Вся королевская рать не может шалтая. Кто такой Шалтай-Болтай? Что за «шалтай-болтай»

В 1904 г. Анри Пуанкаре предположил, что любой трехмерный объект, обладающий определенными свойствами трехмерной сферы, можно преобразовать в 3-сферу. На доказательство этой гипотезы ушло 99 лет. (Внимание! Трехмерная сфера – это не то, о чем вы подумали.) Российский математик доказал высказанную сто лет назад гипотезу Пуанкаре и завершил создание каталога форм трехмерных пространств. Возможно, он получит премию в $1 млн.

Оглянитесь вокруг. Окружающие вас предметы, как и вы сами, представляют собой набор частиц, перемещающихся в трехмерном пространстве (3-многообразии), которое простирается во всех направлениях на многие миллиарды световых лет.

Многообразия – это математические построения. Со времен Галилея и Кеплера ученые успешно описывают действительность в терминах той или иной ветви математики. Физики считают, что все на свете происходит в трехмерном пространстве и положение любой частицы можно задать тремя числами, например, широтой, долготой и высотой (оставим пока в стороне высказанное в теории струн предположение о том, что помимо трех наблюдаемых нами измерений существуют еще несколько дополнительных).

Согласно классической и традиционной квантовой физике, пространство фиксировано и неизменно. В то же время общая теория относительности рассматривает его как активного участника событий: расстояние между двумя точками зависит от проходящих гравитационных волн и от того, сколько вещества и энергии расположено вблизи. Но и в ньютоновской, и в эйнштейновской физике пространство – бесконечное или конечное – в любом случае представляет собой 3-многообразие. Поэтому для полного понимания основ, на которые опирается почти вся современная наука, необходимо разобраться в свойствах 3-многообразий (не меньший интерес вызывают 4-многообразия, так как пространство и время вместе образуют одно из них).

Раздел математики, в котором изучаются многообразия, называется топологией. Топологи прежде всего задались фундаментальными вопросами: каков самый простой (т.е. характеризующийся наименее сложной структурой) тип 3-многообразия? Есть ли у него столь же простые собратья или же он уникален? Какие вообще бывают 3-многообразия?

Ответ на первый вопрос известен давно: самым простым компактным 3-многообразием является пространство, называемое 3-сферой (Некомпактные многообразия бесконечны или имеют края. Далее рассматриваются только компактные многообразия). Два других вопроса оставались открытыми на протяжении столетия. Лишь в 2002 г. на них ответил российский математик Григорий Перельман, который, судя по всему, сумел доказать гипотезу Пуанкаре.

Ровно сто лет назад французский математик Анри Пуанкаре предположил, что 3-сфера уникальна и никакое другое компактное 3-многообразие не обладает теми свойствами, которые делают ее столь простой. У более сложных 3-многообразий есть границы, встающие как кирпичная стена, или множественные связи между некоторыми областями, похожие на лесную тропинку, которая то разветвляется, то снова соединяется. Любой трехмерный объект со свойствами 3-сферы можно преобразовать в нее саму, поэтому для топологов он представляется просто ее копией. Доказательство Перельмана также позволяет ответить на третий вопрос и провести классификацию всех существующих 3-многообразий.

Вам потребуется изрядное воображение, чтобы представить себе 3-сферу (см. МНОГОМЕРНАЯ МУЗЫКА СФЕР). К счастью, у нее много общего с 2-сферой, типичный пример которой – резина круглого воздушного шарика: она двухмерна, поскольку любая точка на ней задается всего двумя координатами – широтой и долготой. Если рассмотреть достаточно маленький ее участок под мощной лупой, то он покажется кусочком плоского листа. Крошечному насекомому, ползающему по воздушному шарику, он будет казаться плоской поверхностью. Но если козявка будет достаточно долго двигаться по прямой, то в конечном счете вернется в точку отправления. Точно так же 3-сферу размером с нашу Вселенную мы бы воспринимали как «обычное» трехмерное пространство. Пролетев достаточно далеко в любом направлении, мы бы в конце концов совершили «кругосветное путешествие» по ней и оказались бы в исходной точке.

Как вы уже догадались, n-мерная сфера называется n-сферой. Например, 1-сфера всем знакома: это просто окружность.

Григорий Перельман излагает свое доказательство гипотезы Пуанкаре и завершение программы Терстона по геометризации на семинаре в Принстонском университете в апреле 2003 г.

Проверка гипотез

Прошла половина столетия, прежде чем дело о гипотезе Пуанкаре сдвинулось с мертвой точки. В 60-х гг. XX в. математики доказали аналогичные ей утверждения для сфер пяти и более измерений. В каждом случае n-сфера действительно является единственным и простейшим n-многообразием. Как ни странно, получить результат для многомерных сфер оказалось легче, чем для 3- и 4-сферы. Доказательство для четырех измерений появилось в 1982 г. И только исходная гипотеза Пуанкаре о 3-сфере оставалась неподтвержденной.

Решающий шаг был сделан в ноябре 2002 г., когда Григорий Перельман, математик из Санкт-Петербургского отделения математического института им. Стеклова, отправил статью на сайт www.arxiv.org, где физики и математики со всего мира обсуждают результаты своей научной деятельности. Топологи сразу уловили связь работы российского ученого с гипотезой Пуанкаре, хотя напрямую автор ее не упомянул. В марте 2003 г. Перельман опубликовал вторую статью и весной того же года посетил США и провел несколько семинаров в Массачусетском технологическом институте и в Университете штата Нью-Йорк в Стоуни-Брук. Несколько групп математиков в ведущих институтах тут же занялись детальным изучением представленных работ и поиском ошибок.

ОБЗОР: ДОКАЗАТЕЛЬСТВО ГИПОТЕЗЫ ПУАНКАРЕ

  • Целое столетие математики пытались доказать предположение Анри Пуанкаре об исключительной простоте и уникальности 3-сферы среди всех трехмерных объектов.
  • Обоснование гипотезы Пуанкаре наконец появилось в работе молодого российского математика Григория Перельмана. Он также завершил обширную программу классификации трехмерных многообразий.
  • Возможно, наша Вселенная имеет форму 3-сферы. Есть и другие интригующие связи математики с физикой элементарных частиц и общей теорией относительности.

В Стоуни-Брук за две недели Перельман прочитал несколько лекций, выступая от трех до шести часов в день. Он очень четко изложил материал и ответил на все возникшие вопросы. До получения окончательного результата остался еще один незначительный шаг, но нет никаких сомнений в том, что он вот-вот будет сделан. Первая статья знакомит читателя с основополагающими идеями и считается полностью проверенной. Во второй статье освещаются прикладные вопросы и технические нюансы; она пока еще не вызывает такого же полного доверия, как ее предшественница.

В 2000 г. Институт математики им. Клея в Кембридже, штат Массачусетс, учредил премию в размере $1 млн. за доказательство каждой из семи «Проблем тысячелетия», одной из которых считается гипотеза Пуанкаре. Прежде чем ученый сможет претендовать на приз, его доказательство должно быть опубликовано и в течение двух лет тщательно проверено.

Работа Перельмана расширяет и завершает программу исследований, проведенных в 90-х гг. прошлого века Ричардом Гамильтоном (Richard S. Hamilton) из Колумбийского университета. В конце 2003 г. труды американского математика были отмечены премией Института Клея. Перельману удалось блестяще преодолеть целый ряд препятствий, с которыми не смог справиться Гамильтон.

На самом деле доказательство Перельмана, правильность которого еще никому не удалось поставить под сомнение, решает гораздо более широкий круг вопросов, чем собственно гипотеза Пуанкаре. Предложенная Уильямом Терстоном (William P. Thurston) из Корнеллского университета процедура геометризации позволяет провести полную классификацию 3-многообразий, в основу которой положена 3-сфера, уникальная в своей возвышенной простоте. Если бы гипотеза Пуанкаре была ложной, т.е. существовало бы множество пространств столь же простых, как сфера, то классификация 3-многообразий превратилась бы в нечто бесконечно более сложное. Благодаря Перельману и Терстону у нас появился полный каталог всех допускаемых математикой форм трехмерного пространства, которые могла бы принять наша Вселенная (если рассматривать только пространство без времени).

Резиновые бублики

Чтобы глубже понять гипотезу Пуанкаре и доказательство Перельмана, следует поближе познакомиться с топологией. В этом разделе математики форма объекта не имеет значения, как будто он сделан из теста, которое можно как угодно растягивать, сжимать и изгибать. Зачем же нам задумываться о вещах или пространствах из воображаемого теста? Дело в том, что точная форма объекта – расстояние между всеми его точками – относится к структурному уровню, который называют геометрией. Рассматривая объект из теста, топологи выявляют его фундаментальные свойства, не зависящие от геометрической структуры. Изучение топологии похоже на поиск наиболее общих черт, присущих людям, методом рассмотрения «пластилинового человека», которого можно превратить в любого конкретного индивида.

В популярной литературе часто встречается избитое утверждение, что с точки зрения топологии чашка ничем не отличается от бублика. Дело в том, что чашку из теста можно превратить в бублик, просто сминая материал, т.е. ничего не слепляя и не проделывая отверстий (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ). С другой стороны, чтобы сделать бублик из шара, в нем непременно нужно сделать дырку или раскатать его в цилиндр и слепить концы, поэтому шар – это совсем не бублик.

Топологов больше всего интересуют поверхности шара и бублика. Поэтому вместо сплошных тел следует представлять себе воздушные шарики. Их топология по-прежнему различна, поскольку сферический воздушный шарик невозможно преобразовать в кольцевой, который называется тором. Сначала ученые решили разобраться, сколько вообще существует объектов с различной топологией и как их можно охарактеризовать. Для 2-многообразий, которые мы привыкли называть поверхностями, ответ изящен и прост: все определяется количеством «дырок» или, что то же самое, количеством ручек (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ).К концу XIX в. математики поняли, как классифицировать поверхности, и установили, что самая простая из них – сфера. Естественно, топологи начали задумываться о трехмерных многообразиях: уникальна ли 3-сфера в своей простоте? Вековая история поисков ответа полна неверных шагов и ошибочных доказательств.

Анри Пуанкаре вплотную занялся этим вопросом. Он был одним из двух сильнейших математиков начала XX в. (другим был Давид Гильберт). Его называли последним универсалом – он успешно работал во всех разделах как чистой, так и прикладной математики. Кроме того, Пуанкаре внес огромный вклад в развитие небесной механики, теорию электромагнетизма, а также в философию науки, о которой написал несколько популярных книг.

Пуанкаре стал основателем алгебраической топологии и, используя ее методы, в 1900 г. сформулировал топологическую характеристику объекта, названную гомотопией. Чтобы определить гомотопию многообразия, нужно мысленно погрузить в него замкнутую петлю (см. ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ). Затем следует выяснить, всегда ли можно стянуть петлю в точку, перемещая ее внутри многообразия. Для тора ответ будет отрицательным: если расположить петлю по окружности тора, то стянуть ее в точку не удастся, т.к. будет мешать «дырка» бублика. Гомотопия – это количество различных путей, которые могут воспрепятствовать стягиванию петли.

МНОГОМЕРНАЯ МУЗЫКА СФЕР

Не так-то просто представить себе 3-сферу. Математикам, доказывающим теоремы о многомерных пространствах, не приходится воображать себе объект изучения: они обращаются с абстрактными свойствами, руководствуясь интуитивными представлениями, основанными на аналогиях с меньшим числом измерений (к таким аналогиям нужно относиться с осторожностью и не принимать их буквально). Мы тоже будем рассматривать 3-сферу, исходя из свойств объектов с меньшим числом измерений.

1. Начнем с рассмотрения круга и ограничивающей его окружности. Для математиков круг – это двумерный шар, а окружность – одномерная сфера. Далее, шар любой размерности – это заполненный объект, напоминающий арбуз, а сфера – это его поверхность, больше похожая на воздушный шарик. Окружность одномерна, потому что положение точки на ней можно задать одним числом.

2. Из двух кругов мы можем построить двумерную сферу, превратив один из них в Северное полушарие, а другой – в Южное. Осталось склеить их, и 2-сфера готова.

3. Представим себе муравья, ползущего с Северного полюса по большому кругу, образованному нулевым и 180-м меридианом (слева). Если мы отобразим его путь на два исходных круга (справа), то увидим, что насекомое движется по прямой линии (1) к краю северного круга (а), затем пересекает границу, попадает в соответствующую точку на южном круге и продолжает следовать по прямой линии (2 и 3). Затем муравей снова достигает края (b), переходит его и снова оказывается на северном круге, устремляясь к исходной точке – Северному полюсу (4). Заметьте, что во время кругосветного путешествия по 2-сфере направление движения сменяется на противоположное при переходе с одного круга на другой.

4. Теперь рассмотрим нашу 2-сферу и содержащийся в ней объем (трехмерный шар) и сделаем с ними то же самое, что с окружностью и кругом: возьмем две копии шара и склеим их границы вместе. Наглядно показать, как шары искажаются в четырех измерениях и превращаются в аналог полушарий, невозможно, да и не нужно. Достаточно знать, что соответствующие точки на поверхностях, т.е. 2-сферах, соединены между собой так же, как в случае с окружностями. Результат соединения двух шаров представляет собой 3-сферу – поверхность четырехмерного шара. (В четырех измерениях, где существуют 3-сфера и 4-шар, поверхность объекта трехмерна.) Назовем один шар северным полушарием, а другой – южным. По аналогии с кругами, полюса теперь находятся в центрах шаров.

5. Вообразите, что рассмотренные шары – большие пустые области пространства. Допустим, из Северного полюса отправляется космонавт на ракете. Со временем он достигает экватора (1), которым теперь является сфера, окружающая северный шар. Пересекая ее, ракета попадает в южное полушарие и движется по прямой линии через его центр – Южный полюс – к противоположной стороне экватора (2 и 3). Там снова происходит переход в северное полушарие, и путешественник возвращается в Северный полюс, т.е. в исходную точку (4). Таков сценарий кругосветного путешествия по поверхности 4-мерного шара! Рассмотренная трехмерная сфера и есть то пространство, о котором идет речь в гипотезе Пуанкаре. Возможно, наша Вселенная представляет собой именно 3-сферу.
Рассуждения можно распространить на пять измерений и построить 4-сферу, но вообразить это чрезвычайно сложно. Если склеить два n-шара по окружающим их (n–1)-сферам, то получится n-сфера, ограничивающая (n+1)-шар.

На n-сфере любую, даже замысловато закрученную петлю всегда можно распутать и стянуть в точку. (Петле разрешается проходить через саму себя.) Пуанкаре предполагал, что 3-сфера – единственное 3-многообразие, на котором в точку можно стянуть любую петлю. К сожалению, он так и не смог доказать свое предположение, которое впоследствии стали называть гипотезой Пуанкаре. За прошедшие сто лет многие предлагали свой вариант доказательства, но лишь для того, чтобы убедиться в его ошибочности. (Для простоты изложения я пренебрегаю двумя особыми случаями: так называемыми неориентируемыми многообразиями и многообразиями с краями. Например, у сферы с вырезанным из нее сегментом есть край, а петля Мебиуса не только имеет края, но также является неориентируемой.)

Геометризация

Проведенный Перельманом анализ 3-многообразий тесно связан с процедурой геометризации. Геометрия имеет дело с фактической формой объектов и многообразий, сделанных уже не из теста, а из керамики. Например, чашка и бублик геометрически различны, поскольку их поверхности изогнуты по-разному. Говорят, что чашка и бублик – два примера топологического тора, которому приданы разные геометрические формы.

Чтобы понять, зачем Перельман использовал геометризацию, рассмотрим классификацию 2-многообразий. Каждой топологической поверхности назначена уникальная геометрия, искривление которой распределено по многообразию равномерно. Например, для сферы – это идеально сферическая поверхность. Другая возможная геометрия для топологической сферы – яйцо, но его кривизна не везде распределена равномерно: острый конец изогнут сильнее, чем тупой.

2-многообразия образуют три геометрических типа (см. ГЕОМЕТРИЗАЦИЯ). Сфера характеризуется положительной кривизной. Геометризированный тор – плоский, ему свойственна нулевая кривизна. Все остальные 2-многообразия с двумя или более «дырками» имеют отрицательную кривизну. Им соответствует поверхность, похожая на седло, которое спереди и сзади изгибается вверх, а слева и справа –вниз. Такую геометрическую классификацию (геометризацию) 2-многообразий Пуанкаре разработал вместе с Паулем Кебе (Paul Koebe) и Феликсом Клейном (Felix Klein), именем которого названа бутылка Клейна.

Возникает естественное желание применить подобный метод к 3-многообразиям. Можно ли найти для каждого из них такую уникальную конфигурацию, у которой кривизна была бы распределена равномерно по всему многообразию?

Оказалось, что 3-многообразия гораздо сложнее своих двумерных собратьев и большинству из них нельзя поставить в соответствие однородную геометрию. Их следует разделять на части, которым соответствует одна из восьми канонических геометрий. Данная процедура напоминает разложение числа на простые множители.

ТОПОЛОГИЯ ПОВЕРХНОСТЕЙ

В ТОПОЛОГИИ точная форма, т.е. геометрия, не имеет значения: объекты рассматриваются так, как будто они сделаны из теста и их можно растягивать, сжимать и перекручивать. Однако резать и склеивать ничего нельзя. Таким образом, любой объект с одним отверстием, например, кофейная чашка (слева), эквивалентен бублику или тору (справа).

ЛЮБОЕ ДВУМЕРНОЕ многообразие или поверхность (ограничиваясь компактными ориентируемыми объектами) можно изготовить, добавляя к сфере (a) ручки. Прилепим одну – сделаем поверхность 1 рода, т.е. тор или бублик (вверху справа), добавим вторую – получим поверхность 2 рода (b) и т.д.

УНИКАЛЬНОСТЬ 2-сферы среди поверхностей заключается в том, что любую вложенную в нее замкнутую петлю можно стянуть в точку (a). На торе этому может препятствовать среднее отверстие (b). У любой поверхности, кроме 2-сферы, есть ручки, препятствующие стягиванию петли. Пуанкаре предположил, что 3-сфера уникальна среди трехмерных многообразий: только на ней любую петлю можно стянуть в точку.

Такая процедура классификации впервые была предложена Терстоном в конце 70-х гг. прошлого века. Вместе с коллегами он обосновал большую ее часть, но доказательство некоторых ключевых моментов (включая гипотезу Пуанкаре) оказалось им не под силу. Уникальна ли 3-сфера? Достоверный ответ на этот вопрос впервые появился в статьях Перельмана.

Каким же образом можно геометризировать многообразие и придать ему повсюду равномерное искривление? Нужно взять некую произвольную геометрию с различными выступами и углублениями, а затем сгладить все неровности. В начале 90-х гг. XX в. к анализу 3-многообразий приступил Гамильтон, который воспользовался уравнением потока Риччи, названным так в честь математика Грегорио Риччи-Курбастро (Gregorio Ricci-Curbastro). Оно в чем-то схоже с уравнением теплопроводности, которое описывает тепловые потоки, протекающие в неравномерно нагретом теле до тех пор, пока его температура не станет везде одинаковой. Точно так же уравнение потока Риччи задает такое изменение кривизны многообразия, которое ведет к выравниванию всех выступов и углублений. Например, если начать с яйца, то оно постепенно станет сферическим.

ГЕОМЕТРИЗАЦИЯ

ДЛЯ КЛАССИФИКАЦИИ 2-многообразий можно воспользоваться униформизацией или геометризацией: поставить им в соответствие определенную геометрию, жесткую форму. В частности, каждое многообразие можно преобразовать так, что его кривизна будет распределена равномерно. Сфера (a) – уникальная форма с постоянной положительной кривизной: она всюду изогнута как вершина холма. Тор (b) можно сделать плоским, т.е. всюду имеющим нулевую кривизну. Для этого его нужно разрезать и выпрямить. Полученный цилиндр следует разрезать вдоль и развернуть, чтобы получилась прямоугольная плоскость. Иными словами, тор можно отобразить на плоскость. Поверхностям 2 рода и выше (c) можно придать постоянную отрицательную кривизну, при этом их геометрия будет зависеть от количества ручек. Ниже изображена седлообразная поверхность с постоянной отрицательной кривизной.

КЛАССИФИЦИРОВАТЬ 3-МНОГООБРАЗИЯ гораздо сложнее. 3-многообразие приходится разделять на части, каждую из которых можно преобразовать в одну из восьми канонических трехмерных геометрий. Приведенный ниже пример (для простоты изображенный в виде 2-многообразия синего цвета) составлен из 3-геометрий с постоянной положительной (a), нулевой (b) и постоянной отрицательной (c) кривизной, а также из «произведений» 2-сферы и окружности (d) и поверхности с отрицательной кривизной и окружности (e).

Однако Гамильтон столкнулся с определенными трудностями: в некоторых случаях поток Риччи приводит к пережиму многообразия и образованию бесконечно тонкой шейки. (В этом его отличие от теплового потока: в точках пережима температура была бы бесконечно большой.) Один из примеров – многообразие в форме гантели. Сферы растут, втягивая материал из перемычки, которая в середине сужается в точку (см. БОРЬБА С ОСОБЕННОСТЯМИ). В другом случае, когда из многообразия выступает тонкий стержень, поток Риччи вызывает появление так называемой сигарообразной особенности. В правильном 3-многообразии окрестность любой точки является кусочком обычного трехмерного пространства, чего нельзя сказать о сингулярных точках пережима. Преодолеть это затруднение помогли работы российского математика.

В 1992 г. после защиты кандидатской диссертации Перельман прибыл в США и провел несколько семестров в университете штата Нью-Йорк в Стоуни-Брук, а затем два года в Калифорнийском университете в Беркли. Он быстро заслужил репутацию восходящей звезды, получив несколько важных и глубоких результатов в одном из разделов геометрии. Перельман был удостоен премии Европейского математического общества (от которой он отказался) и получил престижное приглашение выступить на Международном конгрессе математиков (которое он принял).

Весной 1995 г. ему были предложены должности в нескольких знаменитых математических учреждениях, но он предпочел вернуться в родной Санкт-Петербург и по существу исчез из поля зрения. На протяжении многих лет единственным признаком его деятельности были письма прежним коллегам с указанием ошибок, допущенных в опубликованных ими статьях. Запросы о состоянии его собственных работ оставались без ответа. И вот в конце 2002 г. несколько человек получили от Перельмана электронное письмо, сообщавшее о статье, которую он отправил на математический сервер. Так началось его наступление на гипотезу Пуанкаре.

БОРЬБА С ОСОБЕННОСТЯМИ

ПЫТАЯСЬ ИСПОЛЬЗОВАТЬ уравнение потока Риччи для доказательства гипотезы Пуанкаре и геометризации 3-многообразий, ученые столкнулись с трудностями, которые сумел преодолеть Григорий Перельман. Применение потока Риччи для постепенного изменения формы 3-многообразия иногда приводит к возникновению особенностей. Например, когда часть объекта имеет форму гантели (a), трубка между сферами может оказаться пережатой до точечного сечения, нарушающего свойства многообразия (b). Также не исключено появление так называемой сигарообразной особенности.

ПЕРЕЛЬМАН ПОКАЗАЛ , что над особенностями можно проводить «хирургические операции». Когда многообразие начинает пережиматься, следует вырезать небольшие участки по обе стороны от точки сужения (c), места среза закрыть небольшими сферами, а затем снова использовать поток Риччи (d). Если пережим возникает снова, процедуру нужно повторить. Перельман также доказал, что сигарообразная особенность никогда не появляется.

Перельман добавил к уравнению потока Риччи новый член. Внесенное изменение не устранило проблему особенностей, но позволило провести гораздо более глубокий анализ. Российский ученый показал, что над многообразием в виде гантели можно провести «хирургическую» операцию: отрезать тонкую трубку по обе стороны от появляющегося пережима и заделать торчащие из шаров открытые трубки сферическими колпачками. Затем следует продолжать изменение «прооперированного» многообразия в соответствии с уравнением потока Риччи, а ко всем возникающим пережимам применять вышеописанную процедуру. Перельман также показал, что сигарообразные особенности появляться не могут. Таким образом, любое 3-многообразие можно свести к набору частей с однородной геометрией.

Когда поток Риччи и «хирургическую операцию» применяют ко всем возможным 3-многообразиям, любое из них, если оно столь же простое, как 3-сфера (иначе говоря, характеризуется такой же гомотопией), обязательно сводится к той же самой однородной геометрии, что и 3-сфера. Значит, с топологической точки зрения, рассматриваемое многообразие и есть 3-сфера. Таким образом, 3-сфера уникальна.

Ценность статей Перельмана заключается не только в доказательстве гипотезы Пуанкаре, но и в новых методах анализа. Ученые всего мира уже используют в своих работах результаты, полученные российским математиком, и применяют разработанные им методы в других областях. Оказалось, что поток Риччи связан с так называемой группой перенормировки, которая определяет, как изменяется сила взаимодействий в зависимости от энергии столкновения частиц. Например, при низких энергиях сила электромагнитного взаимодействия характеризуется числом 0,0073 (приблизительно 1/137). Однако когда два электрона сталкиваются лоб в лоб при скорости, почти равной скорости света, значение этой силы приближается к 0,0078. Математика, описывающая изменение физических сил, очень похожа на математику, описывающую геометризацию многообразия.

Увеличение энергии столкновения эквивалентно изучению силы на меньших расстояниях. Поэтому группа перенормировки подобна микроскопу с изменяемым коэффициентом увеличения, который позволяет исследовать процесс на разных уровнях детализации. Точно так же поток Риччи представляет собой микроскоп для рассмотрения многообразий. Выступы и углубления, видимые при одном увеличении, исчезают при другом. Вполне вероятно, что в масштабах длины Планка (около $10^{–35}$ м) пространство, в котором мы живем, выглядит как пена со сложной топологической структурой (см. статью «Атомы пространства и времени», «В мире науки», №4, 2004 г.). Кроме того, уравнения общей теории относительности, которые описывают характеристики гравитации и крупномасштабной структуры Вселенной, тесно связаны с уравнением потока Риччи. Как это ни парадоксально, член, добавленный Перельманом к выражению, которое использовал Гамильтон, возникает в теории струн, претендующей на звание квантовой теории гравитации. Не исключено, что в статьях российского математика ученые найдут еще много полезной информации не только об абстрактных 3-многообразиях, но также и о пространстве, в котором мы живем.

Кандидат физико-математических наук Грэхем Коллинз (Graham P. Collins) работает редактором журнала Scientific American. Дополнительная информация о теореме Пуанкаре доступна на www.sciam.com/ontheweb.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

  1. The Poincare Conjecture 99 Years Later: A Progress Report. John W. Milnor. February 2003. Available at www.math.sunysb.edu/~jack/PREPRINTS/poiproof.pdf
  2. Jules Henri Poincare ’ (biography). October 2003. Available atwww-groups.dcs.st-and.ac.uk/~history/Mathematicians/Poincare.html
  3. Millennium Problems. The Clay Mathematics Institute: www.claymath.org/millennium/
  4. Notes and commentary on Perelman’s Ricci flow papers. Compiled by Bruce Kleiner and John Lott. Available at www.math.lsa.umich.edu/research/ricciflow/perelman.html
  5. Topology. Eric W. Weisstein in Mathworld-A Wolfram Web Resource. Available at
  • Tutorial

Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.

Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.

Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.

Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.

Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.

Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).

Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.

Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.

Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.

С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.

Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие - нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:

Из 26 букв у нас получается всего 8 классов.

На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.

Формальная постановка вопроса

Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.

Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.

Гипотеза Пуанкаре для поверхностей

Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.

Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.

Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.

Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).

Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:

Рассмотрим примеры простейших склеек:

В первом случае у нас получится сфера:

Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):

В третьем случае получится так называемая бутылка Клейна:

Если склеивать не все стороны многоугольника, то получится поверхность с краем:

Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.

Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.

Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:

Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.

Теперь подробнее остановимся на понятии петли. Петял - это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:

Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:

На плоскости можно стянуть любую петлю:

А вот какие петли бывают на торе:

Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум - это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем - это будет несколько сложнее.

Эйлерова характеристика

Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.

Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г - число многоугольников, Р - это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B - это число вершин, которое получается после склейки после склейки.

Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.

Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г - это и есть эйлерова характеристика поверхности.

Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.

Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности - о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ

Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.

Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.

Немногие математические теории так взволновали далекую от абстрактных геометрических рассуждений общественность, как эта. Гипотеза Пуанкаре, выдвинутая в 1887 году французским математиком Анри Пуанкаре, уже более сотни лет не давала покоя ученым разных стран. Ею заинтересовались не только геометры, но и физики, и даже… спецслужбы. Поэтому такую сенсацию вызвало сообщение о том, что секрет гипотезы, над которой ломало голову столько светлых умов, наконец, раскрыт, и доказана. Масла в огонь народного интереса подлил и тот факт, что доказавший теорему ученый - российский математик Григорий Перельман - в 2006 году отказался от присужденной ему Филдсовской математической премии (и сопутствующего ей миллиона долларов). Никак не отреагировал ученый и на награждение его Премией Тысячелетия математическим институтом Клэя.

Однако, - спросит читатель, далекий от математики, - отчего такой интерес вызывает именно гипотеза Пуанкаре? И почему за ее доказательство платят такие огромные деньги? Для этого, пусть и в самых общих чертах, необходимо охарактеризовать, что представляет собой эта гипотеза в рамках такой области математики, как топология. Представьте себе слабо надутый воздушный шарик. Если его мять, то можно придавать ему разные формы: куб, овальная сфера и даже формы людей и животных. Но все это разнообразие геометрических форм может превращаться в одну универсальную форму - шар. Единственное, во что не может превратиться шарик без разрывов - это в форму с дыркой, например, в бублик.

Гипотеза Пуанкаре утверждала, что все предметы, не имеющие сквозного отверстия, имеют одну основу - шар. А вот тела, имеющие отверстие (математики называют их тор, но для нас пусть будет «бублик») совместимы друг с другом, но не со сплошными телами. К примеру, если мы слепим из пластилина кошку, мы можем умять ее в шар и из него слепить, не употребляя разрывы, ежа или рельсу. Если мы слепим бублик, мы можем деформировать его в «восьмерку» или кружку, а вот в шар уже не удастся. Тор и сфера несовместимы - на математическом языке негомеоморфны.

Примечательно, что доказательством этой теории заинтересовались не столько математики, сколько астрофизики. Если теория Пуанкаре применима ко всем материальным телам во Вселенной, то почему бы не представить на минутку, что она также верна относительно самой Вселенной? А что, если вся материя возникла из маленькой, одномерной точки и сейчас разворачивается в многомерную сферу? И где ее границы? И что за границами? И что, если найти механизм свертывания Вселенной назад, к отправной точке? Поскольку в доказательстве своей гипотезы сам автор допустил ошибку, много математиков и физиков, подпав под чары гипотезы Пуанкаре, принялись самоотверженно работать над ее доказательством. Несколько из них - Д. Г. Уайтхед, Бинг, К. Папакириакопоулос, С. Смейл, М. Фридман - положили свою жизнь на доказательство теории Пуанкаре.

Но в результате лавры достались малоизвестному питерскому ученому Перельману, хотя формально - на страницах рецензируемых журналов - его доказательство так и не увидело свет. Работа Григория Яковича была размещена на сайте arXiv.org в 2002 году, но, тем не менее, произвела в научном мире эффект взорвавшейся бомбы. Поскольку чудаковатый математик даже не потрудился «отшлифовать» свое доказательство, некоторые ученые решили перехватить лавры первооткрывателя. Так, китайские математики Хуайдун Цао и Сипин Чжу назвали доказательства Перельмана промежуточными, и дополнили его. Однако присуждение Премии Тысячелетия российскому математику (хоть он и отказался ее получить) поставило все точки над «і»: гипотеза Пуанкаре доказана именно Перельманом. Когда же журналистам все-таки удалось взять интервью у гениального математика, на вопрос, почему он отказался от премии в один миллион долларов, прозвучал странный ответ: «Если я владею Вселенной, то зачем мне в таком случае миллион?»

Гипотеза Пуанкаре выдвинута еще в начале XX в. французским математиком Анри Пуанкаре. Чтобы сформулировать ее, дадим

Определение. Топологическое пространство X называется односвязным, если оно линейно связно и всякое непрерывное отображение
X окружности в пространство X можно продолжить до непрерывного отображения
всего круга
. Не трудно видеть, что сфера односвязна при n 2.

Гипотеза Пуанкаре. Всякое замкнутое односвязное трехмерное многообразие гомеоморфно трехмерной сфере.

Аналоги гипотезы Пуанкаре, касающиеся многообразий размерности 4 и больше, доказаны. Более того, получена топологическая классификация вообще всех замкнутых односвязных четырехмерных многообразий.

Это интересно: Почти 100 лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна.

Другими словами, гипотеза Пуанкаре утверждает, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере. Гипотеза сформулирована Пуанкаре в 1904 г. Обобщенная гипотеза Пуанкаре утверждает, что для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Для пояснения используют такую картинку: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой пончик (пирожок с дыркой в середине), то в точку его сжать нельзя без разрыва или пончика, или резины. В таком контексте яблоко называют «односвязной» фигурой, пончик же не односвязен.

Жюль Анри Пуанкаре открыл специальную теорию относительности одновременно с Эйнштейном (1905 г.) и признан одним из величайших математиков за всю историю человечества.

Гипотеза Пуанкаре оставалась недоказанной на протяжении всего двадцатого столетия. В математическом мире она приобрела статус, аналогичный статусу Великой теоремы Ферма.

За доказательство гипотезы Пуанкаре Математический институт им. Клея присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения». Как и в ситуации с теоремой Ферма, выяснилось, что гипотеза Пуанкаре есть частный случай гораздо более общего утверждения о геометрических свойствах произвольных трехмерных поверхностей – гипотезы геометризации Тёрстона (Thurston"s Geometrization Conjecture). Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.

Российский математик Григорий Перельман, сотрудник лаборатории геометрии и топологии Санкт-Петербургского отделения Математического института им. В.А. Стеклова, утверждает, что доказал гипотезу Пуанкаре, то есть решил одну из самых знаменитых нерешенных математических задач. Необычным был способ, который Перельман избрал для обнародования своего доказательства. Вместо того чтобы опубликовать его в солидном научном журнале, что, кстати, было обязательным условием для присуждения приза в миллион долларов, Перельман разместил свою работу на одном из архивов Интернета. Хотя доказательство заняло всего 61 страницу, оно произвело сенсацию в научном мире.

Научный мир рукоплескал гению, обещая золотые горы и почетные титулы. Американский Институт математики Клея был готов присудить ему награду в $1 миллион. Никто не сомневался, что Всемирный конгресс математиков, назовет Перельмана победителем. Кстати, как известно, математики не входят в число учёных, награждаемых Нобелевской премией. Злые языки утверждают, что этот факт не случаен. Ведь, по слухам, именно математик попал в немилость знаменитому шведу Альфреду Нобелю, отбив у него любимую девушку в юности. Между тем российский гений отказался от миллиона, так и не опубликовав свое открытие в специализированных изданиях, уволился из Математического института им. Стеклова РАН, ушел в затворничество и, на церемонии вручения награды, которую вручал король Испании Хуан Карлос I, не появился. Он никак не отреагировал на сообщение о награде и приглашение ее получить, а как говорят знакомые: гений "ушел в леса" по грибы под Санкт-Петербургом.

Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.

Проблема (ее также называют задачей или гипотезой) Пуанкаре относится к числу семи важнейших математических проблем, за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute) назначил премию в один миллион долларов. Именно это и привлекло столь широкое внимание к результатам, полученным Григорием Перельманом, сотрудником лаборатории математической физики Санкт-Петербургского отделения Математического института имени Стеклова .

Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории .

Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем "международную репутацию". Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, "математическое сообщество": доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.

Проблема Пуанкаре

Проблема Пуанкаре относится к области так называемой топологии многообразий - особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел − сферы (поверхности шара) или тора (поверхности бублика).

Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую. Говоря простым языком, сфера и тор различны по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга - тору. Иными словами, любая замкнутая двумерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера.

Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.

Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех- и четырехмерными. Очевидно, отсутствие наглядности - далеко не главная трудность, с которой сталкиваются математики в своих исследованиях.

Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.

Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.

Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).

Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета "Гардиан": "Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам".

Видимо, для Григория Перельмана, как для настоящего ученого, деньги - не главное. За решение любой из так называемых "задач тысячелетия" истинный математик продаст душу дьяволу.

ГРИГОРИЙ ПЕРЕЛЬМАН

Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики.

Китайские математики опубликовали полное доказательство гипотезы Пуанкаре, сформулированной в 1904 году, передает новостное агентство Xinhua. Гипотеза, касающаяся классификации многомерных поверхностей (а точнее, многообразий), входила в число "проблем тысячелетия", за решение каждой из которых американский Институт Клэя назначил награду в миллион долларов.

Согласно Пуанкаре, любая замкнутая трехмерная "поверхность без дыр" (односвязное многообразие) эквивалентна трехмерной сфере, то есть поверхности четырехмерного шара. Сам Пуанкаре, автор математического аппарата эйнштейновской теории, представил первое обоснование, но позже обнаружил в собственных рассуждениях ошибку. Гипотезу в такой формулировке доказал в 2003 году российский математик Григорий Перельман, 70-страничную работу которого эксперты проверяют до сих пор. Другие случаи (размерности четыре и выше) были рассмотрены ранее.

По словам авторов, новая 300-страничная статья в Asian Journal of Mathematics не является независимой и опирается в первую очередь на результаты Перельмана. Чжу Сипин и Цао Хуайдун утверждают, что теперь ликвидировали ряд трудностей, способы преодоления которых Перельманом были только намечены. Известно, что в работе над доказательством также участвовал Шин-Тунь Яу, топологические труды которого (в частности, теория многообразий Калаби-Яу) считаются ключевыми для современной теории струн. Новая работа, отмечают специалисты, также потребует длительной перепроверки.

Александров А.Д., Нецветаев Н.Ю. Геометрия. М.: Наука, 1990

Приложение к реферату 2:

«Проблема, которую решил Перельман , состоит в требовании доказать гипотезу, выдвинутую в 1904 году великим французским математиком Анри Пуанкаре (1854-1912) и носящую его имя. О роли Пуанкаре в математике трудно сказать лучше, чем это сделано в энциклопедии: «Труды Пуанкаре в области математики, с одной стороны, завершают классическое направление, а с другой - открывают пути к развитию новой математики, где наряду с количественными соотношениями устанавливаются факты, имеющие качественный характер» (БСЭ, изд. 3-е, т. 2). Гипотеза Пуанкаре как раз и имеет качественный характер - как и вся та область математики (а именно топология), к которой она относится и в создании которой Пуанкаре принял решающее участие.

На современном языке гипотеза Пуанкаре звучит так: всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере.

В следующих абзацах мы постараемся хотя бы частично и очень приблизительно разъяснить смысл этой устрашающей словесной формулы. Для начала заметим, что обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар - тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой.

В этом состоит значение результата Перельмана для физики и астрономии. Термин «односвязное компактное трёхмерное многообразие без края» содержит указания на предполагаемые свойства нашей Вселенной. Термин «гомеоморфно» означает некую высокую степень сходства, в известном смысле неотличимость. Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она - в том же самом «известном смысле» - и есть трёхмерная сфера.

Понятие односвязности - довольно простое понятие. Представим себе канцелярскую резинку (то есть резиновую нить со склеенными концами) столь упругую, что она, если её не удерживать, стянется в точку. От нашей резинки мы потребуем ещё, чтобы при стягивании в точку она не выходила за пределы той поверхности, на которой мы её расположили. Если мы растянем такую резинку на плоскости и отпустим, она немедленно стянется в точку. То же произойдёт, если мы расположим резинку на поверхности глобуса, то есть на сфере. Для поверхности спасательного круга ситуация окажется совершенно иной: любезный читатель легко найдёт такие расположения резинки на этой поверхности, при которой стянуть резинку в точку, не выходя за пределы рассматриваемой поверхности, невозможно. Геометрическая фигура называется односвязной, если любой замкнутый контур, расположенный в пределах этой фигуры, можно стянуть в точку, не выходя за названные пределы. Мы только что убедились, что плоскость и сфера односвязны, а поверхность спасательного круга не односвязна. Не односвязна и плоскость с вырезанной в ней дырой. Понятие односвязности применимо и к трёхмерным фигурам. Так, куб и шар односвязны: всякий находящийся в их толще замкнутый контур можно стянуть в точку, причём в процессе стягивания контур будет всё время оставаться в этой толще. А вот баранка не односвязна: в ней можно найти такой контур, который нельзя стянуть в точку так, чтобы в процессе стягивания контур всё время находился в тесте баранки. Не односвязен и крендель. Можно доказать, что трёхмерная сфера односвязна.

Надеемся, что читатель не забыл, ещё разницу между отрезком и интервалом, которой обучают в школе. Отрезок имеет два конца, он состоит из этих концов и всех точек, расположенных между ними. Интервал же состоит только из всех точек, расположенных между его концами, сами же концы в состав интервала не входят: можно сказать, что интервал - это отрезок с удалёнными из него концами, а отрезок - это интервал с добавленными к нему концами. Интервал и отрезок являются простейшими примерами одномерных многообразий, причём интервал есть многообразие без края, а отрезок - многообразие с краем; край в случае отрезка состоит из двух концов. Главное свойство многообразий, лежащее в основе их определения, состоит в том, что в многообразии окрестности всех точек, за исключением точек края (которого может и не быть), устроены совершенно одинаково.

При этом окрестностью какой-либо точки А называется совокупность всех точек, расположенных вблизи от этой точки А. Микроскопическое существо, живущее в многообразии без края и способное видеть только ближайшие к себе точки этого многообразия, не в состоянии определить, в какой именно точке оно, существо, находится: вокруг себя оно всегда видит одно и то же. Ещё примеры одномерных многообразий без края: вся прямая линия целиком, окружность. Примером одномерной фигуры, не являющейся многообразием, может служить линия в форме буквы Т: здесь есть особая точка, окрестность которой не похожа на окрестности других точек - это точка, где сходятся три отрезка. Другой пример одномерного многообразия - линия в форме восьмёрки; в особой точке здесь сходятся четыре линии. Плоскость, сфера, поверхность спасательного круга служат примерами двумерных многообразии без края. Плоскость с вырезанной в ней дырой также будет многообразием - а вот с краем или без края, зависит от того, куда мы относим контур дыры. Если мы относим его к дыре, получаем многообразие без края; если оставляем контур на плоскости, получаем многообразие с краем, каковым и будет служить этот контур. Разумеется, мы имели здесь в виду идеальное математическое вырезание, а при реальном физическом вырезании ножницами вопрос, куда относится контур, не имеет никакого смысла.

Несколько слов о трёхмерных многообразиях. Шар вместе со сферой, служащей его поверхностью, представляет собою многообразие с краем; указанная сфера как раз и является этим краем. Если мы удалим этот шар из окружающего пространства, получим многообразие без края. Если мы сдерём с шара его поверхность, получится то, что на математическом жаргоне называется «ошкуренный шар», а в более научном языке - открытый шар. Если удалить открытый шар из окружающего пространства, получится многообразие с краем, и краем будет служить та самая сфера, которую мы содрали с шара. Баранка вместе со своей корочкой есть трёхмерное многообразие с краем, а если отодрать корочку (которую мы трактуем как бесконечно тонкую, то есть как поверхность), получим многообразие без края в виде «ошкуренной баранки». Всё пространство в целом, если понимать его так, как оно понимается в средней школе, есть трёхмерное многообразие без края.

Математическое понятие компактность отчасти отражает тот смысл, какой слово «компактный» имеет в повседневном русском языке: «тесный», «сжатый». Геометрическая фигура называется компактной, если при любом расположении бесконечного числа её точек они накапливаются к одной из точек или ко многим точкам этой же фигуры. Отрезок компактен: для любого бесконечного множества его точек в отрезке найдётся хотя бы одна так называемая предельная точка, любая окрестность которой содержит бесконечно много элементов рассматриваемого множества. Интервал не компактен: можно указать такое множество его точек, которое накапливается к его концу, и только к нему, - но ведь конец не принадлежит интервалу!

За недостатком места мы ограничимся этим комментарием. Скажем лишь, что из рассмотренных нами примеров компактными являются отрезок, окружность, сфера, поверхности баранки и кренделя, шар (вместе со своей сферой), баранка и крендель (вместе со своими корочками). Напротив, интервал, плоскость, ошкуренные шар, баранка и крендель не являются компактными. Среди трёхмерных компактных геометрических фигур без края простейшей является трёхмерная сфера, но в нашем привычном «школьном» пространстве такие фигуры не умещаются. Самое, пожалуй, глубокое из тех понятий, которые связывает между собой гипотеза Пуанкаре , - это понятие гомеоморфии. Гомеоморфия - это наиболее высокая ступень геометрической одинаковости . Сейчас мы попытаемся дать приблизительное разъяснение этому понятию путём постепенного к нему приближения.

Уже в школьной геометрии мы встречаемся с двумя видами одинаковости - с конгруэнтностью фигур и с их подобием. Напомним, что фигуры называются конгруэнтными, если они совпадают друг с другом при наложении. В школе конгруэнтные фигуры как бы не различают, и потому конгруэнтность называют равенством. Конгруэнтные фигуры имеют одинаковые размеры во всех своих деталях. Подобие же, не требуя одинаковости размеров, означает одинаковость пропорций этих размеров; поэтому подобие отражает более сущностное сходство фигур, нежели конгруэнтность. Геометрия в целом - более высокая ступень абстракции, нежели физика, а физика - чем материаловедение.

Возьмём, к примеру, шарик подшипника, биллиардный шар, крокетный шар и мяч. Физика не вникает в такие детали, как материал, из которого они сделаны, а интересуется лишь такими свойствами, как объём, вес, электропроводность и т. п. Для математики - все они шары, различающиеся только размерами. Если шары имеют разные размеры, то они различаются для метрической геометрии, но все они одинаковы для геометрии подобия. С точки зрения геометрии подобия одинаковы и все шары, и все кубы, а вот шар и куб - не одинаковы.

А теперь посмотрим на тор. Top - эта та геометрическая фигура, форму которой имеют баранка и спасательный круг. Энциклопедия определяет тор как фигуру, полученную вращением круга вокруг оси, расположенной вне этого круга. Призываем благосклонного читателя осознать, что шар и куб «более одинаковы» между собой, чем каждый из них с тором. Наполнить это интуитивное осознание точным смыслом позволяет следующий мысленный эксперимент. Представим себе шар сделанным из материала столь податливого, что его можно изгибать, растягивать, сжимать и, вообще, деформировать как угодно, - нельзя только ни разрывать, ни склеивать. Очевидно, что шар тогда можно превратить в куб, но вот в тор превратить невозможно. Толковый словарь Ушакова определяет крендель как выпечку (буквально: как сдобную витую булку) в форме буквы В. При всём уважении к этому замечательному словарю, слова «в форме цифры 8» кажутся мне более точными; впрочем, с той точки зрения, которая выражена в понятии гомеоморфии, и выпечка в форме цифры 8, и выпечка в форме буквы В, и выпечка в форме фиты имеют одну и ту же форму. Даже если предположить, что хлебопёки сумели получить тесто, обладающее вышеуказанными свойствами податливости, колобок невозможно - без разрывов и склеиваний! - превратить ни в баранку, ни в крендель, как и последние две выпечки друг в друга. А вот превратить шарообразный колобок в куб или в пирамиду - можно. Любезный читатель, несомненно, сумеет найти и такую возможную форму выпечки, в которую нельзя превратить ни колобок, ни крендель, ни баранку.

Не назвав этого понятия, мы уже познакомились с гомеоморфией. Две фигуры называются гомеоморфными, если одну можно превратить в другую путём непрерывной (т. е. без разрывов и склеивании) деформации; сами такие деформации называются гомеоморфизмами. Мы только что выяснили, что шар гомеоморфен кубу и пирамиде, но не гомеоморфен ни тору, ни кренделю, а последние два тела не гомеоморфны между собой. Просим читателя понимать, что мы привели лишь приблизительное описание понятия гомеоморфии, данное в терминах механического преобразования.

Коснёмся философского аспекта понятия гомеоморфии. Представим себе мыслящее существо, живущее внутри какой-либо геометрической фигуры и не обладающее возможностью посмотреть на эту фигуру извне, «со стороны». Для него фигура, в которой оно живёт, образует Вселенную. Представим себе также, что когда объемлющая фигура подвергается непрерывной деформации, существо деформируется вместе с нею. Если фигура, о которой идёт речь, является шаром, то существо никаким способом не может различить, пребывает ли оно в шаре, в кубе или в пирамиде. Однако для него не исключена возможность убедиться, что его Вселенная не имеет формы тора или кренделя. Вообще, существо может установить форму окружающего его пространства лишь с точностью до гомеоморфии, то есть оно не в состоянии отличить одну форму от другой, коль скоро эти формы гомеоморфны.

Для математики значение гипотезы Пуанкаре , превратившейся теперь из гипотезы в теорему Пуанкаре - Перельмана, огромно (не зря ведь за решение проблемы был предложен миллион долларов), равно как огромно и значение найденного Перельманом способа её доказательства, но объяснить это значение здесь - вне нашего умения. Что же касается космологической стороны дела, то, возможно, значимость этого аспекта была несколько преувеличена журналистами.

Впрочем, некоторые авторитетные специалисты заявляют, что осуществлённый Перельманом научный прорыв может помочь в исследовании процессов формирования чёрных дыр. Чёрные дыры, кстати, служат прямым опровержением положения о познаваемости мира - одного из центральных положений того самого передового, единственно верного и всесильного учения, которое 70 лет насильственно вдалбливалось в наши бедные головы. Ведь, как учит физика, никакие сигналы из этих дыр не могут к нам поступать в принципе, так что узнать, что там происходит, невозможно. О том, как устроена наша Вселенная в целом, мы вообще знаем очень мало, и сомнительно, что когда-нибудь узнаем. Да и сам смысл вопроса о её устройстве не вполне ясен. Не исключено, что этот вопрос относится к числу тех, на которые, согласно учению Будды , не существует ответа. Физика предлагает лишь модели устройства, более или менее согласующиеся с известными фактами. При этом физика, как правило, пользуется уже разработанными заготовками, предоставляемыми ей математикой.

Математика не претендует, разумеется, на то, чтобы установить какие бы то ни было геометрические свойства Вселенной. Но она позволяет осмыслить те свойства, которые открыты другими науками. Более того. Она позволяет сделать более понятными некоторые такие свойства, которые трудно себе вообразить, она объясняет, как такое может быть. К числу таких возможных (подчеркнём: всего лишь возможных!) свойств относятся конечность Вселенной и её неориентируемость.

Долгое время единственной мыслимой моделью геометрического строения Вселенной служило трёхмерное евклидово пространство, то есть то пространство, которое известно всем и каждому из средней школы. Это пространство бесконечно; казалось, что никакие другие представления и невозможны; помыслить о конечности Вселенной казалось безумием. Однако ныне представление о конечности Вселенной не менее законно, чем представление о её бесконечности. В частности, конечна трёхмерная сфера. От общения с физиками у меня осталось впечатление, что одни отвечают «скорее всего. Вселенная бесконечна», другие же - «скорее всего, Вселенная конечна».

Успенский В.А. , Апология математики, или о математике как части духовной культуры, журнал «Новый мир», 2007 г., N 12, с. 141-145.