Материалы лекций «Фундаментальные основы нанотехнологий. Разделы программы «Нанотехнологии»

Учебный план курса

№ газеты Учебный материал
17 Лекция № 1. Что скрывается за приставкой «нано»? Нанонаука и нанохимия. Размерный эффект. Классификация нанообъектов. (Еремин В.В., Дроздов А.А.)
18 Лекция № 2. Методы синтеза и исследования наночастиц. Классификация методов синтеза наночастиц. Химические методы синтеза («снизу вверх»). Методы визуализации и исследования наночастиц. (Еремин В.В., Дроздов А.А.)
19 Лекция № 3. Нанотехнология. Фундаментальные и прикладные исследования: связь нанонауки и нанотехнологии. Механические наноустройства. Магнитные наноматериалы. Нанотехнологии в медицине. Развитие нанотехнологий. (Еремин В.В., Дроздов А.А.)
Контрольная работа № 1 (срок выполнения – до 25 ноября 2009 г.)
20 Лекция № 4. Углеродные наноматериалы. Аллотропные формы углерода – «нано» и не «нано». Наноалмазы. Фуллерены и их производные. Нанотрубки, их классификация и свойства. Общие свойства наноформ углерода. (Еремин В.В.)
21 Лекция № 5. Наноматериалы для энергетики. Традиционные и альтернативные источники энергии. Наноматериалы в топливных элементах. Наноматериалы для хранения водорода. (Еремин В.В.)
22 Лекция № 6. Нанокатализ. Общие свойства катализаторов. Классификация каталитических реакций. Принципы структурного и энергетического соответствия. Катализ на наночастицах и цеолитах. (Еремин В.В.)
Контрольная работа № 2 (срок выполнения – до 30 декабря 2009 г.)
23 Лекция № 7. Нанохимия в олимпиадных задачах. 1. Простые задачи. Cпособы получения нано- частиц. Структура наночастиц. Свойства наночастиц. (Еремин В.В.)
24 Лекция № 8. Нанохимия в олимпиадных задачах. 2. Сложные комбинированные задачи.
(Еремин В.В.)
Итоговая работа.
Краткий отчет о проведении итоговой работы, сопровождаемый справкой из учебного заведения, должен быть направлен в Педагогический университет не позднее 28 февраля 2010 г.
(Подробнее об итоговой работе будет напечатано после лекции № 8.)

В.В.ЕРЕМИН,
А.А.ДРОЗДОВ

Статья опубликована при поддержке Компании "Може продакт дистрибьтюр". Уже более 50 лет "Може продакт дистрибьтюр" производит препараты для микроинъекций в стволы деревьев, удобрения для деревьев и средства для профилактики и лечения деревьев от вредителей . Что способствует стойкости деревьев к травмам и неблагоприятным условиям. Посетите официальный сайт компании http://mauget.ru и ознакомьтесь подробнее.

ЛЕКЦИЯ № 3
Нанотехнология

Фундаментальные и прикладные исследования: связь нанонауки и нанотехнологии

Предложенные физиками и химиками методы получения наночастиц (см. лекцию № 2) можно сравнить с лабораторными способами получения аммиака или серной кислоты. Очевидно, что производство ставит перед учеными и технологами более крупномасштабные задачи. Возьмем в качестве примера беспроводное наноустройство, излучающее свет. Оно состоит из тончайшего слоя полупроводника – нитрида галлия – толщиной всего 3 нм, т.е. состоящего лишь из десятка атомных слоев. Сверху на него нанесены наносферы – модифицированные молекулы фуллеренов, которые, принимая электроны, излучают свет. Первоначальная химическая задача состоит в том, чтобы получить вещества в наносостоянии, но гораздо сложнее задача технологическая – сформировать их так, чтобы получилось устройство и это устройство работало.

В процессе развития наших представлений о наномире понятие о нанотехнологии претерпело несколько изменений. Впервые термин «нанотехнология» употребил в 1974 г. японский инженер Норио Танигучи, который определил его как «технологию производства, позволяющую достигать сверхвысокую точность и ультрамалые размеры...порядка 1 нм» .

Под влиянием американского ученого К.Э.Дрекслера нанотехнологией в 1980-е и 1990-е гг. стали называть создание различных устройств из отдельных молекул. В качестве перспектив нанотехнологии описывались, например, миниатюрные автономные нанороботы, которые запускались в человеческий организм и, плавая по кровеносной системе, находили больные органы, а затем осуществляли их «ремонт». При этом под нанотехнологией понимали область науки. Однако более близким к истине стало определение нанотехнологии, данное А.Франксом в 1987 г. : «Нанотехнология – это производство с размерами и точностями в области 0,1–100 нм».

Действительно, пока «молекулярные машины» Дрекслера создавались с помощью формул и компьютерного моделирования, происходило неуклонное совершенствование традиционных технологий, которые за счет повышения точностных характеристик вступили в область нанотехнологии. Нагляднее всего это проявилось в развитии микроэлектроники: с субнанометровой точностью уже производятся микросхемы, характерные размеры активных электронных элементов в которых менее 100 нм. Микроэлектронные технологии послужили также основой создания микроэлектромеханических устройств, требования к точности изготовления которых существенно превзошли порог 100 нм. Поэтому в последние годы термин «нанотехнология» связан, в первую очередь, с практическим применением объектов наномира.

Четкое определение нанотехнологии дано госкорпорацией Роснанотех , которая занимается финансированием инновационных проектов в области нанотехнологии*:

Нанотехнологии – совокупность методов и приемов, применяемых при изучении, проектировании, производстве и использовании структур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, интеграции и взаимодействия составляющих их наномасштабных элементов (1–100 нм) для получения объектов с новыми химическими, физическими, биологическими свойствами.

В этом длинном определении несколько ключевых выражений. Во-первых, определен масштаб наноэлементов – от 1 до 100 нм хотя бы в одном измерении. Во-вторых, подчеркнуто, что эти наноэлементы должны обусловливать новые свойства по сравнению с объектами, состоящими из макрофазы вещества такого же состава. На самом деле, в составе любого вещества есть наноструктуры, но далеко не всегда они определяют свойства вещества. Например, размер элементарных ячеек кристаллов фуллерена превышает 1 нм, а в составе обычной жидкой воды существуют нанометровые кластеры; но порошок фуллерена и воду не относят к объектам нанотехнологии.

В-третьих, определение отражает междисциплинарный характер нанотехнологии – в ее развитии участвуют все ключевые естественные науки, а также математика и информационные технологии. Научное содержание нанотехнологии передается словом «изучение». Все существующие технологии, и «нано» – не исключение, основаны на достижениях фундаментальной науки.

И, наконец, в определении указаны цели нанотехнологии – проектирование, производство и использование наноструктур. Главное слово в определении цели – последнее, «использование». Основная цель нанотехнологии, как и любой другой технологии, – производство товара и получение прибавочной стоимости, поэтому состояние и развитие нанотехнологии определяются рыночными механизмами. В контексте нанотехнологий часто употребляют слово «инновация», означающее научное открытие, доведенное до уровня практического использования. Инновационный путь включает ряд этапов (схема).

Схема

Нанотехнология, в принципе, охватывает все этапы этой цепочки, тем самым объединяя в себе научную, производственную и экономическую стороны деятельности.

Какие же достижения нанонауки уже нашли свое применение или обещают это сделать в ближайшем будущем? Рассмотрим несколько примеров из разных областей науки.

Механические наноустройства

Одну из научных основ нанотехнологии составляет наномеханика , исследующая механические свойства наносистем. Для управления свойствами наномира надо овладеть, в первую очередь, механическим движением и научиться контролировать перемещения отдельных наночастиц – поступательные или вращательные. К числу самых интересных проблем наномеханики относится создание наномоторов – устройств, способных превращать тепловую, электрическую или световую энергию в движение. Другое название этих устройств – актюаторы (от англ. act – действовать). Такие моторы существуют и в природе – с их помощью перемещаются некоторые бактерии. К клетке бактерии прикреплен миниатюрный жгутик, колебания которого и приводят микроорганизм в движение. «Вал» этого двигателя представляет собой белковую молекулу, а «топливом» служит аденозинтрифософат (АТФ).

Простейший искусственный наномотор работает под действием разности температур . Он представляет собой длинную цилиндрическую нанотрубку, на которую надета более короткая полая нанотрубка (рис. 1). Обе нанотрубки собраны из атомов углерода. Вторая трубка может перемещаться относительно первой под действием разницы температур – от более теплого края первой трубки к более холодному, причем амплитуду перемещения можно контролировать с точностью до диаметра одного атома. Более того, к движущейся нанотрубке можно прикрепить «груз» и тем самым превратить данное механическое устройство в наноконвейер. Движение в данной системе осуществляется за счет колебаний атомов в первой (неподвижной) нанотрубке.

А вот пример искусственного актюатора, преобразующего энергию света в механическую работу. Его действие основано на способности азобензола изомеризоваться под действием света. При УФ-облучении трансизомер превращается в цисформу, а обратная реакция происходит при нагревании или под действием видимого (синего) света:

При изомеризации одна часть молекулы поворачивается относительно другой, при этом совершается механическая работа, которая может быть использована в наномоторе.

Американские ученые создали наномотор из небольшой молекулы ДНК (31 пара нуклеотидов), к которой присоединены несколько молекул азобензола . В собранном виде эта структура напоминает шпильку (рис. 2, а ). При УФ облучении «шпилька» раскрывается за счет изомеризации азобензола (рис. 2, б ), а при действии видимого света происходит обратное превращение – «шпилька» собирается. В собранном виде размер такого наномотора (L 1) составляет от 2 до 5 нм, а в открытом (L 2) – 10–12 нм. Его КПД, т.е. степень конверсии световой энергии, достигает 40–50 %. Наномотор работает обратимо, в мягких условиях и не дает отходов.

Для наблюдения за ходом реакции к концам нуклеотидной цепи прикрепили две молекулы – одна (флуоресцирующая метка) способна испускать свет при облучении, а другая (тушитель флуоресценции) препятствует этому процессу. В закрытом состоянии тушитель и метка находятся рядом, поэтому флуоресценции не происходит. Когда структура раскрывается, тушитель и метка расходятся и уже не взаимодействуют друг с другом, что приводит к появлению флуоресценции.

Американские ученые создали наноаналог настоящего электродвигателя. Он состоит из крошечной золотой пластинки, размещенной на «нановалу» – углеродной нанотрубке. Вся эта система находится в окружении электродов. При подаче на них переменного электрического напряжения пластинка начинает вращаться – электромагнитная энергия преобразуется в механическую работу.

Механическое движение можно осуществлять и за счет химической энергии. На этом основана работа каталитического наномотора, созданного в 2004 г. . Он состоит из цилиндрических стержней, содержащих сегменты платины и золота длиной по 1 мкм и диаметром 370 нм (рис. 3, см. с. 8 ). Топливом служит пероксид водорода, который в присутствии платины разлагается на кислород и воду. Выделяющийся газ создает избыточное давление, которое обеспечивает поступательное движение стержней со скоростью до 20 мкм/с.

Ученые создали и молекулярный прототип лунохода – молекулу, способную прямолинейно перемещаться по ровной поверхности . Химическое название этого соединения – 9,10-дитиоантрацен:

Его молекула содержит два атома серы, которые выступают из циклического остова и действуют как «ноги». Большинство других молекул перемещаются по поверхности хаотично, т.е. в произвольном направлении, а данная молекула – исключение. Два атома серы работают как ноги, поочередно переступая которыми молекула передвигается по подложке вдоль прямой линии (рис. 4), не изменяя своего направления. Такие «ходячие молекулы» могут быть использованы для создания новых молекулярных средств хранения данных чрезвычайно большой емкости. Но с их помощью можно и переносить вещества – ученым удалось нагрузить ходячую молекулу, присоединив к ней две молекулы CO 2 .

В последнее время созданы и «самоходные устройства», по внешнему виду отдаленно напоминающие автомобили . В роли корпуса автомобиля выступает органическая молекула, а колесами служат фуллерены С 60 (рис. 5). По ширине такой «наноавтомобиль» чуть превосходит толщину молекулы ДНК. На поперечном срезе человеческого волоса способны разместиться около 20 тысяч наноавтомобилей! При помощи сканирующего микроскопа ученые точно установили, что наноавтомобили не шагают, а именно катятся по поверхности благодаря вращению фуллереновых колес. Сейчас их приводят в движение, нагревая золотую пластинку, которая играет роль дороги. Однако это неудобно – ведь нагрев приводит в движение сразу все автомобили. В настоящее время ученые работают над созданием антенн, которые позволяли бы машинам получать световую энергию извне.

Созданы и машины с мотором, по принципу действия напоминающим колесные пароходы. Роль вращающегося колеса, служащего мотором, играет молекула карборана, напоминающая шар с лопастями. Такой «лопастный» двигатель может вращаться только в одну сторону – «задний ход» молекулы не дают.

Пока сборку подобных устройств проводят практически «вручную». Для этого чаще всего используют иглу атомно-силового микроскопа. Так, шаг за шагом, молекула за молекулой ученые и создают интересные и полезные наноструктуры.

Магнитные наноматериалы

Другое важное применение наночастиц связано с явлением магнетизма. Напомним, как подразделяют вещества по их магнитным свойствам.

Частицы, в которых нет неспаренных электронов, образуют вещества, не имеющие собственного магнитного момента. Они намагничиваются лишь под действием внешнего магнитного поля. При внесении такого вещества в магнитное поле в каждом его атоме, в силу закона электромагнитной индукции, возникают индуцированные круговые токи – круговое движение электронов вокруг направления магнитного поля. Это приводит к тому, что в каждом атоме возникает индуцированный магнитный момент, направленный навстречу внешнему магнитному полю. Описанное явление назвали диамагнетизмом , а вещества, которые намагничиваются таким образом, – диамагнетиками . При внесении в магнитное поле диамагнетик ориентируется перпендикулярно силовым линиям поля, что приводит к его выталкиванию из неоднородного магнитного поля.

Атомы с неспаренными электронами обладают собственным магнитным моментом. Вещества, в состав которых входят такие атомы, под действием внешнего магнитного поля намагничиваются и втягиваются в него. Такое свойство называют парамагнетизмом , а вещества – парамагнетиками . Частицы, из которых построены парамагнетики (атомы, молекулы, ионы), обладают собственным магнитным моментом, но в отсутствие внешнего поля моменты отдельных частиц ориентированы случайным образом, так что их сумма равна нулю. Во внешнем поле магнитные моменты атомов парамагнитных веществ упорядочиваются и ориентируются преимущественно по полю. Это создает в веществе небольшой суммарный магнитный момент.

В некоторых веществах и материалах, например железе, магнитные моменты отдельных атомов ориентированы в одну и ту же сторону даже в отсутствие внешнего магнитного поля. Это свойство называют ферромагнетизмом , а вещества – ферромагнетиками . Они притягиваются к постоянным магнитам и обладают самопроизвольной намагниченностью. К их числу принадлежат некоторые металлы (железо, кобальт, никель, гадолиний), сплавы, интерметаллиды (Fe 3 Al, Ni 3 Mn), а также оксиды (магнетит Fe 3 O 4). Ферромагнитные свойства вещества исчезают при нагревании его до определенной температуры, называемой температурой Кюри. Для железа она составляет 770 °С, для никеля – 358 °С. При низких температурах ферромагнетизмом обладают и некоторые соли, комплексные соединения. Наиболее сильные постоянные магниты получают сплавлением железа, неодима и бора. Их применяют в электромоторах, генераторах, различных датчиках.

В последние годы вместо массивных магнитов, получаемых прессованием или спеканием, часто используют магнитопласты, представляющие собой смесь магнитного порошка и полимерного связующего. Всем пользующимся общественным транспортом хорошо знакомы нанесенные на билет гибкие пластиковые ленты, покрытые тонким магнитным слоем магнетита или ферритов. Эти ленты предварительно намагничивают, превращая их в носитель информации, которую и считывает валидатор. Магнитные материалы используют и для хранения информации в компьютерных элементах памяти. Основной механизм хранения информации заключается в намагничивании в определенном направлении малой области магнитного материала, называемой битом. Объем сохраняемой информации принято выражать в байтах, один байт позволяет хранить 8 бит информации.

При плотности хранения информации в 1 гигабит (т.е. один миллиард бит) на квадратный дюйм (1 дюйм = 2,54 см, 1 дюйм 2 = 6,45 см 2) отдельный бит занимает область длиной 45 нм и шириной 1 мкм. Для увеличения плотности записи информации требуется производить наноразмерные магнитные порошки, т.е. состоящие из наночастиц. Каждая частица (домен) должна находиться в одном из двух состояний (их называют «логический 0» и «логическая 1») и при внешнем воздействии переключаться с одного состояния на другое. Отдельные домены, взаимодействуя между собой, формируют структуру, которая и выступает хранителем информации.

Чем меньше размер магнитных частиц, тем большей плотности информации удается достичь. Сейчас уже созданы диски с плотностью записи более 20 Гбит на квадратный дюйм. Это позволяет хранить на 3,5-дюймовом жестком диске около 27 Гбайт данных, что составляет более 25 тыс. книг карманного формата или 20 кинофильмов, записанных с высоким качеством. Такой успех оказался возможным благодаря использованию магнитных нанозерен сплава железа с платиной. Для их получения соединения железа и платины нагревали в присутствии восстановителя. Для стабилизации образовавшихся наночастиц использовали поверхностно-активное вещество (ПАВ) – олеиновую кислоту. Молекулы олеиновой кислоты адсорбировались на поверхности наночастиц сплава, препятствуя их слипанию и образованию более крупных агрегатов. Раствор, содержащий наночастицы, наносили на подложку и упаривали. При этом на подложке образовывалась тонкая пленка, состоящая из отдельных наночастиц. Для упрочнения ее нагревали. Размер наночастиц сплава, образующих пленку, составляет всего три нанометра!

Особый тип магнитных наноматериалов представляют собой пористые диамагнетики, в пустотах которых находятся ферромагнитные наночастицы. Примером может служить ферритин – особый белок, ответственный за хранение железа в организме. Молекула ферритина имеет форму шара диаметром 12 нм, составленного из 24 субъединиц – полипептидных фрагментов (pиc. 6). Внутри шара имеется полость диаметром 8 нм, заполненная наночастицами оксогидроксида железа FeOOH. Одна молекула ферритина удерживает в полости более 4000 атомов железа. Ферритин – это универсальное хранилище железа в организме. При необходимости через поры, имеющиеся внутри белковой оболочки, наночастицы оксогидроксида железа размером 5 нм выходят наружу и попадают в кровь. Они расходуются на синтез гемоглобина. Как ферритин «узнает» о необходимости отдать железо в кровь, пока не установлено. Ученые работают над созданием искусственных наноматериалов, в которых частицы оксогидроксида железа или магнетита входят в состав пористой матрицы. О перспективах использования ферромагнитных частиц в медицине мы расскажем в следующем разделе.

Рис. 6. Ферритин

В ряду ферромагнитных наноматериалов особое место занимают ферромагнитные жидкости . Может ли жидкость притягиваться магнитом? На первый взгляд кажется, что нет. Ведь ферромагнетизмом обладают лишь некоторые металлы и их соединения, а они все при комнатной температуре представляют собой твердые вещества. Однако ферромагнитные жидкости все-таки существуют . Только представляют собой они не индивидуальные вещества, а коллоидные растворы, в которых ферромагнитные частицы равномерно распределены в жидкой фазе. Обычно используют наночастицы магнетита Fe 3 O 4 или ферриты. А чтобы они не оседали на дно, к ним прикрепляют молекулы ПАВ. Размеры коллоидных частиц меняются в широких пределах – от пяти до десятков тысяч нанометров. В качестве жидкой фазы при создании магнитных жидкостей используют воду, этанол, а также неполярные растворители – углеводороды, силиконы. Магнитные жидкости сохраняют устойчивость в течение нескольких лет. Они обладают не только хорошими магнитными свойствами, но и высокой текучестью.

Магнитные жидкости уже сейчас находят применение в технике. С их помощью можно осуществлять преобразование механической энергии в электрическую. Если ампулу с магнитной жидкостью поместить внутрь индукционной катушки, соединенной с конденсатором, то при каждом сотрясении ампулы жидкость будет перемешиваться, а ее частицы располагаться вдоль магнитного поля. Выделяющейся при этом энергии может хватить на работу небольшого радиоприемника, карманных часов. Предлагается создать основанные на этом принципе устройства, преобразующие энергию капель дождя в электрический ток. А если магнитную жидкость пустить по специальным каналам, вырытым в земле, то ее частицы будут ориентироваться под действием магнитного поля Земли, а затем отдавать эту энергию катушке. Так энергия магнитного поля Земли преобразуется в электрическую. Подобные системы уже с успехом применяются для снабжения электроэнергией отдельных загородных домов.

Для приготовления магнитной жидкости необходимо получение нано- или микрочастиц магнитного вещества, которое ее образует. Используют для их получения как физические (измельчение или лазерное испарение металла), так и химические методы. В школьной лаборатории можно осуществить синтез магнитной жидкости, представляющей собой коллоидный раствор магнетита в воде. Правда, частицы магнетита, полученные этим способом, имеют размер примерно один микрон, т.е. 1000 нм.

Лабораторный опыт. Приготовление и свойства магнитной жидкости – коллоидного раствора магнетита Fe 3 O 4 в воде.

Смешайте 3 мл свежеприготовленного 5%-го раствора сульфата железа(II) и 4 мл 5%-го раствора сульфата железа(III). К полученной смеси добавьте несколько капель раствора олеата натрия (или другого ПАВ, например каплю моющего средства Fairy), а затем прибавляйте водный раствор аммиака. Колбу с полученным коллоидным раствором поставьте на постоянный магнит (лучше взять кольцевой магнит из динамика), выдержите несколько часов, а затем слейте верхний слой, удерживая густую массу магнитом. Полученная масса и представляет собой магнитную жидкость. Налейте магнитную жидкость тонким слоем в плоскую чашку и поднесите к ней магнит так, чтобы магнитные линии входили в нее вертикально. Жидкость меняет свою форму, покрываясь «шипами», напоминающими колючки ежа. Опустите в жидкость постоянный магнит. Что с ним происходит? Тонет ли он? При проведении опытов старайтесь не сотрясать магнитную жидкость и не оставляйте ее рядом с магнитом на длительное время.

Нанотехнологии в медицине

Одна из главных задач, которые человечество решает на протяжении почти всей своей истории, – улучшение качества жизни. Решающая роль здесь принадлежит медицине.

В книге «Engines of Creation» («Машины созидания») К.Э.Дрекслер предсказал, что нанотехнология приведет к фундаментальным открытиям и радикальным изменениям в медицине. Отмечая, что врачи ХХ в. полагались, главным образом, на хирургию и лекарства, Дрекслер пишет: «От зашивания ран и ампутации органов хирурги перешли на более высокую ступень – они научились восстанавливать работу сердца и приживлять конечности. При помощи микроскопов и точных микроинструментов они соединяют тонкие кровеносные сосуды и нервы. Но даже самый искусный микрохирург не может разрезать и сшивать более тонкие тканевые структуры. Современные скальпели и материалы для швов слишком грубы, чтобы оперировать капилляры, клетки и молекулы… С точки зрения клетки, даже самая деликатная хирургическая операция, выполненная мастерски и самыми тонкими инструментами, – работа мясника. Заживление становится возможным только благодаря способности клеток отторгать мертвые клетки, перегруппировываться и размножаться. Лекарственная терапия, в отличие от хирургии, имеет дело с самыми тонкими структурами в клетках. Молекулы лекарств – это простые молекулярные машины. Они оказывают воздействие на конкретные молекулы клеток… Однако действие молекул лекарственных препаратов не носит направленного характера… Хотя молекулы лекарств оказывают воздействие на ткани на молекулярном уровне, они слишком примитивны, чтобы чувствовать, планировать и действовать самостоятельно. Молекулярные машины, управляемые нанокомпьютерами, откроют перед врачом новые возможности. Они представляют собой системы, объединяющие сенсоры, программы и молекулярные инструменты, которые могут проводить обследование и «чинить» элементарные компоненты конкретных клеток. С их появлением хирургия перейдет в молекулярную область. Если в течение десяти-пятнадцати лет в разработке [молекулярных] ассемблеров произойдет качественный скачок, то к 2020 г. можно ожидать появления совершенно новой области – наномедицины».

Сейчас под наномедициной скромно понимают «применение макромолекул и наночастиц для диагностики и лечения заболеваний, а также восстановления поврежденных тканей»** . Однако ожидается, что в будущем наномедицина может обеспечить всесторонний мониторинг, контроль, построение, восстановление, защиту и усовершенствование всех биологических систем человека на молекулярном уровне с использованием наноразмерных технических устройств и наноструктур.

В XXI в. наномедицина вооружит врача новейшими техническими средствами. Они облегчат и ускорят процедуру лечения и существенно повысят его эффективность, результативность и точность. Однако клиническая практика сохранит классический характер. Как и прежде, она будет состоять из шести традиционных этапов:

Обследование;

Диагностика;

Прогноз;

Лечение (терапия);

Оценка эффективности лечения;

Профилактика.

На сегодняшний день наномедицина повлияла наибольшим образом на диагностику и лечение некоторых заболеваний.

В последние десятилетия важнейшими средствами диагностики стали магнитный резонанс и компьютерная томография . Нанотехнология помогает резко увеличить порог чувствительности этих методов, довести его до клеточного или даже субклеточного уровня и, как следствие, обнаружить заболевание на его самой ранней стадии. Так, вводя в кровь магнитные наночастицы железа, которые вследствие своего размера свободно перемещаются по кровеносной и лимфатической системам, можно с помощью магнитного резонанса обнаружить области с нарушенным кровотоком, например метастазы.

Суть этого метода такова: в организм внутривенно вводят наночастицы железа, организм реагирует на их присутствие как на инородное тело, и макрофаги (клетки иммунной системы) пытаются его «скушать». При этом, по сути, происходит метка макрофагов железом. Далее макрофаги циркулируют по лифматической системе, попадают в кровоток в яремную вену, а оттуда – в метастаз (рис. 7), где и обнаруживаются. Недостатком метода является то, что он неспецифичен, поскольку макрофаги как средства защиты организма могут накапливаться не только в метастазах и опухолях, но и в любом очаге воспаления.

Рис. 7. Обнаружение метастаза
с помощью магнитных наночастиц

Другие частицы, например квантовые точки , способны накапливаться в злокачественных опухолях. При облучении квантовые точки начинают светиться – флуоресцируют, благодаря чему их можно обнаружить даже в очень малой концентрации. Широкому применению квантовых точек препятствует их токсичность, однако в последние годы ученые научились наносить на них защитные покрытия без потери флуоресцентных свойств.

В области терапии наибольшие перспективы наномедицины связаны с доставкой лекарств. В первую очередь это относится к противоопухолевым препаратам. Для некоторых видов рака уже созданы технологии доставки традиционных лекарств в нанокапсулах непосредственно к клеткам опухоли. Разрабатываемые в настоящее время лекарства нового поколения будут проникать непосредственно внутрь пораженных клеток и уничтожать их.

Исследователи из Южной Кореи предложили способ обнаружения и уничтожения раковых клеток с использованием полых наночастиц золота . К поверхности наночастиц прикреплены антитела, которые позволяют присоединяться к раковым клеткам. В них также содержится гадолиний, который служит контрастным агентом для магнитного резонанса и позволяет увидеть пораженные клетки. При облучении наночастиц ИК-лазером они нагреваются, и тепло уничтожает окружающие раковые клетки. Такие наноструктуры лишены недостатков обычных контрастных агентов на основе оксида железа. Железо приводит к интерференции и негативным контрастным эффектам, что дает ошибки в диагнозе. Конструкция на основе наночастиц золота дает более четкий сигнал и более правильный диагноз.

Новый метод может быть эффективным на ранней стадии заболевания, поскольку, в отличие от химиотерапии, которая действует на весь организм, он предусматривает обработку отдельных его участков.

Другой перспективный подход основан на использовании специально сконструированных супрамолекулярных*** наночастиц, ядро которых составляют дендримеры – сильно разветвленные объемные молекулы, содержащие на внешней поверхности большое число активных функциональных групп (рис. 8, см. с. 14 ).

К некоторым из этих групп присоединяют молекулы фолиевой кислоты. Опухолевые клетки связывают фолиевую кислоту значительно прочнее, чем здоровые. А с другими функциональными группами дендримера соединены молекулы противоопухолевого вещества, и когда пораженная клетка поглощает дендример с фолиевой кислотой, она вместе с ним принимает смертоносное для себя лекарство. Кроме того, лекарственное средство, как в капсуле, может располагаться и в пространстве между цепочками дендримера (так называемая внутренняя сфера). Попадая внутрь опухоли, молекула дендримера меняет конформацию цепей, и лекарство высвобождается. Эксперименты на мышах показали, что применение таких супрамолекулярных лекарственных средств оказывается намного эффективнее традиционной химиотерапии. Клинические испытания на людях начнутся в ближайшее время, а широкое использование препарата ожидается не ранее, чем через 10 лет.

Достижения наномедицины пока еще довольно скромны. Однако огромные инвестиции в эту перспективную область неизбежно приведут к тому, что через несколько десятков лет медицину так же невозможно будет представить без нанотехнологий, как сейчас – без анализа крови или рентгеновских аппаратов.

Развитие нанотехнологий

Мы рассмотрели результаты только небольшой части исследований в области нанонауки и нанотехнологий. О некоторых других достижениях, тесно связанных с нанохимией, пойдет речь в последующих лекциях. Количество работ в сфере «нано» резко увеличивается с каждым годом. Многие из проектов имеют под собой реальную основу, например эффективный водородный двигатель, системы детектирования злокачественных опухолей, устройства хранения информации со сверхвысокой плотностью записи. Другие, такие, как космический лифт или медицинские нанороботы, более фантастичны и, скорее всего, так и останутся нереализованными. Однако до сих пор общество возлагает на нанотехнологии большие надежды, связанные с созданием новых источников энергии, обеспечением потребностей в чистой воде и воздухе, улучшением здоровья и увеличением продолжительности жизни, развитием информационных технологий.

Зависимость реакции общества на появление новых технологий от времени всегда одинакова: быстрый рост неоправданных ожиданий сменяется таким же быстрым разочарованием, за которым наступает долгий период стабилизации, планомерной работы и эволюционного развития (рис. 9). В настоящий момент мы находимся вблизи пика необоснованных ожиданий, хотя непонятно, с какой стороны – слева или справа.

Перспективы развития нанотехнологий будут определяться многими факторами, суммарное воздействие которых предсказать невозможно. Однако некоторые утверждения, связанные с будущим нанотехнологий, выглядят бесспорными.

1. Объем знаний в нанонауке постоянно растет. Небольшая часть этих знаний может быть трансформирована в технологии, остальные представляют собой достижения фундаментальной науки.

2. Экономический рост и развитие технологий, в первую очередь, определяются образованием как процессом приобретения и применения знаний в различных областях.

3. В основе нанотехнологий лежат естественные науки: физика, химия, биология и математика. Поэтому развитие нанотехнологий потребует от общества распространения и поддержки естественно-научного образа мышления. Это повлияет на систему образования и приведет к сокращению роли гуманитарных знаний, которые в современном обществе доминируют над естественно-научными.

Нам, как преподавателям химии, очень хочется надеяться на повышение роли нашей научной дисциплины в обществе в целом и в школе в частности. Нанотехнологии обещают в этом помочь.

Вопросы

1. Объясните, чем отличается нанонаука от нанотехнологии.

2. Какие этапы включает инновационная цепочка?

3. Что может служить источником энергии для наномоторов?

4. Приведите пример природного нанодвигателя.

5. Опишите устройство наномотора, преобразующего световую энергию в механическую работу.

6. Что вызывает перемещение наноавтомобиля по поверхности?

7. Среди перечисленных ниже веществ выберите: а) диамагнетики; б) парамагнетики; в) ферромагнетики.

Кислород, железо, натрий, оксид углерода(IV), алюминий, оксид железа(II, III).

8. Что такое ферритин? Какую роль он играет в организме?

9. Дайте определение наномедицине.

10. В чем, на ваш взгляд, может состоять преимущество наномедицины перед традиционной?

11. Верите ли вы в будущее нанотехнологий?

Л и т е р а т у р а

1. Taniguchi N. On the Basic Concept of NanoTechnology. Proc. ICPE Tokyo, 1974, v. 2, p. 18–23.

2. Drexler K.E . Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA, 1981, v. 78, № 9, p. 5275–5278.

3. Franks A . Nanotechnology. J. Phys. E: Sci. Instrum., 1987, v. 20, p. 1442–1451.

13. Yong Taik Lim e. a. Paramagnetic gold nanostructures for dual modal bioimaging and phototherapy of cancer cells. Chem. Commun., 2008, p. 4930.

** Определение, данное Национальным институтом здоровья (NIH) США.

*** Супрамолекулярной называют составную частицу (супермолекулу), собранную из отдельных молекул за счет слабых нековалентных взаимодействий.

Рассмотрены история развития представлений о наноматериалах и нанотехнологиях, современное состояние и перспективы развития. Дан обзор основ классификации наноматериалов и типов их структур, а также особенности свойств и основные направления использования наноматериалов. Дан подробный обзор основных технологий получения наноматериалов (нанопорошки, объемные материалы, пленочные технологии).

Предназначено для студентов старших курсов, магистров и аспирантов, обучающихся по направлению машиностроение и специальностям: «Оборудование и технология сварочного производства», «Технология машиностроения», «Материаловедение в машиностроении». Может быть полезно также для научных работников, преподавателей и инженерно-технических работников, специализирующихся в области наук о сварке материалов и родственных технологий.

ОПРЕДЕЛЕНИЯ И КЛАССИФИКАЦИЯ НАНОТЕХНОЛОГИЙ

В последнее время не только в кругах обывателей, но и ученых сложилось странное, «мягко говоря», отношение к нанотехнологиям, оно даже не критичное, а скорее всего, насмешливо-скептическое. Представляется, что связано это в первую очередь с «нанопургой», которую интенсивно раздувают, не разобравшись, средства массовой информации. В настоящей работе мы по мере возможностей постараемся освятить некоторые вопросы, связанные с развитием нанотехнологий.

Нанотехнологии, нанотехника, наноуровень, наноструктурирование и т. д - все эти термины вошли недавно в нашу жизнь. Давайте разберемся, о чем же идет речь?
Термин «нанотехнологии» впервые появился в литературе в 1974 году в работе Н. Танигучи (Япония) . В самом общем смысле нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть её упорядоченными фрагментами размером от 1 до 100 им.
Нанотехнологии рассматриваются сегодня как область исследовании, и как направление технологического развития, что порождает серьезную терминологическую путаницу.

Проблема единства понятий и стандартов в области нанотехнологий неоднократно обсуждалась в зарубежной и отечественной литературе. Вопрос этот имеет ключевое значение для выработки единого подхода к пониманию сущности и особенностей развития нанотехнологии.

Несмотря на наличие различных определений нанотехнологии. единого согласованного варианта, причем такого, который образовывал бы основания для построения соответствующих классификаций, пока не существует.

ПРЕДИСЛОВИЕ
ВВЕДЕНИЕ
1. ОПРЕДЕЛЕНИЯ И КЛАССИФИКАЦИЯ НАНОТЕХНОЛОГИЙ
2. ПОНЯТИЕ О НАНОМАТЕРИАЛАХ. ОСНОВЫ КЛАССИФИКАЦИИ И ТИПЫ СТРУКТУР НАНОМАТЕРИАЛОВ
2.1. Терминология
2.2. Основы классификации на но материалов
2.3. Основные типы структур наноматериалов
3. ОСОБЕННОСТИ СВОЙСТВ НАНОМАТЕРИАЛОВ И ОСНОВНЫЕ НАПРАВЛЕНИЯ ИХ ИСПОЛЬЗОВАНИЯ
3.1. Физические причины специфики наноматериалов
3.2. Основные области применения наноматериалов и возможные ограничения
4. ОСНОВНЫЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ
4.1. Методы порошковой металлургии
4.1.1. Методы получения нанопорошков
4.1.2. Методы формования изделий из нанопорошков
4.2. Методы с использованием аморфизации
4.3. Методы с использованием интенсивной пластической деформации
4.4. Методы с использованием технологий обработки поверхности
4.4.1. Технологии, основанные на физических процессах
4.4.2. Технологии, основанные на химических процессах
5. ФУЛЛЕРЕНЫ, ФУЛЛЕРИТЫ, НАНОТРУБКИ
6. КВАНТОВЫЕ ТОЧКИ, НАНОПРОВОЛОКИ И НАНОВОЛОКНА
7. ОСНОВНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ НАНОМАТЕРИАЛОВ
7.1. Электронная микроскопия
7.2. Спектральные методы исследования
7.3. Сканирующие зондовые методы исследования.
СПИСОК ЛИТЕРАТУРЫ
ОГЛАВЛЕНИЕ

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Физические основы нанотехнологий, учебное пособие, Смирнов А.Н., Абабков Н.В., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Нанотехнология по своей специфике является междисциплинарной научной областью прикладной техники, занимающейся изучением и созданием новаторских и инновационных методов получения новейших материалов с определенными свойствами, которые в дальнейшем применяются в самых разнообразных отраслях жизнедеятельности современного человека.

Вообще нанотехнология работает со структурами, которые обладают значениями 100 нм и даже меньше, и при этом использует устройства, а также материалы, имеющие вышеуказанные размеры. На сегодняшний день нанотехнология чрезвычайно разнообразна и используется в самых различных исследованиях, начиная от создания новых технических устройств до новейших исследований связанных с изучением молекулярно-атомного уровня.

Фундаментальные основы нанотехнологий.

Метод атомно-силовой микроскопии.

Следует сказать, что одним из основных инструментов, которые используются для работы с микрочастицами, являются микроскопы, ведь без данного прибора нет возможности не только работать с микрочастицами, но и изучать микромир. Увеличение разрешающих особенностей современных микроскопов и получение всё новых и новых знаний об элементарных частицах на сегодняшний день взаимосвязаны друг с другом. На данный момент при помощи такого оборудования как атомно-силовые микроскопы или АСМ и сканирующие электронные микроскопы современные учёные получают возможность не только наблюдать за отдельными атомами, но даже находить способы воздействия на них, например, переметывая атомы по поверхности. При этом современным учёным уже удалось создать так называемые двухмерные наноструктуры на поверхностях при помощи вышеприведённого метода воздействия. Так, например, в исследовательских центрах всем известной компании IBM учёные путём последовательного перемешивания атомов ксенона на поверхности нанокристалов никеля смогли создать логотип компании, состоящий из 35 атомов вещества.

Выполняя указанные действия, связанные со смешиванием веществ, а также по их разъединению и соединению, ученые столкнулись с некоторыми техническими трудностями. Для преодоления которых необходимо создавать условия сверхзвукового вакуума (10?11 тор), для этого необходимо охладить подножку и микроскоп до сверхнизкой температуры равной от 4 до 10 К, при этом поверхность данной подложки должна быть гладкой и чистой на уровне атомов. Для этого используются специализированные технологии по механико-химической обработке изделий, причём целью данной обработки является создание уменьшения поверхностных диффузий осаждаемых атомов, при помощи чего и производится охлаждение основания.

Наночастицы.

Главной отличительной особенностью новых материалов, которые получаются в процессе использования нанотехнологий , является непредсказуемое получение физикотехнических характеристик приобретаемых данными материалами. Благодаря этому современные учёные получают возможность получать новые квантовые физико-механические характеристики у веществ, в которых видоизменяются электронные структуры, что автоматически меняет и форму проявления данных соединений. Так, например, возможность уменьшить размер частиц далеко не во всех случаях поддаётся определению или проведению замеров с помощью макро или микро измерений. Однако проведение измерений может стать возможным в том случае, если размер частиц находится в диапазоне миллимикронов. Также следует отметить, что определённые физико-механические свойства изменяются в случае изменения размера элементов. На данный момент наличие у наноматериалов необычных механических свойств является предметом исследования у ученых, работающих в области наномеханники. При этом отдельное место в современных нанотехнологиях занимает получение новых веществ при помощи использования различных катализаторов, которые влияют на поведение наноматериалов при взаимодействии их с различными биоматериалами.

Как мы уже говорили ранее, частицы обладающие размерами от 1 до 100 нанометров называются наночастицами, при этом как показали исследования, наночастицы многих материалов обладают высокими абсорционными и каталическими свойствами. Другие материалы позволяют получить уникальные оптические свойства. Так, например, исследователям удалось получить керамические прозрачные материалы, основой для которых стали нанопорошки размером 2-28нм, обладающие более лучшими свойствами, чем, например, крон. Также учёные смогли получить взаимодействие искусственно полученных наночастиц с природными объектами обладающими наноразмером, например с белками, нуклеиновыми кислотами и др. Кроме того очищенные наночастицы благодаря своим уникальным свойствам имеют возможность встраиваться в различные структуры. Такие структуры, содержащие в себе наночастицы, получают ранее небывалые у них свойства и характеристики.

На сегодняшний день все нанообъекты делят на три класса:

К первому классу относятся трёхмерные частицы, которые получаются при взрыве проводников, путём плазменного синтеза или при помощи восстановления тонких плёнок.

Ко второму классу относятся так называемые двумерные объекты, являющиеся плёнками и получаемые при помощи методом молекулярного наслаивания, ALD, CVD и методами ионного наслаивания.

К третьему классу относятся вискеры или одномерные объекты, получаемые методами молекулярного наслаивания или введением различных веществ в цилиндрический микропорт.

Кроме того существуют ещё и нанокомпозиты, которые получаются путём введения наночастиц в специализированные матрицы. На сегодняшний день большое использование получил пока только метод микролитографии, который даёт возможность получать на поверхности матрицы островковые плоские объекты, имеющие размер от 50 нм, и используемые в современной электронике. Также необходимо отметить и методы молекулярного и ионного наслаивания, так как при помощи данных методов возможно получать реальные плёночные покрытия в виде монослоя.

Самоорганизация наночастиц.

Одной из важнейших задач, которая стоит перед нанотехнологией, является то, как заставить атомы и молекулы проводить группировку определённым образом, что позволило бы им саморемонтироваться и саморазвиваться, что в конечном итоге приводило бы к получению новых материалов или устройств. Решением данных задач занимаются учёные химики, работающие в области супрамолекулярной химии. При этом они проводят изучения не отдельных молекул, а взаимодействие между ними, а также то, как они организовываются при том или ином воздействии и имеют ли возможность образовывать новые вещества. Многие учёные считают, что природа по-настоящему обладает подобными системами и в ней протекают такие процессы. Так, например, уже известны биополимеры, которые могут организовываться в особые структуры. Также в качестве подобных примеров приводятся белки, которые благодаря своим свойствам не только могут сворачиваться и получать глобулярную форму, но и образовывать целые комплексы и структуры, которые содержат в себе сразу несколько молекул протеина. Уже сегодня учёные смогли создать метод синтеза, используемый специфические свойства, которыми обладают молекулы ДНК.

Дистанционные образовательные курсы являются современной формой эффективного дополнительного образования и повышения квалификации в области подготовки специалистов для развития перспективных технологий получения функциональных и материалов и наноматериалов. Это одна из развивающихся во всем мире перспективных форм современного образования. Особенно актуальна подобная форма получения знаний в такой междисциплинарной области, как наноматериалы и нанотехнологии. Преимуществами дистанционных курсов является их доступность, гибкость в построении образовательных маршрутов, улучшение эффективности и оперативности процесса взаимодействия со слушателями, экономическая эффективность по сравнению с очной формой, которая, тем не менее, может гармонично сочетаться с дистанционной подготовкой. В области фундаментальных основ нанохимии и наноматериалов подготовлены видеоматериалы Научно-образовательного Центра МГУ по нанотехнологиям :

  • . Основные понятия и определения наук о наносистемах и нанотехнологий. История возникновения нанотехнологий и наук о наносистемах. Междисциплинарность и мультидисциплинарность. Примеры нанообъектов и наносистем, их особенности и технологические приложения. Объекты и методы нанотехнологий. Принципы и перспективы развития нанотехнологий.
  • . Основные принципы формирования наносистем. Физические и химические методы. Процессы получения нанообъектов «сверху — вниз». Классическая, «мягкая», микросферная, ионно-пучковая (FIB), АСМ — литография и наноиндентирование. Механоактивация и механосинтез нанообъектов. Процессы получения нанообъектов «снизу — вверх». Процессы зародышеобразования в газовых и конденсированных средах. Гетерогенное зародышеобразование, эпитаксия и гетероэпитаксия. Спинодальный распад. Синтез нанообъектов в аморфных (стеклообразных) матрицах. Методы химической гомогенизации (соосаждение, золь-гель метод, криохимическая технология, пиролиз аэрозолей, сольвотермальная обработка, сверхкритическая сушка). Классификация наночастиц и нанообъектов. Приемы получения и стабилизации наночастиц. Агрегация и дезагрегация наночастиц. Синтез наноматериалов в одно и двумерных нанореакторах.
  • . Статистическая физика наносистем. Особенности фазовых переходов в малых системах. Типы внутри- и межмолекулярных взаимодействий. Гидрофобность и гидрофильность. Самосборка и самоорганизация. Мицеллообразование. Самособирающиеся монослои. Пленки Лэнгмюра — Блоджетт. Супрамолеклярная организация молекул. Молекулярное распознавание. Полимерные макромолекулы, методы их получения. Самоорганизация в полимерных системах. Микрофазное расслоение блок-сополимеров. Дендримеры, полимерные щетки. Послойная самосборка полиэлектролитов. Супрамолекулярные полимеры.
  • . Вещество, фаза, материал. Иерархическое строение материалов. Наноматериалы и их классификация. Неорганические и органические функциональные наноматериалы. Гибридные (органо- неорганические и неоргано-органические) материалы. Биоминерализация и биокерамика. Наноструктурированные 1D, 2D и 3D материалы. Мезопористые материалы. Молекулярные сита. Нанокомпозиты и их синергетические свойства. Конструкционные наноматериалы.
  • . Катализ и нанотехнологии. Основные принципы и представления в гетерогенном катализе. Влияние условий приготовления и активации на формирование активной поверхности гетерогенных катализаторов. Структурно-чувствительные и структурно-нечувствительные реакции. Специфика термодинамических и кинетических свойств наночастиц. Электрокатализ. Катализ на цеолитах и молекулярных ситах. Мембранный катализ.
  • . Полимеры для конструкционных материалов и для функциональных систем. «Умные» полимерные системы, способные выполнять сложные функции. Примеры «умных» систем (полимерные жидкости для нефтедобычи, умные окна, наноструктурированные мембраны для топливных элементов). Биополимеры как наиболее «умные» системы. Биомиметический подход. Дизайн последовательностей для оптимизации свойств «умных» полимеров. Проблемы молекулярной эволюции последовательностей в биополимерах.
  • . Рассматриваются современное состояние и проблемы создания новых материалов для химических источников тока: твердооксидных топливных элементов (ТОТЭ) и литиевых аккумуляторов. Анализируются ключевые структурные факторы, влияющие на свойства различных неорганических соединений, которые определяют возможность их применения в качестве электродных материалов: сложных перовскитов в ТОТЭ и соединений переходных металлов (сложных оксидов и фосфатов) в литиевых аккумуляторах. Рассматриваются основные анодные и катодные материалы, применяющиеся в литиевых аккумуляторах и признанные перспективными: их преимущества и ограничения, а также возможности преодоления ограничений направленным изменением атомной структуры и микроструктуры композиционных материалов путем наноструктурирования с целью улучшения характеристик источников тока.

Отдельные вопросы рассмотрены в следующих главах книг (издательство Бином):

Иллюстративные материалы по нанохимии, самосборке и наноструктурированным поверхностям:

Научно - популярные "видеокниги":

Избранные главы нанохимии и функциональные наноматериалы.

4 Нанообъектами принято называть объекты, состоящие из атомов, ионов или молекул и имеющие размер менее 100 нм хотя бы по одному из направлений. 1) объемные трехмерные (3D) структуры – наночастицы, нанокластеры; 2) плоские двумерные (2D) объекты – нанопленки; 3) линейные одномерные (1D) структуры – нанонити, 4) нульмерные (0D) объекты – наноточки, квантовые точки. Наноматериалы – макроскопические материалы, построенные на основе нанообъектов


5


6 Характерные размеры в нанометрах Молекулы ДНК 10 нм Вирусы 100 нм Бактерии нм Амёбы нм Пыльца растений нм Нематоды нм Насекомые нм Мелкие млекопитающие нм Крупные млекопитающие нм Простые молекулы 1 нм НАНООБЪЕКТЫ




8


9 Нанотехнологии – совокупность технологических методов и приемов, используемых при изучении, проектировании и производстве материалов, устройств и систем, включающих целенаправленный контроль и управление строением, химическим составом и взаимодействием составляющих их отдельных наномасштабных элементов (с размерами порядка 100 нм и меньше как минимум по одному из измерений), которые приводят к улучшению, либо появлению дополнительных эксплуатационных и/или потребительских характеристик и свойств получаемых продуктов. Согласовано с ГК «Роснанотех» г. Определение нанотехнологий (современная Российская версия) Журнал Российские Нанотехнологии, 2010 г., т.5, 7-8, с.8-16.


10




12 Еще в 500 г. художники делали стеклянные витражи очень ярких цветов, которые невозможно получить с помощь красок. Яркость и долговечность обеспечивали, добавляя в стекло наночастицы благородных металлов. Примеры из тысячелетней истории нанотехнологий






Из письма Бенжамина Франклина (7 ноября 1773 г.)...being at Clapham, where there is…a large Pond... I fetched out a Cruet of Oil, and dropt a little of it on the Water. I saw it spread itself with surprising Swiftness upon the Surface... the Oil tho" not more than a Tea Spoonful... which spread amazingly, and extended itself gradually … making all that Quarter of the Pond, perhaps half an Acre, as smooth as a Looking Glass.... Примеры из тысячелетней истории нанотехнологий 31


The Oil tho" not more than a Tea Spoonful perhaps half an Acre Какова была толщина пленки масла? Объем = (Площадь)х(Толщина) Численная оценка показывает, что толщина 1 нм – одиночный слой молекул Такие пленки называют монослойными (лэнгмюровскими) ~1 нм 32 ….не более чайной ложки масла…. ….примерно, половину акра (0,2 гектара)…




18 Наночастицы не оседают из жидкой среды. Все цвета радуги можно получить при рассеянии света нанколлоидами с различными размерами частиц. Эти эффекты обнаружил Майкл Фарадей (Michael Faraday) в 1857 году. Примеры из тысячелетней истории нанотехнологий НАНОКОЛЛОИДЫ






© H. Schroeder Loughborough University 1998Lecture 1.21 «Типичный гений» Эксцентричный Ричард Фейнман (Richard Feynman)


22 Детство / Обучение В 15 лет освоил дифференциальное и интегральное исчисления –В средней школе имел индекс IQ равный 123 В выпускном классе стал победителем «Чемпионата по математике» Университета Нью Йорка Поступил в Массачусетский Институт Технологий (MIT), прослушал все курсы по физике При поступлении в Принстонский Университет впервые в истории получил на экзаменах высшие оценки и по физике, и по математике –Защитил диссертацию (PhD) в 1942 году


23 Проект «Манхэттен» После атомной бомбардировки, надолго впал в депрессию –Считал, что бессмысленно работать на будущее, так как мир в конце концов будет разрушен Работал в Лос Аламосе Руководил группой «людей- компьютеров» В свободное время занимался взламыванием замков, играл на барабанах


24 Преподавание Несмотря на иные многочисленные предложения. Фейнман выбрал должность профессора в Калифорнийском технологическом институте (Caltech) –Получил прозвище The Great Explainer (Великий Объяснитель) –Старался сделать изложение любой научной темы доступным для первокурсников Награжден медалью Эрстеда за выдающиеся успехи в преподавании


25 Лекции Фейнмана, записанные вначале на магнитофон, а затем «переведенные» на «письменный английский» профессорами М.Сэндсом и Р.Лейтоном, не похожи ни на один известный курс. Они отличаются оригинальным методом изложения, в котором отразилась яркая научная индивидуальность автора, его точка зрения на пути обучения студентов физике, его умение заразить читателей интересом к науке.


26 Создание квантовой электродинамики За разработку этой теории в 1965 году награжден Нобелевской премией по физике (совместно с двумя другими учеными) «Диаграммы Фейнмана» используют для расчета взаимодействий элементарных частиц Имеют большое значение для современной теории «струн»


27 «Дедушка нанотехнологий» Лекция Theres Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics (Там, внизу еще много места: приглашение в новый мир физики) Прочитана перед Американским Физическим Обществом в 1959 году Опубликована в журнале Engineering and Science, в 1960 году


28 … Мне хочется обсудить одну малоизученную область физики, которая представляется весьма важной и перспективной и может найти множество ценных технических применений. Речь идет о проблеме контроля и управления строением вещества в интервале очень малых размеров. Внизу (т. е. «внизу или внутри пространства», если угодно) располагается поразительно сложный мир малых форм, и когда-нибудь (например, в 2000 г.) люди будут удивляться тому, что до 1960 г. никто не относился серьезно к исследованиям этого мира … Известные нам принципы физики не запрещают создавать объекты «атом за атомом». Манипуляция атомами, в принципе, вполне реальна и не нарушает никаких законов природы. Практические же трудности ее реализации обусловлены лишь тем, что мы сами являемся слишком крупными и громоздкими объектами, вследствие чего нам сложно осуществлять такие манипуляции.


29 «Дедушка нанотехнологий» В декабре 1959 г. Р. Фейнман из своих личных средств учредил две премии по $1000 за практическое осуществление двух задач «управления строением вещества в интервале очень малых размеров», которые казались ему осуществимыми только в отдаленном будущем: 1) Сделать работающий электромотор, размещающийся в кубе со стороной 1/64 дюйма (0.4 mm) 2) «Разместить Британскую Энциклопедию на булавочной головке», то есть, записать текст шрифтом, уменьшенным в раз.


30 «Дедушка нанотехнологий» Уже менее чем через год, первую премию Фейнмана получил физик МакЛеллан (McLellan) из Университета Калифорнии. Работая во время обеденных перерывов, и используя обычный микроскоп, инструменты часовщика и зубочистки, за 2,5 месяца он собрал электромотор из 13 частей, массой 250 микрограмм и со скоростью вращения 2000 об/мин. Крыло комара


31 «Дедушка нанотехнологий» Я немного огорчен, что для создания мотора не потребовалось никаких новых технологий. Я был уверен, что придумал его достаточно малым, чтобы просто собрать его, однако Вам это удалось. Поздравляю! Не начинайте работать над мелким шрифтом. Мне не хотелось бы расстаться со второй премией. Со времени написания моей статьи, я успел жениться и купил дом! Искренне Ваш Ричард Фейнман


32 «Дедушка нанотехнологий» В 1985 году вторую премию получил Томас Ньюман (Thomas Newman) из Университета Стэнфорда за требовавшееся уменьшение размеров печатного шрифта. Первая страница романа Ч. Диккенса «Повесть о двух городах» (A Tale of Two Cities) (запись электронным пучком)


33 «И наконец, рискну предложить еще одну идею (рассчитанную, возможно, лишь на очень далекое будущее), которая мне представляется исключительно интересной. Речь идет о возможности располагать атомы в требуемом порядке именно атомы, самые мелкие строительные детали нашего мира!» – Фейнман, 1959 D.M. Eigler, E.K. Schweizer. Positioning single atoms with a scanning tunneling microscope. Nature 344, (1990). «Дедушка нанотехнологий» 5 нм Атомы Xe




35 Норио Танигучи (Norio Taniguchi) Ввел термин в статье 1974 года: "On the Basic Concept of Nanotechnology" («Об основных принципах нанотехнологий») Свой термин Танигучи относил прежде всего к допускам обработки макроскопических объектов и материалов. По сути, в его трактовке нанотехнологии сводились к доведению до молекулярного совершенства существующих принципов механической обработки материалов.








Год - Эрик Дрекслер – основатель и председатель американского Института Предвидения и Формирования Будущего (Foresight Institute) «Отец нанотехнологий»














46 National Science and Technology Council (NSTC) Committee on Technology The Interagency Working Group on NanoScience, Engineering and Technology (IWGN) Администрация Президента США Государственный Совет по Науке и Технологиям Комитет по Нанонауке, Нанотехнике и Нанотехнологии



49 «Надо, чтобы бизнес понял, что если он сегодня не пойдет в нанотехнологии, то пропустит все на свете и будет в лучшем случае в телогрейке работать на скважине, которой будут управлять наши друзья и партнеры». России нужна долгосрочная стратегия развития инноваций, иначе «когда завершится раздел энергетического рынка в мире, можно остаться ни с чем». 15 декабря.2005 г. На заседании правительства РФ премьер Михаил Фрадков предпочел нанотехнологии телогрейкам




© H. Schroeder Loughborough University 1998Lecture 1.54 Нанотехнологии. От алхимии к химии и дальше… Профессор Малинецкий Г.Г. Институт прикладной математики им.М.В.Келдыша РАН Тел: Совещание по вопросам развития и применения отечественных достижений в области нанотехнологий НАЧАЛО ПРЕЗЕНТАЦИИ «НАНОПАРТИЙНОСТЬ»


55 Общий вывод Руководство партии «Единая Россия» приняло правильное и смелое решение о форсированном развитии сферы нанотехнологий. Успешная реализация этого решения позволит ответить на вызовы в сфере национальной безопасности и поднимет науку России на качественно новый уровень.


56 Опасности проекта нанотехнологий для «Единой России» Нанотехнологии – не нефть. Чтобы использовать достижения, их нужно иметь. Не очерчена область и не выделены приоритеты. Опасность распыления средств и утраты цели. Отсутствие комплексной координации работ по проекту. Проблемы с экспертизой. Отсутствие междисциплинарности и кооперации со специалистами - опасность изобретения велосипеда. Острый кадровый голод. Специалистов пока единицы. КОНЕЦ ПРЕЗЕНТАЦИИ