\partial x}}\right)^{2}+\left({\frac {\partial F}{\partial y}}\right)^{2}+\left({\frac {\partial F}{\partial z}}\right)^{2}}}}}
явное задание (− ∂ f ∂ x ; − ∂ f ∂ y ; 1) (∂ f ∂ x) 2 + (∂ f ∂ y) 2 + 1 {\displaystyle {\frac {\left(-{\frac {\partial f}{\partial x}};\,-{\frac {\partial f}{\partial y}};\,1\right)}{\sqrt {\left({\frac {\partial f}{\partial x}}\right)^{2}+\left({\frac {\partial f}{\partial y}}\right)^{2}+1}}}}
параметрическое задание (D (y , z) D (u , v) ; D (z , x) D (u , v) ; D (x , y) D (u , v)) (D (y , z) D (u , v)) 2 + (D (z , x) D (u , v)) 2 + (D (x , y) D (u , v)) 2 {\displaystyle {\frac {\left({\frac {D(y,z)}{D(u,v)}};\,{\frac {D(z,x)}{D(u,v)}};\,{\frac {D(x,y)}{D(u,v)}}\right)}{\sqrt {\left({\frac {D(y,z)}{D(u,v)}}\right)^{2}+\left({\frac {D(z,x)}{D(u,v)}}\right)^{2}+\left({\frac {D(x,y)}{D(u,v)}}\right)^{2}}}}}

Здесь D (y , z) D (u , v) = | y u ′ y v ′ z u ′ z v ′ | , D (z , x) D (u , v) = | z u ′ z v ′ x u ′ x v ′ | , D (x , y) D (u , v) = | x u ′ x v ′ y u ′ y v ′ | {\displaystyle {\frac {D(y,z)}{D(u,v)}}={\begin{vmatrix}y"_{u}&y"_{v}\\z"_{u}&z"_{v}\end{vmatrix}},\quad {\frac {D(z,x)}{D(u,v)}}={\begin{vmatrix}z"_{u}&z"_{v}\\x"_{u}&x"_{v}\end{vmatrix}},\quad {\frac {D(x,y)}{D(u,v)}}={\begin{vmatrix}x"_{u}&x"_{v}\\y"_{u}&y"_{v}\end{vmatrix}}} .

Все производные берутся в точке (x 0 , y 0 , z 0) {\displaystyle (x_{0},y_{0},z_{0})} .

Кривизна

Для разных направлений в заданной точке поверхности получается разная кривизна нормального сечения, которая называется нормальной кривизной ; ей приписывается знак плюс, если главная нормаль кривой идёт в том же направлении, что и нормаль к поверхности, или минус, если направления нормалей противоположны.

Вообще говоря, в каждой точке поверхности существуют два перпендикулярных направления e 1 {\displaystyle e_{1}} и e 2 {\displaystyle e_{2}} , в которых нормальная кривизна принимает минимальное и максимальное значения; эти направления называются главными . Исключение составляет случай, когда нормальная кривизна по всем направлениям одинакова (например, у сферы или на торце эллипсоида вращения), тогда все направления в точке - главные.

Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.

Нормальные кривизны в главных направлениях называются главными кривизнами ; обозначим их κ 1 {\displaystyle \kappa _{1}} и κ 2 {\displaystyle \kappa _{2}} . Величина:

K = κ 1 κ 2 {\displaystyle K=\kappa _{1}\kappa _{2}}

называется гауссовой кривизной , полной кривизной или просто кривизной поверхности. Встречается также термин скаляр кривизны , который подразумевает результат свёртки тензора кривизны ; при этом скаляр кривизны вдвое больше, чем гауссова кривизна.

Гауссова кривизна может быть вычислена через метрику, и поэтому она является объектом внутренней геометрии поверхностей (отметим, что главные кривизны к внутренней геометрии не относятся). По знаку кривизны можно классифицировать точки поверхности (см. рисунок). Кривизна плоскости равна нулю. Кривизна сферы радиуса R всюду равна 1 R 2 {\displaystyle {\frac {1}{R^{2}}}} . Существует и поверхность постоянной отрицательной кривизны -

Дата: 02.02.2016

Тема: Касательная к сфере (шару) плоскости.

Цель урока: Сформировывать знания и умения, учащихся по теме, рассмотреть теоремы

о , научить решать задачи по данной теме.
Воспитывать внимательность, добросовестное отношение к учебе, аккуратность

Развивать память, мышление, пространственное воображение, речь

Структура урока

    Организационный момент

    Постановка цели урока

    Проверка домашнего задания

    Защита презентаций учащимися

    Индивидуальная самостоятельная работа

    Решение задач в паре

    Решение задач в группе

    Игра на развитие внимательности

    Выдача домашнего задания

    Итог урока
    Ход урока

    В начале урока проводится устная работа. Повторение основных понятий связанных с шаром и сферой.

    Домашние задания №26 (стр 61), № 34

Дежурные на доске (на перемене) выполняют чертежи к домашним заданиям. На уроке учитель к доске вызывает двух учеников для проверки домашнего задания. После ответа у доски ученики ставят себе оценки на оценочных листах.

    Защита презентаций:

І группа: История возникновения шара

ІІ группа: Взаимное расположение сферы и плоскости

ІІІ группа: Шар и сфера в живой природе

    Самостоятельная работа

1. Найдите координаты центра и радиус сферы, заданной уравнением:

1 вариант

(х-2) 2 +(у+3) 2 + z 2 = 25

2 вариант

(х+3) 2 + у 2 + (z -1) 2 = 16

2. Напишите уравнение сферы радиуса R с центром окружности в точке А, если:

1 вариант

А (2; 0; -1), R = 7

2 вариант

A (-2; 1; 0) , R = 6

3. Проверти, лежит ли точка А на сфере, заданной уравнением:

1 вариант

(х + 2) 2 + (у – 1) 2 + (z – 3) 2 = 1, если А (-2; 1; 4)

2 вариант

(х - 3) 2 + (у + 1) 2 + (z - 4) 2 = 4, если А (5; - 1; 4)

4. Докажите, что данное уравнение является уравнением сферы:

1 вариант

х 2 +у 2 + z 2 + 2 z - 2у= 2

    Работа в паре

2 вариант

х 2 + у 2 + z 2 – 2х + 2 z = 7

Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.

    Работа в группе

Все стороны треугольника АВС касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если АВ=13см, ВС=14см, СА=15см

    Игра на внимательность

На цветных бумагах записаны основные формулы площадей поверхностей многогранников и тел вращения. Эти карточки прикреплены на магнитную доску. Учитель просит внимательно посмотреть на формулы и запомнить их. Естественно ученики начинают запоминать сами формулы. Закрыв доску, учитель задает вопросы следующего содержания: «Какого цвета карточка, на которой записана формула площади боковой поверхности пирамиды?» и т.д. Естественно ученики не ожидали такого вопроса. Учитель дает еще одну возможность, но на этот раз ученики стараются запомнить и цвет карточки.

    Итог урока.

Шкала оценок

«5» за 8-9 баллов

«4» - за 6-7 баллов

«3» - за 4-5 баллов

    Домашнее задание: № 28 (стр 61), № 29 (стр 62)







Сказка о возникновении шара

Однажды, оставшись один дома, красавец Полукруг долго принаряживался и жеманился перед небольшим в оловянных рамках зеркалом и не мог налюбоваться собою.

«Что людям вздумалось расславлять, будто я хорош?- говорил он. – Лгут люди, я совсем не хорош. Почему девушки провозгласили, что лучшего парня и не было еще никогда и не будет никогда на селе Хатанга?».

Полукруг знал и слышал все, что про него говорили, и был капризным, как красавец. Он мог целый день любоваться собой перед зеркалом, рассматривая себя со всех сторон. И вдруг случилось чудо, когда Полукруг повернулся перед зеркалом вокруг себя, он увидел в зеркале собственное отражение в форме Шара.

Из истории возникновения

Шаром принято называть тело, ограниченное сферой, то есть шар и сфера – это разные геометрические тела. Однако оба слова «шар» и «сфера» происходят от одного и того же греческого слова «сфайра» - мяч. При этом слово «шар» образовалось от перехода согласных сф в ш .

В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы.

Сфера всегда широко применялось в различных областях науки и техники.

Определение

  • Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.
  • Тело, ограниченное сферой, называется шаром.

Общие понятия

  • Данная точка называется центром сферы, а данное расстояние – радиусом сферы.
  • Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы.
  • Центр, радиус, диаметр сферы называется также центром, радиусом и диаметром шара.

Касательная плоскость к сфере

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Сечение шара плоскостью

  • Любое сечение шара плоскостью есть круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Сечение, проходящее через центр шара, - большой круг. (диаметральное сечение).

Задача на тему шар (д/з)

На поверхности шара даны три точки. Прямолинейные расстояния между ними 6 см, 8 см, 10 см. Радиус шара 13 см. Найдите расстояние от центра до плоскости, проходящей через эти точки. (1.7 см, 2.15 см, 3.12 см, 4.20 см)

Соглашение

Правила регистрации пользователей на сайте "ЗНАК КАЧЕСТВА":

Запрещается регистрация пользователей с никами подобными: 111111, 123456, йцукенб, lox и.т.п;

Запрещается повторно регистрироваться на сайте (создавать дубль-аккаунты);

Запрещается использовать чужие данные;

Запрещается использовать чужие e-mail адреса;

Правила поведения на сайте, форуме и в комментариях:

1.2. Публикация в анкете личных данных других пользователей.

1.3. Любые деструктивные действия по отношению к данному ресурсу (деструктивные скрипты, подбор паролей, нарушение системы безопасности и т.д.).

1.4. Использование в качестве никнейма нецензурных слов и выражений; выражений, нарушающие законы Российской Федерации, нормы этики и морали; слов и фраз, похожих на никнеймы администрации и модераторов.

4. Нарушения 2-й категории: Наказываются полным запретом на отправления любых видов сообщений сроком до 7 суток. 4.1.Размещение информации, подпадающей под действие Уголовного Кодекса РФ, Административного Кодекса РФ и противоречащей Конституции РФ.

4.2. Пропаганда в любой форме экстремизма, насилия, жестокости, фашизма, нацизма, терроризма, расизма; разжигание межнациональной, межрелигиозной и социальной розни.

4.3. Некорректное обсуждение работы и оскорбления в адрес авторов текстов и заметок, опубликованных на страницах "ЗНАК КАЧЕСТВА".

4.4. Угрозы в адрес участников форума.

4.5. Размещение заведомо ложной информации, клеветы и прочих сведений, порочащих честь и достоинство как пользователей, так и других людей.

4.6. Порнография в аватарах, сообщениях и цитатах, а также ссылки на порнографические изображения и ресурсы.

4.7. Открытое обсуждение действий администрации и модераторов.

4.8. Публичное обсуждение и оценка действующих правил в любой форме.

5.1. Мат и ненормативная лексика.

5.2. Провокации (личные выпады, личная дискредитация, формирование негативной эмоциональной реакции) и травля участников обсуждений (систематическое использование провокаций по отношению к одному или нескольким участникам).

5.3. Провоцирование пользователей на конфликт друг с другом.

5.4. Грубость и хамство по отношению к собеседникам.

5.5. Переход на личности и выяснение личных отношений на ветках форума.

5.6. Флуд (идентичные или бессодержательные сообщения).

5.7. Преднамеренное неправильное написание псевдонимов и имен других пользователей в оскорбительной форме.

5.8. Редактирование цитируемых сообщений, искажающее их смысл.

5.9. Публикация личной переписки без явно выраженного согласия собеседника.

5.11. Деструктивный троллинг - целенаправленное превращение обсуждения в перепалку.

6.1. Оверквотинг (избыточное цитирование) сообщений.

6.2. Использование шрифта красного цвета, предназначенного для корректировок и замечаний модераторов.

6.3. Продолжение обсуждения тем, закрытых модератором или администратором.

6.4. Создание тем, не несущих смыслового наполнения или являющихся провокационными по содержанию.

6.5. Создание заголовка темы или сообщения целиком или частично заглавными буквами или на иностранном языке. Исключение делается для заголовков постоянных тем и тем, открытых модераторами.

6.6. Создание подписи шрифтом большим, чем шрифт поста, и использование в подписи больше одного цвета палитры.

7. Санкции, применяемые к нарушителям Правил Форума

7.1. Временный или постоянный запрет на доступ к Форуму.

7.4. Удаление учетной записи.

7.5. Блокировка IP.

8. Примечания

8.1.Применение санкций модераторами и администрацией может производиться без объяснения причин.

8.2. В данные правила могут быть внесены изменения, о чем будет сообщено всем участникам сайта.

8.3. Пользователям запрещается использовать клонов в период времени, когда заблокирован основной ник. В данном случае клон блокируется бессрочно, а основной ник получит дополнительные сутки.

8.4 Сообщение, содержащее нецензурную лексику, может быть отредактировано модератором или администратором.

9. Администрация Администрация сайта "ЗНАК КАЧЕСТВА" оставляет за собой право удаления любых сообщений и тем без объяснения причин. Администрация сайта оставляет за собой право редактировать сообщения и профиль пользователя, если информация в них лишь частично нарушает правила форумов. Данные полномочия распространяются на модераторов и администраторов. Администрация сохраняет за собой право изменять или дополнять данные Правила по мере необходимости. Незнание правил не освобождает пользователя от ответственности за их нарушение. Администрация сайта не в состоянии проверять всю информацию, публикуемую пользователями. Все сообщения отображают лишь мнение автора и не могут быть использованы для оценки мнения всех участников форума в целом. Сообщения сотрудников сайта и модераторов являются выражением их личного мнения и могут не совпадать с мнением редакции и руководства сайта.

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.