Геометрические тела платона. «Код да Винчи», Платоновы и Архимедовы тела, квазикристаллы, фуллерены, решетки Пенроуза и художественный мир Матюшки Тейи Крашек

Правильные многогранники с древних времен привлекали внимание философов, строителей, архитекторов, художников, математиков. Их поражала красота, совершенство, гармония этих фигур.

Правильный многогранник – объёмная выпуклая геометрическая фигура, все грани которой - одинаковые правильные многоугольники и все многогранные углы при вершинах равны между собой. Существует множество правильных многоугольников, но правильных многогранников всего пять. Названия этих многогранников пришли из Древней Греции, и в них указывается число («тетра» - 4, «гекса» - 6, «окта» - 8, «додека» - 12, «икоса» - 20) граней («эдра»).

Эти правильные многогранники получили название платоновых тел по имени древнегреческого философа Платона, который придавал им мистический смысл, но были известны они и до Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр - как самый обтекаемый - воду; куб - самая устойчивая из фигур - землю, а октаэдр – воздух. Додекаэдр отождествлялся со всей Вселенной и почитался главнейшим.

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Кристалл пирита (сернистого колчедана, FeS2) имеет форму додекаэдра.

Тетраэдр – правильная треугольная пирамида, и гексаэдр – куб – фигуры, с которыми мы постоянно встречаем в реальной жизни. Чтобы лучше почувствовать форму других платоновых тел, стоит самому создать их из плотной бумаги или картона. Сделать плоскую развёртку фигур несложно. Создание правильных многогранников чрезвычайно занимательно самим процессом формообразования.

Завершенные и причудливые формы правильных многогранников широко используются в декоративном искусстве. Объёмные фигуры можно сделать более занимательными, если плоские правильные многоугольники представить другими фигурами, вписывающимися в многоугольник. Например: правильный пятиугольник можно заменить звездой. Такая объёмная фигура не будет иметь рёбер. Собрать её можно, связывая концы лучей звёзд. И 10 звёзд собирается плоская развёртка. Объёмной фигура получается после закрепления оставшихся 2 звёзд.

Если ваш ребёнок любит делать поделки своими умелыми руками, предложите ему собрать объёмную фигуру многогранник додекаэдр из плоских пластиковых звёзд. Результат работы обрадует вашего ребёнка: он изготовит своими руками оригинальную декоративную конструкцию, которой можно украсить детскую комнату. Но, самое замечательное – ажурный шар светится в темноте. Пластиковые звёзды изготовлены с добавлением современного безвредного вещества - люминофора.

ПЛАТОНОВЫ ТЕЛА [П. - от греч. Platon (427–347 гг. до н. э. / Т. - происх. см. ТЕЛО), совокупность всех правильных многогранников [т. е. объемных (трехмерных) тел, ограниченных равными правильными многоугольниками] трехмерного Мира, впервые описанных Платоном (им также посвящена заключительная, XIII-я книга «Начал» Платонова ученика Евклида); // при всём бесконечном многообразии правильных многоугольников (двумерных геометрических фигур, ограниченных равными сторонами, смежные пары которых попарно образуют равные между собой углы), существует всего пять объемных П.т. (см. Табл. 6), в соответствие которым со времен Платона ставятся пять стихий Мироздания; любопытна связь, существующая между гексаэдром и октаэдром, а также между додекаэдром и икосаэдром: геометрические центры граней каждого первого являются вершинами каждого второго.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Для ответа на этот вопрос напомним, что собственно геометрию определяют иногда как науку о пространстве и пространственных фигурах - двумерных и трехмерных. Двумерную фигуру можно определить как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником. Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства. Многоугольники, образующие многогранник, называются его гранями.

Издавна ученые интересовались "идеальными" или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т.д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой - столько же, сколько существует правильных многоугольников. Однако это не так. В "Началах Евклида" мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Наименование Кол-во граней Стихия
Тетраэдр 4 Огонь
Гексаэдр/Куб 6 Земля
Октаэдр 8 Воздух
Икосаэдр 10 Вода
Додекаэдр 12 Эфир

Платоновы тела

Мир звездчатых многогранников

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Впрочем, многогранники отнюдь не только объект научных исследований. Их формы – завершенные и причудливые, широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Звездчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.

Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Каждый, изучавший священную геометрию или даже просто обычную геометрию, знает, что существуют пять уникальных форм, и для понимания как священной, так и обычной геометрии они являются решающими. Их именуют Платоновыми телами (Рис.6-15>).

Платоново тело определяется некоторыми характеристиками. Прежде всего, все грани его имеют одинаковый размер. Например, куб, самое известное из Платоновых тел, имеет каждой своей гранью квадрат, и все его грани - одинакового размера. Второе, все рёбра Платонового тела имеют одинаковую длину; все рёбра куба – одной длины. Третьее: все внутренние углы между гранями имеют одинаковую величину. В случае куба, этот угол равен 90 градусам. И четвёртое: если Платоново тело поместить внутрь сферы (правильной формы), то все вершины его будут касаться поверхности сферы. Таким определениям, кроме куба (А), отвечают только четыре формы, обладающие всеми этими характеристиками. Вторым будет тетраэдр (В) (тетра означает «четыре») –это полиэдр, имеющий четыре грани, все - равносторонние треугольники, одинаковую длину рёбер и одинаковый угол, и – все вершины касаются поверхности сферы. Другая простая форма – это октаэдр (С) (окта значит «восемь»), все восемь граней представляют собой равносторонние треугольники одинакового размера, длина рёбер и углов одинакова, и все вершины касаются поверхности сферы.

Остальные два Платоновых тела немного сложнее. Один называется икосаэдром (D) - значит, он имеет 20 граней, имеющих вид равносторонних треугольников при одинаковой длине рёбер и углов; все его вершины тоже касаются поверхности сферы. Последний называется пентагональным додeкаэдром (Е) (додэка - это 12), гранями которого являются 12 пентагонов (пятиугольники) при одинаковой длине рёбер и одинаковых углах; все его вершины касаются поверхности сферы.

Если вы – инженер или архитектор, то вы изучали эти пять форм в колледже, хотя бы поверхностно, потому что они являются базовыми структурами.

Их источник: Куб Метатрона

Если вы изучаете священную геометрию, то неважно, какую вы раскроете книгу: она покажет вам пять Платоновых тел, потому что они являются азбукой священной геометрии. Но если вы прочитаете все эти книги – a я прочитал их почти что все – и спросите специалистов: «Откуда берутся Платоновы тела? Каков их источник?», то почти каждый скажет, что он не знает. Дело в том, что происходят эти пять Платоновых тел из первой информационной системы Плода Жизни. Сокрытые в линиях Куба Метатрона (см.
Рис.6-14>), все эти пять форм там существуют. При разглядывании Куба Метатрона вы смотрите на все пять Платоновых тел одновременно. Чтобы увидеть каждое из них лучше, вам нужно проделать заново тот трюк, где вы стирали некоторые из линий. Стерев все линии за исключением нескольких определённых, вы получите этот куб (Рис.6-16 >).

Ну что, видите куб? В действительности, это куб внутри куба. Некоторые из линий проведены пунктиром, потому что они оказываются за передними гранями. Они невидимы, если куб становится сплошным, непрозрачным телом. Вот непрозрачная форма большего куба (Рис.6-16а>). (Убедитесь в том, что вы его видите, потому что увидеть следующие фигуры по мере нашего продвижения будет всё труднее и труднее).

Стирая некоторые линии и соединяя другие центры (
Рис.6-17>), вы получаете два вставленных друг в друга тетраэдра, которые образуют звёздный тетраэдр. Как и в случае с кубом, на самом деле вы получаете два звёздных тетраэдра, один в другом. Вот сплошная форма большего звёздного тетраэдра (Рис.6-17а>).

Рис.6-18> – это октаэдр внутри другого октаэдра, хотя вы смотрите на них под определённым особым углом. Рис.6-18а> – непрозрачная версия большего октаэдра.

Рис.6-19> – один икосаэдр внутри другого, и Рис.6-19а> – непрозрачная версия большего из них. Это становится как-то проще, если вы рассматриваете его таким образом.

Это - трёхмерные объекты, исходящие из тринадцати кругов Плода Жизни.

Это картина Суламифь Вулфинг – Христос-Младенец внутри икосаэдра (
Рис.6-20>), что очень соответствует истине, поскольку икосаэдр, как вы сейчас увидите, представляет воду, а Христос был крещён в воде, начале нового сознания.

Это пятая и последняя форма – два пентагональных додекаэдра, один в другом (Рис.6-21>) (здесь для простоты показан только внутренний додекаэдр).

Рис. 21 – это сплошная форма.

Как мы видели, все пять Платоновых тел могут быть обнаружены в Кубе Метатрона (Рис.6-22>).

Недостающие линии

Когда я искал последнее Платоново тело в Кубе Метатрона, додекаэдр, у меня ушло на это около двадцати лет. После того, как ангелы сказали: «Они все тут внутри», я начал смотреть, но никак не мог найти додэкаедр. Наконец, однажды один ученик сказал мне: «Эй, Друнвало, ты забыл некоторые линии Куба Метатрона.» Когда он показал их, я посмотрел и сказал: «Ты прав, я забыл». Я думал, что я соединил все центры между собой, но некоторые я, оказывается, забыл. Не удивительно, что я не мог найти этот додекаэдр, потому что его определяли эти недостающие линии! Более двадцати лет я был убеждён, что у меня были проведены все линии, в то время, как у меня их не было.

Это одна из больших проблем науки, когда считается, что задача разрешена; затем она двигается дальше и использует эту информацию для дальнейших своих построений. Сейчас, например, наука имеет такого же рода проблему вокруг тел, падающих в вакууме. Всегда считалось, что они падают с одинаковой скоростью, и многое в нашей передовой науке основывается на этом фундаментальном «законе». Было доказано, что это не так, но наука этим всё равно продолжает пользоваться. Вращающийся шар падает значительно быстрее, чем невращающийся. Когда-то наступит день научной расплаты.

Когда я был женат на Макки, она тоже была очень увлечена священной геометрией. Её работа для меня очень интересна, потому что она представляет женский аспект, там действуют пентагональные энергии правого полушария мозга. Она показывает, как эмоции, цвета и формы - все взаимосвязаны. В действительности она нашла додекаэдр в Кубе Метатрона прежде, чем это сделал я. Она взяла его и сделала нечто такое, до чего я бы никогда не додумался. Видите ли, Куб Метатрона обычно рисуется на плоской поверхности, но в самом деле это трёхмерная форма. Так, однажды я держал в руках это трёхмерную форму и пытался найти там додэкаедр, а Макки сказала: «Дай-ка, я взгляну на эту штуку». Она взяла трёхмерную форму и провернула его на угол пропорции f (phi ratio). (О чём мы ещё не говорили, так это то, что пропорция (ratio) Золотой Середины, именуемая также пропорцией f (phi ratio), равняется точно 1,618) . Вращение формы таким образом было чем-то, до чего я бы никогда не додумался. Проделав это, она обрисовала отбрасываемую этой формой тень и получила такое изображение (
Рис.6-23>).

Макки сначала сама создала это, а затем передала мне. Центр тут находится в пентагоне А. Затем, если вы возьмёте пять пентагонов, выходящих из А (пентагоны В) и ещё по одному пентагону, выходящему из каждого из этих пяти (пентагоны С), вы получаете развёрнутый додекаэдр. Я подумал: «Вау, я впервые нахожу тут вообще какой-то додэкаедр .» Она проделала это за три дня. Я никак не мог найти его целых двенадцать лет.

Однажды мы почти целый день провели за разглядыванием этой картинки. Она была потрясающа, потому что все до единой линии на этой картинке соответствуют пропорции Золотой Середины. И всюду тут – трёхмерные прямоугольники Золотой Середины. Один есть в точке Е, где два ромба, сверху и снизу, являются верхом и низом трёхмерного прямоугольника Золотой Середины, а пунктирные линии являются его рёбрами. Это поразительная штука. Я сказал: «Я не знаю, что это такое, но это, вероятно, очень важно». Так, мы отложили это, чтобы поразмыслить потом.

Квази-кристаллы

Позже я узнал о совершенно новой науке. Эта новая наука полностью изменит мир технологии. При использовании новой технологии металлурги наверняка смогут создать металл в десять раз твёрже алмаза, если вы можете себе такое вообразить. Он будет невероятно прочным.

Долгое время при исследовании металлов для того, чтобы увидеть, где расположены атомы, пользовались методом, именуемым рентгеновской дифракцией. Скоро я покажу фотографию рентгеновской дифракции. Обнаружились некие особые модели, определяющие существование только каких-то определённых атомных структур. Казалось, что это-то и всё, что можно узнать, потому что это было всё, что возможно было обнаружить. Это ограничило возможность изготовления металлов.

Затем, в журнале «Scientific American» проходила игра, которая основывалась на модели Пенроуза. Был такой британский математик и релятивист, Роджер Пенроуз (Roger Penrose), вычислявший, как уложить черепицу, плитки которой имеют форму пентагона, так, чтобы она полностью покрывала плоскую поверхность. Полностью покрыть плоскую поверхность черепицей в форме только лишь пентагонов невозможно – заставить это работать нет никакой возможности. Тогда он предложил две формы ромба, являющиеся производными от пентагона, и, используя эти две формы, ему удавалось создать множество различных моделей, покрывающих плоскую поверхность. В восьмидесятых годах журнал «Scientific American» предложил игру, суть которой сводилась к тому, чтобы сложить уже эти данные модели в новые формы; впоследствии это дало возможность учёным-металлургам, наблюдавшим за игрой, предположить существование чего-то нового в физике.

В конце концов, они обнаружили новую модель атомной решётки. Она существовала всегда; они просто её обнаружили. Эти модели решёток теперь именуются квази-кристаллами; это новое явление (1991). Через металлы они вычисляют, какие формы и модели возможны. Учёные находят способы использования этих форм и моделей для изготовления новых металлических изделий. Я готов биться об заклад, что модель, которую получила Макки из Куба Метатрона, является самой замечательной из всех, и что любая модель Пенроуза является её производной. Почему? Потому, что она вся подчинена закону Золотого Сечения, она основная – она произошла непосредственно из основной модели в Кубе Метатрона. Хотя это не моё дело, но когда-нибудь, вероятно, я определю, так ли это. Я вижу, что вместо того, чтобы использовать две модели Пенроуза и пентагон, тут используется только одна из этих моделей и пентагон (Я как раз подумал, что я предложил бы этот вариант). То, что происходит в этой новой науке сейчас, интересно.

Новейшая информация: Согласно данным Девида Эдейра (David Adair), NАSА только что изготовила в космосе металл, который в 500 раз прочнее титана, лёгок, как пена и прозрачен, как стекло. Основан ли он на этих законах?

По мере того, как будут разворачиваться события в этой книге, вы обнаружите, что священная геометрия может в подробностях объяснить любой, какой бы то ни было, предмет. Не существует ни единого явления, которое вы могли бы произнести своим голосом, чтобы оно не могло бы быть описано целиком, полностью и в совершенстве, с учётом всего возможного знания , священной геометрией. (Мы различаем понятия «знание» и «мудрость»: мудрость нуждается в опыте). Однако же, более важная цель этого труда заключается в напомнинании вам того, что вы сами имеете потенциал живого поля Мер-Ка-Ба вокруг своего тела и в том, чтобы научить вас, как его использовать. Я буду постоянно подходить к местам, где я отклоняюсь ко всякого рода корням и ветвям и говорю на всевозможные мыслимые и немыслимые темы. Но я всегда буду возвращаться назад в колею, потому что я веду всё в одном определённом направлении, к Мер-Ка-Ба, световому телу человека.

Много лет я провёл в изучении священной геометрии, и уверен, что можно узнать всё, что вообще узнать возможно, всё что угодно о любом предмете, стоит только сосредоточить своё внимание на сокрытой за этим предметом геометрии. Всё, что необходимо, это компас и линейка – вам даже компьютер не нужен, хотя, он помогает. Всё знание вы уже имеете внутри себя, и всё, что вам нужно сделать, это раскрыть его. Вы просто исследуете карту движения духа в Великой Пустоте, вот и всё. Вы можете разгадать тайну любого предмета.

Подведём итог: первая информационная система выходит из Плода Жизни через Куб Метатрона. Соединением центров всех сфер вы получаете пять фигур – в действительности шесть, потому что ещё есть центральная сфера, с которой всё начиналось. Так, вы имеете шесть первоначальных форм – тетраэдр, куб, октаэдр, икосаэдр, додекаэдр и сфера.

Новейшая информация: В 1998 году мы начинаем развивать ещё одну новую науку: нанотехнологию . Мы создали микроскопические «машины», способные входить внутрь металла или кристаллических матриц и перестраивать атомы. В 1996 или 1997 годах в Европе при использовании нанотехнологии был создан алмаз из графита. Это алмаз размером около трёх футов в поперечнике, и он – настоящий. Когда соединятся наука о квази-кристаллах и нанотехнология, то наше представление о жизни тоже изменится. Взгляните на конец 1800-ых годов по сревнению с сегодняшним днём.

Платоновы тела и Элементы

Такие древние алхимики и великие души, как Пифагор, отец Греции, считали, что каждая из этих шести фигур представляет собой модель соответствующего элемента (Рис.6-24>).

Тетраэдр считался моделью элемента огня, куб – земли, октаэдр – воздуха, икосаэдр – воды, и додекаэдр – эфира. (Эфир, прана и энергия тахиона) – всё это одно и то же; оно распространено всюду и доступно в любой точке пространства/времени/измерения. Это великая тайна технологии нулевой точки. И сфера представляет Пустоту. Эти шесть элементов являются строительными кирпичиками вселенной. Они создают качества вселенной.

В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир или прана, потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно.

Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаедральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Я могу сказать это потому, что человеческое тело является голограммой вселенной и содержит в себе те же самые основы и законы. Двенадцать созвездий зодиака входят сюда же. Додекаэдр есть завершающая фигура геометрии и она очень важна. На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, планами, по которым построена вся жизнь.

Можно соотнести три столбика на этом изображении (Рис.6-24>) с Древом Жизни и тремя первичными энергиями вселенной: мужской (слева), женской (справа) и детской (в центре). Либо же, если вы вникаете непосредственно в структуру вселенной, то имеете протон слева, электрон справа и нейтрон посередине. Этот центральный столбик, который является созидающим, есть младенец. Помните, чтобы начать процесс выхода из Пустоты, мы шли от октаэдра к сфере. Это начало процесса созидания, и обнаруживается оно в младенце, или центральном столбике.

Левый столбик, содержащий тетраэдр и куб, представляет мужскую составляющую сознания, левое полушарие мозга. Гранями этих полигонов являются треугольники или квадраты. Центральный столбик – это мозолистое тело (corpus callosum), соединяющее левую и правую стороны. Правый столбик, содержащий додекаэдр и икосаэдр представляет женскую составляющую сознания, правое полушарие мозга, и грани этих полигонов составлены из треугольников и пентагонов. Таким образом, полигоны слева имеют трёх- и четырёхрёберные грани, а формы справа имеют трёх- и пятирёберные грани.

Говоря языком Земного сознания, правый столбик является недостающей составляющей. Мы создали мужскую (левую) сторону Земного сознания, и теперь, для достижения целостности и равновесия, мы завершаем создание женской составляющей. Правая сторона связана также с Христовым сознанием или сознанием единства. Додекаэдр является основной формой сетки Христова сознания вокруг Земли. Две формы правого столбика представляют собой друг относительно друга то, что именуется парными фигурами, то есть, если вы соедините центры граней додекаэдра прямыми линиями, то получите икосаэдр, если же вы соедините центры икосаэдра, то получите опять додекаэдр. Многие многогранники имеют пары.

Священные 72

В книге Дан Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК. Уже определено, что в основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи.

Этот угол в 72 градуса, вращающийся в нашей ДНК, связан с планом/назначением Великого Белого Братства. Как вам, быть может, известно, с Великим Белым Братством связано 72 ордена. Многие говорят о 72 ангельских орденах, а Иудеи упоминают 72 названия Бога. Причина, почему именно 72, имеет отношение к строению Платоновых тел, что связано также с сеткой Христова сознания вокруг Земли.

Если взять два тетраэдра и наложить их друг на друга (но в различных положениях), то получится звёздный тетраэдр, который при рассмотрении под определённым углом будет выглядеть никак иначе, как куб (Рис.6-25>). Вы можете увидеть, как они взаимосвязаны. Таким же образом можно сложить вместе пять тетраэдров и получить икосаэдральный колпачок (Рис.6-26).

Если создать двенадцать икосаэдральных колпачков и наложить по одному на каждую грань додекаэдра (на создание додекаэдра потребуется 5 раз 12 или 60 тетраэдров), то это будет звёздный – stellated – додекаэдр, потому что каждая его вершина оказывается точно над центром каждой грани додекаэдра. Парная ему фигура будет составлена из 12 вершин в центре каждой грани додекаэдра и окажется икосаэдром. Эти 60 тетраэдров плюс 12 точек в центрах составят в сумме 72 – опять число орденов, связанных с Белым Братством. Братство в действительности действует через физические взаимоотношения этой звёздной формы додекаэдра/икосаэдра, которая является основой сетки Христова сознания вокруг мира. Иными словами, Братство предпринимает попытки выявления сознания правого полушария мозга планеты.

Первоначальный орден был Альфой и Омегой – Орден Мелхизедек, который был основан Мачивентой Мелхизедек (Machiventa Melchizedek) около 200200 лет назад. С тех пор были основаны другие ордена, всего 71. Самый молодой – это Братство Семи Лучей в Перу/Боливия, семьдесят второй орден.

Каждый из 72 орденов имеет ритм жизни, подобный синусоиде, где некоторые из них проявляются в течение какого-то отрезка времени, затем на некоторое время исчезают. У них есть биоритмы точно также, как имеет их человеческое тело. Цикл Ордена Розенкрейцеров, например, составляет столетие. Они проявляются на сто лет, затем на следующие сто лет исчезают совершенно – они буквально исчезают с лица Земли. Спустя сто лет, они опять появляются в этом мире и действуют в течение следующих ста лет.

Все они находятся в различных циклах и все действуют сообща ради достижения одной цели – вернуть Христово сознание назад на эту планету, чтобы восстановить эту утраченную женскую составляющую сознания и привести к равновесию левое и правое полушарие мозга планеты. Есть другой способ рассмотрения этого явления, коорый действительно необычен. Я к этому подойду, когда мы будем говорить об Англии.

Использование бомб и понимание основной модели творения

Вопрос: Что происходит с элементами, когда взрывают атомную бомбу?

Что касается элементов – они превращаются в энергию и другие элементы. Но дело не только в этом. Имеются бомбы двух видов: распада и расплава - термоядерные. Распад расщепляет материю на части, а термоядерная реакция сплавляет её воедино. Со сплавлением воедино всё в порядке – относительно этого никто не жалуется. Все известные солнца во вселенной представляют собой термоядерные реакторы. Я отдаю себе отчёт в том, что произносимое мною сейчас ещё не признано наукой, но - разрывание материи на части здесь, на Земле, воздействует на соответствующую область во внешнем космосе – как вверху, так и внизу. Иными словами, микрокосмос и макрокосмос взаимосвязаны. Вот почему реакция распада находится вне закона во всей вселенной.

Взрывание атомных бомб вызывает также чудовищное нарушение равновесия на Земле. Например, если принять во внимание, что созидание уравновешивает землю, воздух, огонь, воду и эфир, то атомная бомба становится причиной проявления огромного количества огня на одном месте. Это приводит к нарушению равновесия и Земля должна на это отреагировать.

Если вылить на город 80 биллионов тонн воды, это тоже будет неуравновешенной ситуацией. Если только где-то оказывается слишком много воздуха, слишком много воды, слишком много чего бы то ни было, то это нарушает равновесие. Алхимия есть знание о том, как все эти явления удерживать в равновесии. Если вы понимаете значение этих геометрических фигур и знаете их взаимоотношения, то вы можете создать то, что хотите. Вся идея заключается в понимании лежащей в основе карты . Помните, карта показывает путь, которым дух движется в Пустоте. Если вы знаете лежащую в основе карту, тогда вы обладаете знанием и пониманием, необходимым для сотворчества с Богом.

Рис.6-27> показывает взаимоотношения всех этих фигур. Каждая вершина связана со следующей и все они находятся в определённых математических соотношениях, связанных с пропорцией f (phi ratio).

Заглянуть в грядущее и узнать, что готовит вам завтрашний день...

Понять скрытый смысл загадочных и необъяснимых поступков, которые совершают ваши близкие, а также известные всему миру политики, миллионеры и кинозвезды... Узнать о сильных и слабых сторонах характера любого человека. Во всем этом вам поможет метод цифрового анализа, разработанный известным отечественным исследователем и ученым А. Ф. Александровым.

Книга, посвященная искусству нумерологии, расскажет вам о том, какая важная информация зашифрована в дате вашего рождения. Несложные вычисления помогут вам стать непревзойденным знатоком человеческих характеров и позволят точно прогнозировать события ближайшего и отдаленного будущего. Вы получите несколько универсальных числовых кодов, которые сделают явным все тайное как в мировой политике и экономике, так и в вашей повседневной жизни.

Заглянуть в грядущее и узнать, что готовит вам завтрашний день... Понять скрытый смысл загадочных и необъяснимых поступков, которые совершают ваши близкие, а также известные всему миру политики, миллионеры и кинозвезды... Узнать о сильных и слабых сторонах характера любого человека. Во всем этом вам поможет метод цифрового анализа, разработанный известным отечественным исследователем и ученым А. Ф. Александровым.

Книга ранее выходила под названием «Тайны магических цифр. Как узнать свое будущее по дате рождения».

Поиски Гитлером Шамбалы и Грааля

Особенно это хорошо знал Гитлер. Он хоть в глазах обычных людей и представлял собой «непревзойдённую власть», на самом деле хорошо понимал, что его власть по сравнению с реальной властью, которой обладала элита ордена «Зелёный Дракон» - это ничто. Ему самому, ещё с детских лет, доводилось сталкиваться с проявлением оккультных сил, которые просто пугали таинственностью и могуществом своего воздействия. Гитлер был свидетелем действия этих «невидимых» сил и во время своего продвижения к власти. Он видел оккультную практику ордена «Зелёный Дракон» в действии, когда на Гитлера неоднократно совершались покушения и он выходил из этих ситуаций необъяснимым для простых людей образом живым и невредимым. Он знал, насколько контролировали его действия. Но противостоять этой невидимой силе реальной власти могла только ещё большая сила, которая согласно древним источникам разных народов была либо у Шамбалы, либо в том, что люди позже назвали Граалем. Поэтому и Гитлер, и Сталин так усиленно занимались их поисками… Особенно усердствовал Гитлер. Он вообще лелеял мечту не просто вырваться из-под власти Архонтов, но и самому занять место 13-го, дабы обрести ту полноценную власть над миром, которую тот имел, вечно жить и вечно править.Женька прыснул со смеху:

Впечатляет! Расследование - термофильные дрожжи

Дрожжи опасны!

Издавна на Руси на хлебный стол смотрели, как на Божий престол. И в единственной молитве, оставленной Иисусом Христом, слово хлеб является синонимом еды вообще. Хлеб - дар Божий - говорили наши прадеды. Но пекли они его отнюдь не на термофильных дрожжах. Эти дрожжи появились еще до войны. Ученые, которые занимались изучением этого вопроса, натолкнулись в Ленинке на источники из гитлеровской Германии, где говорилось, что эти дрожжи выращивались на человеческих костях и что, если Россия не погибнет в воине, то она погибнет от дрожжей.

Нашим специалистам не позволили сделать ссылки на источники, скопировать их. Документы были засекречены.

Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.

Названия пяти выпуклых правильных многогранников:тетраэдр, куб, октаэдр, додекаэдр и икосаэдр. Многогранники названы по имени Платона, к рый в соч. Тимей (4 в. до н. э.) придавал им мистич. смысл; были известны до Платона … Математическая энциклопедия

То же, что правильные Многогранники … Большая советская энциклопедия

- … Википедия

Федон, или О бессмертии души названный по имени ученика Сократа, Федона (см.), диалог Платона, один из самых выдающихся. Это единственный диалог Платона, который называет Аристотель, и один из немногих, которые признаются подлинными по… …

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Один из лучших в художественном и философском отношении диалогов Платона, признаваемый подлинным по единогласному приговору как древности, так и современной науки. В новейшей платоновской критике спорили лишь о времени его написания: одни ставили … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Философские идеи в сочинениях Платона - кратко Философское наследие Платона обширно, Оно составляет 34 произведения, которые почти.целиком сохранились и дошли до нас. Эти произведения написаны в основном в форме диалога, а главным действующим лицом в них по большей части является… … Малый тезаурус мировой философии

Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия

Тела Платона, выпуклые многогранники, все грани к рых суть одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные (рис. 1a 1д). В евклидовом пространстве Е 3 существуют пять П. м., данные о к рых приведены в … Математическая энциклопедия

ДУША - [греч. ψυχή], вместе с телом образует состав человека (см. статьи Дихотомизм, Антропология), будучи при этом самостоятельным началом; Д. человека заключает образ Божий (по мнению одних отцов Церкви; по мнению других образ Божий заключен во всем… … Православная энциклопедия

Книги

  • Тимей (изд. 2011 г.) , Платон. Платоновский Тимей является единственным систематическим очерком космологии Платона, которая до сих пор выступала у него только в разбросанном и случайном виде. Это создало славу Тимею по…
  • Дискуссионные вопросы о душе. Исследования 6 , Аквинский Ф.. Жанр`дискуссионных вопросов`(quaestiones disputatae) представляет собой особый схоластический жанр, используемый в средневековых университетах.`Дискуссионные вопросы о душе`являются одним из…