Защита от электромагнитного импульса. Защита электроники от электромагнитного импульса

Проникающая радиация ядерного взрыва сильно ионизирует воздушную среду, что приводит к возникновению мощных электромагнитных полей, которые ввиду их кратковременного существования принято называть электромагнитным импульсом.

Электромагнитный импульс образуется в основном в результате комптоновского механизма, сущность которого заключается в следующем. Гамма-кванты взрыва, взаимодействуя с атомами окружающей среды, образуют медленные положительные ионы и быстрые электроны, которые движутся по направлению порождающих их гамма-квантов. В результате этого в окружающем пространстве возникают свободные электрические заряды, токи и поля. В свою очередь быстрые электроны также ионизируют среду, создавая медленные электроны и положительно заряженные ионы. В результате этого среда становится электропроводящей. Под действием электрического поля, созданного быстрыми электронами, медленные электроны начинают двигаться навстречу быстрым электронам, образуя ток проводимости.

При асимметричном выходе и распространении гамма-квантов, вызванном, например, границей раздела воздух-грунт при наземном ядерном взрыве, токи проводимости в ближней зоне (на расстоянии до нескольких километров от центра взрыва) замыкаются через грунт и порождают магнитное поле. При воздушных взрывах асимметрия в распределении гамма-квантов и соответственно порождаемых ими токов возникает в результате неоднородной плотности атмосферы по высоте, конструкции ядерного боеприпаса и ряда других причин. Изменяющиеся во времени электромагнитные поля способны распространяться за пределы источника, образуя поле излучения на больших расстояниях от центра взрыва.

Основными параметрами электромагнитного импульса, характеризующими его поражающее действие, являются изменения напряженностей электрического и магнитного полей во времени (форма импульса) и их ориентация в пространстве, а также величина максимальной напряженности поля (амплитуда импульса).

Электромагнитный импульс наземного ядерного взрыва в ближней зоне представляет собой одиночный импульсный сигнал с крутым фронтом и обладает длительностью до десятков миллисекунд. Длительность фронта импульса, характеризующая время, за которое поле нарастает до своего максимального значения, близка к времени протекания ядерных процессов, т. е. в типичных случаях она может иметь величину примерно 10-8 с. Амплитуда электрического поля в ближней зоне может быть до сотен киловольт на метр. Распространение электромагнитного поля в проводящей среде приводит к его сравнительно быстрому затуханию. Амплитуда импульса убывает пропорционально расстоянию от центра взрыва.

Для низких воздушных взрывов параметры электромагнитного импульса остаются примерно такими же, как и для наземных, но с увеличением высоты взрыва их амплитуды уменьшаются. Амплитуды электромагнитного импульса подземного и надводного ядерных взрывов значительно меньше амплитуд электромагнитного импульса взрывов в атмосфере, поэтому поражающее действие его при этих взрывах.практически не проявляется.

Поражающее действие электромагнитного импульса ядерного взрыва

Поражающее действие электромагнитного импульса ядерного взрыва на вооружение и военную технику проявляется в нарушении работоспособности радиоэлектронной аппаратуры и электротехнического оборудования. Степень поражающего действия зависит от параметров электромагнитного импульса, стойкости аппаратуры и характера взаимодействия ее с электромагнитными полями ядерного взрыва. На практике обычно различают непосредственное действие электромагнитного импульса на аппаратуру и воздействие на нее через коммуникационные линии. Наводимые на коммуникационных линиях токи и напряжения могут представлять опасность для аппаратуры и личного состава, находящихся на безопасных удалениях от воздействия других поражающих факторов ядерного взрыва

Уязвимыми к непосредственному воздействию электромагнитного импульса являются наиболее чувствительные элементы радиоэлектронной и электротехнической аппаратуры (магнитные сердечники, пьезоэлементы, электровакуумные и газоразрядные приборы и др.). В результате непосредственного воздействия электромагнитного импульса и в зависимости от типа элемента, а также особенностей его конструкции одни из них могут временно или полностью потерять работоспособность, другие - вносить существенные помехи в работу аппаратуры.

Так, для некоторых магнитных сердечников, изготовленных из марганцово-цинковых ферритов и работающих в слабых полях, характерно сравнительно длительное время восстановления магнитной проницаемости, достигающее 30 мин после воздействия импульсного магнитного поля. Изменение магнитной проницаемости сердечников влияет на величину индуктивности дросселей и катушек и, следовательно, на работоспособность аппаратуры в целом

В пьезоэлементах на длительное время изменяется частота кварцевого резонатора в результате поглощения энергии электромагнитного поля. Работоспособность электровакуумных и газоразрядных приборов может быть нарушена в результате возникновения на выводах напряжений и токов от воздействия электромагнитного импульса.

В общем случае нарушение нормальной работы радиоэлектронной и электротехнической аппаратуры в результате непосредственного воздействия электромагнитного импульса можно отнести к довольно редким явлениям, поскольку металлические кожухи самой аппаратуры, ограждающие конструкции сооружений, корпуса летательных аппаратов и т. п., в которых она размещается, значительно ослабляют поражающее действие электромагнитного импульса. Личный состав не поражается от непосредственного действия электромагнитного импульса. В наибольшей степени поражающее действие электромагнитного импульса на личный состав, радиоэлектронную и электротехническую аппаратуру проявляется от наведенных токов и напряжений в кабельных линиях и антенно-фидерных устройствах.

Особенно высокие напряжения и значительные токи наводятся в кабельных линиях и антенно-фидерных устройствах, расположенных за пределами экранированных объектов. Так, например, амплитудные значения напряжения на жилах кабельной линии относительно их металлопокрова при условии, если линия оказывается вблизи центра наземного взрыва, могут достигать десятков киловольт, а тока в металлопокрове кабеля - десятков килоампер.

Наведенные токи и напряжения могут превысить допустимые уровни для аппаратуры, подключенной к кабельным линиям и антенно-фидерным устройствам. В результате чего такая аппаратура, расположенная вне зоны действия других поражающих факторов, получит повреждения. Наведенные токи и напряжения могут приводить также к появлению ложных сигналов и к сбоям в работе радиоэлектронных систем.

На практике стойкость приборов к действию импульсных напряжений и токов обычно характеризуют пороговой энергией повреждения, предельной величиной и скоростью нарастания (крутизной) импульса напряжения (тока).

В общем случае различают необратимые и обратимые нарушения работоспособности аппаратуры от воздействия электромагнитного импульса. Необратимые нарушения могут быть следствием либо тепловой перегрузки, либо электрического перенапряжения.

В результате тепловой перегрузки могут наблюдаться следующие повреждения элементов аппаратуры:

  • перегорание предохранительных вставок, резисторов;
  • разрушение обкладок керамических конденсаторов и электродов маломощных разрядников;
  • спекание контактов слаботочных реле;
  • обрыв проводов в местах пайки (сварки);
  • расплавление токоведущих и резистивных слоев полупроводниковых приборов.

Следствием электрического перенапряжения могут быть электрические пробои, которые характерны для конденсаторов, переходных штепсельных разъемов, контактных групп реле, изоляции кабельных изделий. Нередки случаи, когда эффекты электрического пробоя и тепловой перегрузки происходят вместе, взаимно влияют друг на друга.

К обратимым изменениям относятся временные сбои в работе аппаратуры. Обратимые изменения, как правило, имеют место при коротких импульсных напряжениях, энергия которых недостаточна для появления необратимых изменений.

Стойкость изделий радиоэлектронной техники и электротехники к воздействию импульсных напряжений (токов) в значительной степени отличается друг от друга. Так, например, для повреждения транзисторов и диодов требуется энергия от 10^-1 до 10^-8 Дж, для реле различных типов от 10^-1 до 10^-3 Дж, для электродвигателей и трансформаторов - более 10 Дж. В целом стойкость аппаратуры к воздействию импульсных (напряжений) зависит от стойкости комплектующих ее изделий.

По степени подверженности воздействию наведенных токов и напряжений радиоэлектронную и электротехническую аппаратуру условно разделяют на три группы:

  • высокочувствительную (устройства и приборы на микромодулях и микросхемах);
  • средней чувствительности (аппаратура, в состав которой входят слаботочные реле, электровакуумные приборы, транзисторы средней и большой мощности);
  • низкочувствительную (аппаратура электросилового оборудования, электродвигатели и трансформаторы, автоматы, контакторы, реле и другие коммутационные и защитные аппараты силовых распределительных сетей).

В общем случае воздействие на аппаратуру и ее отказы зависят от параметров электромагнитного импульса, стойкости самой аппаратуры, электрофизических характеристик грунта (проводимость, диэлектрическая и магнитная проницаемость, пробивное напряжение), характеристик кабельных изделий и антенно-фидерных устройств, подключенных к аппаратуре. Однозначно оценить роль каждого из этих факторов, как правило, не представляется возможным, так как они сложным образом связаны между собой. Поэтому оценивать воздействие электромагнитного импульса на радиоэлектронные и электротехнические системы объектов необходимо отдельно для каждого конкретного случая с комплексным учетом действия всех этих факторов.

Эффективным способом защиты радиоэлектронной и электротехнической аппаратуры является применение металлических экранов, которые в значительной мере снижают параметры электромагнитного импульса в экранированной полости. Электромагнитные поля могут появиться внутри экрана из-за диффузии внешних полей через стенки экрана, проникновения через неоднородности в экране (отверстия, щели и т. п.), а также за счет токов, заносимых внутрь экрана по металлопокровам внешних кабельных линий и с антенно-фидерных устройств.

В целях повышения эффективности защиты аппаратуры, расположенной внутри реальных экранов, применяют следующие меры:

  • отдельные части экрана соединяют сваркой, выполненной сплошным непрерывным швом;
  • металлические покрытия дверей в сооружениях электрически соединяют с основным экраном;
  • применяют специальные трубы (патрубки) для ввода кабельных линий в сооружения; при этом трубы приваривают к основному экрану;
  • металлопокровы кабельных линий и антенно-фидерных устройств соединяют с внешним контуром заземления сооруже­ния или экраном сооружения с внешней его стороны;
  • высокочувствительную аппаратуру размещают в центральной части экранированной полости;
  • вентиляционные отверстия в экране оборудуют электромагнитной защитой в виде металлических коробов (волноводов) или металлической сетки, устанавливаемой на входе в отверстия.

Для защиты аппаратуры, подключенной к внешним кабельным линиям и антенно-фидерным устройствам, устанавливают разрядники, дренажные катушки; применяют полупроводниковые стабилитроны (опорные диоды) для защиты высокочувствительной радиоэлектронной аппаратуры. Используют кабели с малым сопротивлением металлопокровов, прокладывают параллельно с кабельными линиями защитные тросы и другие способы защиты.

Наведенные токи и напряжения могут представлять опасность для личного состава, находящегося в соприкосновении с электропроводящими коммуникациями.

Для защиты личного состава от поражающего действия наведенных токов и напряжений наряду с общими мероприятиями по обеспечению электробезопасности необходимо принимать следующие дополнительные меры: покрывать полы рабочих помещений изоляционным материалом; применять рациональное заземление, обеспечивающее выравнивание потенциалов между частями электроустановок, металлоконструкций, стоек с аппаратурой, щитов, блоков и т. д., которых одновременно может касаться личный состав; строго соблюдать требования техники безопасности по эксплуатации импульсных электроразрядных установок при проведении работ, связанных с выполнением профилактических мероприятий и ремонтом аппаратуры и кабельных линий

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.



Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.


В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, \кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.


Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В. Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения. Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.



Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.


Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров. Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам. Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.



Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.



Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.

При ядерном взрыве образуется сильное электромагнитное излучение в широком диапазоне волн с максимумом плотности в области 15-30 кГц.

Ввиду кратковременности действия - десятки микросекунд, - это излучение называют электромагнитным импульсом (ЭМИ).

Причиной возникновения ЭМИ является ассиметричное электромагнитное поле, возникающее в результате взаимодействия гамма-квантов с окружающей средой.

Основными параметрами ЭМИ, как поражающего фактора, являются напряженности электрического и магнитного полей. При воздушном и наземном взрывах плотная атмосфера ограничивает область распространения гамма-квантов, и размеры источника ЭМИ примерно совпадают с районом действия проникающей радиации. В космосе ЭМИ может приобретать качество одного из основных поражающих факторов.

На человека ЭМИ не оказывает непосредственного влияния.

Действие ЭМИ проявляется прежде всего на проводящих электрический ток телах: воздушных и подземных линиях связи и электроснабжения, системах сигнализации и управления, металлических опорах, трубопроводах и т.п. В момент взрыва в них возникает импульс тока и наводится высокий электрический потенциал относительно земли.

В результате этого может произойти пробой изоляции кабелей, повреждение входных устройств радио- и электроаппаратуры, сгорание разрядников и плавких вставок, повреждение трансформаторов, выход из строя полупроводниковых приборов.

Сильные электромагнитные поля могут вывести из строя аппаратуру на пунктах управления, узлах связи и создать опасность поражения обслуживающего персонала.

Защита от ЭМИ достигается экранированием отдельных блоков и узлов радио- и электроаппаратуры.

Химическое оружие.

Химическим оружием называют отравляющие вещества и средства их применения. К средствам применения относятся авиационные бомбы, кассеты, боевые части ракет, артиллерийские снаряды, химические мины, выливные авиационные приборы, генераторы аэрозолей и т.п.

Основу химического оружия составляют отравляющие вещества (ОВ) - токсичные химические соединения, поражающие людей и животных, заражающие воздух, местность, водоемы, продовольствие и различные предметы на местности. Некоторые ОВ предназначены для поражения растений.

В химических боеприпасах и приборах ОВ находятся в жидком или твердом состоянии. В момент применения химического оружия ОВ переходят в боевое состояние - пар, аэрозоль или капли и поражают людей через органы дыхания или - при попадании на тело человека - через кожу.

Характеристикой заражения воздуха парами и тонкодисперсными аэрозолями является концентрация С=m/v, г/м3 - количество «m» ОВ в единице объема «v» зараженного воздуха.

Количественной характеристикой степени заражения различных поверхностей является плотность заражения: d=m/s, г/м2 - т.е. количество «m» ОВ, находящееся на единице площади «s» зараженной поверхности.

ОВ классифицируется по физиологическому воздействию на человека, тактическому назначению, быстроте наступления и длительности поражающего действия, токсикологическим свойствам и пр.

По физиологическому воздействию на организм человека ОВ делятся на следующие группы:

1) ОВ нервно-паралитического действия - зарин, зоман,Vx (ВИ-икс). Они вызывают расстройства функций нервной системы, мышечные судороги, паралич и смерть.

2) ОВ кожно-нарывного действия - иприт. Поражает кожу, глаза, органы дыхания и пищеварения - при попадании внутрь.

3) ОВ общеядовитого действия - синильная кислота и хлорциан. При отравлении появляется тяжелая отдышка, чувство страха, судороги, паралич.

4) ОВ удушающего действия - фосген. Поражает легкие, вызывает их отек, удушье.

5) ОВ психо-химического действия - BZ (Би-зет). Поражает через органы дыхания. Нарушает координацию движений, вызывает галлюцинации и психические расстройства.

6) ОВ раздражающего действия - хлорацетофенон, адамсит, CS (Cи-Эс) и CR (Си-Эр). Эти ОВ вызывают раздражение органов дыхания и зрения.

Нервно-паралитические, кожно-нарывные, общеядовитые и удушающие ОВ являются ОВ смертельного действия. ОВ психо-химического и раздражающего действия - временно выводят из строя людей.

По быстроте наступления поражающего действия различают быстродействующие ОВ (зарин, зоман, синильная кислота, Си-Эс, Си-Эр) и медленнодействующие (Ви-икс, иприт, фосген, Би-зет).

По длительности ОВ делятся на стойкие и нестойкие. Стойкие сохраняют поражающее действие несколько часов или суток. Нестойкие - несколько десятков минут.

Токсодоза - количество ОВ, необходимое для получения определенного эффекта поражения: T=c*t (г*мин)/м3 , где: с - концентрация ОВ в воздухе, г/м3; t - время пребывания человека в зараженном воздухе, мин.

При применении химического боеприпаса образуется первичное облако ОВ. Под действием движущихся масс воздуха ОВ распространяется в некотором пространстве, образуя зону химического заражения.

Зоной химического заражения называют район, подвергшийся непосредственному воздействию химического оружия, и территорию, над которой распространилось облако, зараженное ОВ с поражающими концентрациями.

В зоне химического заражения могут возникать очаги химического поражения.

Очаг химического поражения - это территория, в пределах котрой в результате воздействия химического оружия произошли массовые поражения людей, сельскохозяйственных животных и растений.

Защита от отравляющих веществ достигается использованием индивидуальных средств защиты органов дыхания и кожи, а также коллективные средства.

К особым группам химического оружия можно отнести бинарные химические боеприпасы, представляющие собой две емкости с различными газами - не ядовитыми в чистом виде, но при их смещении во время взрыва получается ядовитая смесь.

ТЕМА: ЭЛЕКТРОМАГНИТНЫЙ ИМПУЛЬС ЯДЕРНОГО ВЗРЫВА

И ЗАЩИТА ОТ НЕГО РАДИОЭЛЕКТРОННЫХ СРЕДСТВ.

С О Д Е Р Ж А Н И Е

1. НЕСМЕРТЕЛЬНОЕ ОРУЖИЕ.

11. ВЗГЛЯДЫ РУКОВОДСТВА США И НАТО НА ИСПОЛЬЗОВАНИЕ ЭЛЕК

ТРОМАГНИТНОГО ИМПУЛЬСА В ВОЕННЫХ ЦЕЛЯХ.

111. ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В

ОБЛАСТИ ЭМИ.

1У. ИСПОЛЬЗОВАНИЕ ИМИТАТОРОВ ЭМИ ДЛЯ НАБОРА ЭКСПЕРИМЕН

ТАЛЬНЫХ ЗНАНИЙ.

1. НЕСМЕРТЕЛЬНОЕ ОРУЖИЕ.

Военно-политическое руководство США, не отказываясь от использования насилия в качестве одного из главных инструментов достижения своих целей, осуществляет поиск новых способов ведения боевых действий и создает для них средства, в полной мере учитывающие реалии современности.

В начале 90-х годов в США стала зарождаться концепция, согласно которой вооруженные силы страны должны иметь не только ядерные и обычные вооружения, но и специальные средства, обеспечивающие эффективное участие в локальных конфликтах без нанесения противнику излишних потерь в живой силе и материальных ценностях.

К этому специальному оружию американские военные специалисты в первую очередь относят: средства создания электромагнитного импульса(ЭМИ); генераторы инфразвука; химические составы и биологические рецептуры, способные изменять структуру базовых материалов основных элементов боевой техники; вещества, которые выводят из строя смазку и резиновые изделия, вызывают загустение горючего; лазеры.

В настоящее время основные работы по развитию технологий оружия несмертельного действия (ОНСД) проводятся в управлении перспективных исследований министерства обороны, Ливерморской и Лос-Аламосской лабораториях министерства энергетики, центре разработок вооружения министерства армии и т.д. Наиболее близки к принятию на вооружение различные типы лазеров для ослепления личного состава, химические средства для его обездвиживания, генераторы ЭМИ, отрицательно влияющие на работу электронной техники.

ОРУЖИЕ ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА.

Генераторы ЭМИ (супер ЭМИ), как показывают теоретические работы и проведенные за рубежом эксперименты, можно эффективно использовать для вывода из строя электронной и электротехнической аппаратуры, для стирания информации в банках данных и порчи ЭВМ.

С помощью ОНСД на основе генераторов ЭМИ возможен вывод из строя ЭВМ, ключевых радио и электротехнических средств, систем электронного зажигания и других автомобильных агрегатов, подрыв или инактивация минных полей. Воздействие этого оружия достаточно избирательно и политически вполне приемлемо, однако требуется точная доставка его в районы поражаемой цели.

11. ВЗГЛЯДЫ РУКОВОДСТВА США И НАТО НА ИСПОЛЬЗОВАНИЕ ЭЛЕКТРО

МАГНИТНОГО ИМПУЛЬСА В ВОЕННЫХ ЦЕЛЯХ.

Несмотря на признание военно-политическим руководством США и НАТО невозможности победы в ядерной войне, различные аспекты поражающего действия ядерного оружия продолжают широко обсуждаться. Так, в одном из рассматриваемых иностранными специалистами сценариев начального периода ядерной войны особое место отводится потенциальной возможности вывода из строя радиоэлектронной техники в результате воздействия на нее ЭМИ. Считается, что подрыв на высоте около 400 км. только одного боеприпаса мощностью более 10 Мт приведет к такому нарушению функционирования радиоэлектронных средств в обширном районе, при котором

время их восстановления превысит допустимые сроки для принятия ответных мер.

По расчетам американских экспертов, оптимальной точкой подрыва ядерного боеприпаса для поражения ЭМИ радиоэлектронных средств почти на всей территории США была бы точка в космосе с эпицентром в районе географического центра страны, находящегося в штате Небраска.

Теоретические исследования и результаты физических экспериментов показывают, что ЭМИ ядерного взрыва может привести не только к выходу из строя полупроводниковых электронных устройств, но и к разрушению металлических проводников кабелей наземных сооружений. Кроме того возможно поражение аппаратуры ИСЗ, находящихся на низких орбитах.

Для генерации ЭМИ ядерный боеприпас может подрываться в космическом пространстве, что не приводит к возникновению ударной волны и выпадению радиоактивных осадков. Поэтому в зарубежной прессе высказывются следующие мнения о "неядерном характере" такого боевого применения ядерного оружия и о том, что удар с использованием ЭМИ не обязательно приведет к всеобщей ядерной войне. Опасность этих заявлений очевидна,т.к. одновременно некоторые зарубежные специалисты не исключают возможность массового поражения с помощью ЭМИ и живой силы. Во всяком случае вполне очевидно, что наводимые под воздействием ЭМИ в металлических элементах техники токи и напряжения будут смертельно опасны для личного состава.

111.ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В ОБЛАСТИ ЭМИ.

Для того, чтобы понять всю сложность проблем угрозы ЭМИ и мер по защите от нее, необходимо кратко рассмотреть историю изучения этого физического явления и современное состояние знаний в этой области.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в

конце 50-х - начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.Однако количественные характеристики импульса измерялись в недостаточной степени, во-первых, потому что отсутствовала контрольно-измерительная аппаратура, способная регистрировать чрезвычайно мощное электромагнитное излучение, существующее чрезвычайно короткое время (миллионные доли секунду), во-вторых, потому что в те годы в радиоэлектронной аппаратуре использовались исключительно электровакуумные приборы, которые мало подвержены воздействию ЭМИ, что снижало интерес к его изучению.

Создание полупроводниковых приборов, а затем и интегральных схем,особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ. С 1970 года вопросы защиты оружия и военной техники от ЭМИ стали рассматриваться министерством обороны США как имеющие высшую приоритетность.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов,выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетки. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 - 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания амплитуды импульса (максимум достигается на 3 - 5 нс после взрыва) наведенное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорциональна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля.

Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

ЭМИ генерируются и при других видах ядерных взрывов - воздушном и наземном. Теоретически установлено, что в этих случаях его интенсивность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность,однако она быстро уменьшается по мере удаления от эпицентра.

1У. ИСПОЛЬЗОВАНИЕ ИМИТАТОРОВ ЭМИ ДЛЯ НАБОРА ЭКСПЕРИМЕНТАЛЬНЫХ

Поскольку сбор экспериментальных данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение набора данных достигается методами и средствами физического моделирования.

Среди капиталистических стран передовые позиции в разработке и

практическом использовании имитаторов ЭМИ ядерного взрыва занимают США. Подобные имитаторы представляют собой электрогенераторы со специальными излучателями, создающими электромагнитное поле с параметрами близкими к тем, которые характерны для реального ЭМИ. В зону действия излучателя помещаются испытываемый объект и приборы, регистрирующие интенсивность поля, его частотный спектр и длительность воздействия.

Один из таких имитаторов, развернутый на авиабазе ВВС США Киртленд, предназначен для моделирования условий воздействия ЭМИ на самолет и его аппаратуру. Он может использоваться для испытаний таких крупных летательных аппаратов, как бомбардировщик В-52 или гражданский авиалайнер Боинг-747.

В настоящее время создано и действует большое количество имитаторов ЭМИ для испытаний авиационной, космической, корабельной и наземной техники. Однако они не в полной мере воссоздают реальные условия воздействия ЭМИ ядерного взрыва вследствие ограничений, накладываемых характеристиками излучателей, генераторов и источников электропитания на частотный спектр излучения, его мощность и скорость нарастания импульса. Вместе с тем, и при этих ограничениях удается получить достаточно полные и надежные данные о появлении неисправностей в полупроводниковых приборах, сбоя в их функционировании и т.п., а также об эффективности действия различных защитных устройств. Кроме того, такие испытания позволили дать количественную оценку опасности различных путей воздействия ЭМИ на радиоэлектронную технику.

Теория электромагнитного поля показывает, что такими путями для наземной техники являются прежде всего различные антенные устройства и кабельные вводы системы электропитания, а для авиационной и космической техники - антенны, а также токи, наводимые в обшивке, и излучения,проникающие через остекление кабин и лючки из нетокопроводящих материалов. Токи, наводимые ЭМИ в наземных и заглубленных кабелях электропитания протяженностью в сотни и тысячи километров, могут достигать тысяч ампер, а напряжение в разомкнутых цепях таких кабелей - миллион вольт. В антенных вводах, длина которых не превышает десятков метров,наводимые ЭМИ токи могут иметь силу в несколько сотен ампер. ЭМИ, проникающий непосредственно через элементы сооружений из диэлектрических материалов (неэкранированные стены, окна, двери и т.п.), может наводить во внутренней электропроводке токи силой в десятки ампер.

Поскольку слаботочные цепи и радиоэлектронные приборы нормально действуют при напряжениях в несколько вольт и токах силой до нескольких десятков миллиампер, то для их абсолютно надежной защиты от ЭМИ требуется обеспечить снижение величины токов и напряжений в кабелях,до шести порядков.

У. ВОЗМОЖНЫЕ ПУТИ РЕШЕНИЯ ЗАДАЧИ ЗАЩИТЫ ОТ ЭМИ.

Идеальной защитой от ЭМИ явилось бы полное укрытие помещения, в котором размещена радиоэлектронная аппаратура, металлическим экраном.

Вместе с тем ясно, что практически обеспечить такую защиту в ряде случаев невозможно, т.к. для работы аппаратуры часто требуется обеспечить ее электрическую связь с внешними устройствами. Поэтому используются менее надежные средства защиты, такие, как токопроводящие сетки или пленочные покрытия для окон, сотовые металлические конструкции для воздухозаборников и вентиляционных отверстий и контактные пружинные прокладки, размещаемые по периметру дверей и люков.

Более сложной технической проблемой считается защита от проникновения ЭМИ в аппаратуру через различные кабельные вводы. Радикальным решением данной проблемы мог бы стать переход от электрических сетей связи к практически не подверженным воздействию ЭМИ волоконно-оптическим. Однако замена полупроводниковых приборов во всем спектре выполняемых ими функций электронно-оптическими устройствами возможно только в отдаленном будущем. Поэтому в настоящее время в качестве средств защиты кабельных вводов наиболее широко используются фильтры, в том числе волоконные, а также искровые разрядники,металлоокисные варисторы и высокоскоростные зенеровские диоды.

Все эти средства имеют как преимущества, так и недостатки. Так,емкостно-индуктивные фильтры достаточно эффективны для защиты от ЭМИ малой интенсивности, а волоконные фильтры защищают в относительно узком диапазоне сверхвысоких частот.Искровые разрядники обладают значительной инерционностью и в основном пригодны для защиты от перегрузок,возникающих под воздействием напряжений и токов, наводимых в обшивке самолета, кожухе аппаратуры и оплетке кабеля.

Металлоокисные варисторы, представляют собой полупроводниковые приборы, резко повышающие свою проводимость при высоком напряжении.

Однако, при применении этих приборов в качестве средств защиты от ЭМИ следует учитывать их недостаточно высокое быстродействие и ухудшение характеристик при неоднократном воздействии нагрузок. Эти недостатки отсутствуют у высокоскоростных зенеровских диодов, действие которых основано на резком лавинообразном изменении сопротивления от относительно высокого значения практически до нуля при превышении приложенного к ним напряжения определенной пороговой величины. Кроме того в отличии от варисторов характеристики зенеровских диодов после многократных воздействий высоких напряжений и переключений режимов не ухудшаются.

Наиболее рациональным подходом к проектированию средств защиты от ЭМИ кабельных вводов является создание таких разъемов, в конструкции

которых предусмотрены специальные меры, обеспечивающие формирование элементов фильтров и установку встроенных зенеровских диодов. Подобное решение способствует получению очень малых значений емкости и индуктивности, что необходимо для обеспечения защиты от импульсов, которые имеют незначительную длительность и, следовательно, мощную высокочастотную составляющую. Использование разъемов подобной конструкции позволит решить проблему органичения массо-габаритных характеристик устройства защиты.

Сложность решения задачи защиты от ЭМИ и высокая стоимость разработанных для этих целей средств и методов заставляют пойти на первых парах по пути их выборочного применения в особо важных системах оружия и военной техники. Первыми целенаправленными работами в данном направлении были программы защиты от ЭМИ стратегического оружия. Такой же путь избран и для защиты имеющих большую протяженность систем управления и связи. Однако основным методом решения данной данной проблемы зарубежные специалисты считают создание так называемых распределенных сетей связи (типа "Гвен"), первые элементы которых уже развернуты на континентальной части США.

Современное состояние проблемы ЭМИ можно оценить следующим образом. Достаточно хорошо исследованы теоретически и подтверждены экспериментально механизмы генерации ЭМИ и параметры его поражающего действия. Разработаны стандарты защищенности аппаратуры и известны эффективные средства защиты. Однако для достижения достаточной уверенности в надежности защиты систем и средств от ЭМИ необходимо провести испытания с помощью имитатора. Что касается полномасштабных испытаний систем связи и управления, то эта задача вряд ли будет решена в обозримом будущем.

Мощный ЭМИ можно создать не только в результате ядерного взрыва.

Современные достижения в области неядерных генераторов ЭМИ позволяют сделать их достаточно компактными для использования с обычными и высокоточными средствами доставки.

В настоящее время в некоторых западных странах ведутся работы по генерации импульсов электромагнитного излучения магнитодинамическими устройствами, а также высоковольтными разрядами. Поэтому вопросы защищенности от воздействия ЭМИ будут оставаться в центре внимания специалистов при любом исходе переговоров о ядерном разоружении.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

// 1 Комментарий

Мощный электромагнитный импульс (ЭМИ) появляется вследствие всплеска энергии, которая излучается или проводится таким источником как солнце или взрывное устройство. Если в вашем арсенале выживальщика присутствуют электротехнические или электронные устройства, необходимо предусмотреть их защиту от ЭМИ, чтобы они смогли продолжать работать после начала боевых действий, природной или техногенной катастрофы.

Что такое электромагнитный импульс

Всякий раз, когда проходит через провода, он производит электрическое и магнитное поля, которые исходят перпендикулярно движению тока. Размер этих полей пропорционален силе тока. Длина провода напрямую влияет на силу тока индуцированного электромагнитного импульса. Кроме того, даже обычное включение питания производит короткий всплеск электрической и магнитной энергии.

При этом всплеск настолько мал, что едва заметен. Например, коммутационные действия в электрической схеме, двигателях и системах зажигания для газовых двигателей так же производят к небольшим ЭМИ импульсам, которые могут вызвать помехи на соседнем радио или телевидении. Для их поглощения используются фильтры, удаляющие незначительные всплески энергии и помехи от них.

Большой выброс энергии производится, когда некий заряд электричества быстро разряжается. Данный электростатический разряд (ESD) может шокировать человека или вызвать опасные искры вокруг паров топлива. Так же многие помнят, что в детстве мы бы протирали ноги об ковер, а затем касались друзей, создавая разряд ESD. Это тоже одна из форм ESD.

Чем сильнее энергия импульса, тем больше он может повредить здания и воздействовать людей. Например, молния является мощной формой ЭМИ. может быть очень опасным и стать причиной катастрофы. К счастью, большинство молнии замкнуто на землю, где электрический заряд поглощается. Громоотвод изобрел Бенджамин Франклин, благодаря чему сегодня сохраняются многие здания и сооружения.

Такие события, как ядерные взрывы, высотные неядерные взрывы и солнечные бури могут создать мощный ЭМИ, который наносит ущерб электрическому и электронному оборудованию, расположенному недалеко от источника события. Все это угрожает электросетям и функционированию большинства электрических и электронных устройств в нашей жизни.

Поражающие факторы электромагнитного импульса

Опасность ЭМИ заключается в том, что он поражает системы жизнеобеспечения и транспорта. Поэтому, например, при мощном воздействии электромагнитного импульса современная незащищенная автотехника выходит из строя. Особенно это касается автомобилей, произведенных после 1980 года. Поэтому в случае техногенной катастрофы, начала боевых действий или всплеска солнечной активности оптимально использовать автомашины старого образца.

Кроме того, электромагнитный импульс поражает:

Компьютеры.
Дисплеи.
Принтеры.
Маршрутизаторы.
Трансформаторы.
Генераторы.
Источники питания.
Стационарные телефоны.
Любые электронные схемы.
Телевизоры.
Радио, DVD плееры.
Игровые устройства.
Медиа центры
Усилители.
Системы связи (передатчики, приемники)
Кабели (передачи данных, телефонные, коаксиальные, USB и т.д.)
Провода (особенно большой длины).
Антенны (внешние и внутренние).
Электрические шнуры питания.
Системы зажигания (авто и самолетов).
Электрические схемы СВЧ.
Кондиционеры.
Аккумуляторы (все виды).
Фонарики.
Реле.
Системы сигнализации.
Контроллеры заряда.
Преобразователи.
Калькуляторы.
Электроинструменты.
Электронные запчасти.
Зарядные устройства.
Устройства контроля (CO2, детекторы дыма и т.д.).
Кардиостимуляторы.
Слуховые аппараты.
Устройства медицинского мониторинга и т.п.

Факторы, которые определяют урон от ЭМИ

Сила входящего электромагнитного импульса.
Расстояние до источника импульса.
Угол линии удара от источника к вашему положению на вращающейся Земле.
Размер и форма объектов, которые получают и собирают ЭМИ.
Степень изоляции приборов и устройств от вещей, которые могут собирать и передавать энергию ЭМИ.
Защита или экранирование приборов и устройств.

Как защититься от ЭМИ: первые действия

С большой долей вероятности небольшие системы не будут затронуты ЭМИ (англ. EMP), если они изолированы от сети питания. Поэтому при поступлении предупреждения о грядущем EMP отключите все подключенные к электрической розетке приборы и устройства. Не забудьте вентиляцию и термостаты. Отключите солнечные панели и весь дом от общей сети, откройте запорные переключатели между солнечными панелями и инвертором, и между преобразователем и распределительной панелью питания. При слаженных действиях это займет несколько минут.

Общая защита от электромагнитного излучения

Предлагаемые защитные действия:

Отключайте электронные устройства, когда они не используется.
Отключайте электроприборы, когда они не используются.
Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
Используйте короткие кабели для работы.
Установите защитную индукцию вокруг компонентов.
Используйте компоненты с автономными батареями.
Используйте рамочные антенны.
Подключите все провода заземления к одной общей точке заземления.
По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
Используйте ИБП для защиты электроники от всплеска EMP.
Используйте блокирования устройства.
Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.
Устанавливайте кабель под землей, в экранированных кабельных каналах.
Постройте одну или несколько клеток Фарадея.

Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным. И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты. Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.

Как построить клетку Фарадея

Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.

Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.

Что поместить в клетку Фарадея

Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:

Батарейки для радио.
Портативные рации.
Портативные телевизоры.
Светодиодные фонарики.
Солнечное зарядное устройство.
Компьютер (ноутбук или планшет).
Сотовые телефоны и смартфоны.
Различные лампочки.
Зарядные шнуры для мобильных телефонов, планшетов и т.п.

Как защитить важную информацию от ЭМИ

Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.

Вместо послесловия

Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению. Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км. Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.

И будете в безопасности!