Диэлектрик обозначение. Диэлектрическая проницаемость воздуха как физическая величина

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Диэлектрическая проницаемость диэлектри́ческая проница́емость

величина ε, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде ε связана с диэлектрической восприимчивостью χ соотношением: ε = 1 + 4π χ. Диэлектрическая проницаемость анизотропной среды - тензор. Диэлектрическая проницаемость зависит от частоты поля; в сильных электрических полях Диэлектрическая проницаемость начинает зависеть от напряжённости поля.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ

ДИЭЛЕКТРИ́ЧЕСКАЯ ПРОНИЦА́ЕМОСТЬ, безразмерная величина e, показывающая, во сколько раз сила взаимодействия F между электрическими зарядами в данной среде меньше их силы взаимодействия F o в вакууме:
e =F о /F.
Диэлектрическая проницаемость показывает, во сколько раз поле ослабляется диэлектриком (см. ДИЭЛЕКТРИКИ) , количественно характеризуя свойство диэлектрика поляризоваться в электрическом поле.
Значение относительной диэлектрической проницаемости вещества, характеризующее степень его поляризуемости, определяется механизмами поляризации (см. ПОЛЯРИЗАЦИЯ) . Однако величина в большой мере зависит и от агрегатного состояния вещества, так как при переходах из одного состояния в другое существенно меняется плотность вещества, его вязкость и изотропность (см. ИЗОТРОПИЯ) .
Диэлектрическая проницаемость газов
Газообразные вещества характеризуются весьма малыми плотностями вследствие больших расстояний между молекулами. Благодаря этому поляризация всех газов незначительна и диэлектрическая проницаемость их близка к единице. Поляризация газа может быть чисто электронной или дипольной, если молекулы газа полярны, однако и в этом случае основное значение имеет электронная поляризация. Поляризация различных газов тем больше, чем больше радиус молекулы газа, и численно близка к квадрату коэффициента преломления для этого газа.
Зависимость газа от температуры и давления определяется числом молекул в единице объема газа, которое пропорционально давлению и обратно пропорционально абсолютной температуре.
У воздуха в нормальных условиях e =1,0006, а ее температурный коэффициент имеет значение около 2 . 10 -6 К -1 .
Диэлектрическая проницаемость жидких диэлектриков
Жидкие диэлектрики могут состоять из неполярных или полярных молекул. Значение e неполярных жидкостей определяется электронной поляризацией, поэтому оно невелико, близко к значению квадрата преломления света и обычно не превышает 2,5. Зависимость e неполярной жидкости от температуры связана с уменьшением числа молекул в единице объема, т. е. с уменьшением плотности, а ее температурный коэффициент близок к температурному коэффициенту объемного расширения жидкости, но отличается знаком.
Поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной составляющими. Такие жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента диполей (см. ДИПОЛЬ) и чем больше число молекул в единице объема. Температурная зависимость в случае полярных жидкостей носит сложный характер.
Диэлектрическая проницаемость твердых диэлектриков
В твердых телах может принимать самые разные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика. В твердых диэлектриках возможны все виды поляризации.
Наименьшее значение e имеют твердые диэлектрики, состоящие из неполярных молекул и обладающие только электронной поляризацией .
Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют значения e, лежащие в широких пределах (e каменной соли - 6; e корунда - 10; e рутила - 110; e титаната кальция - 150).
e различных неорганических стекол, приближающихся по строению к аморфным диэлектрикам, лежит в сравнительно узких пределах от 4 до 20.
Полярные органические диэлектрики обладают в твердом состоянии дипольно-релаксационной поляризацией. e этих материалов в большой степени зависит от температуры и частоты приложенного напряжения, подчиняясь тем же закономерностям, что и у дипольных жидкостей.


Энциклопедический словарь . 2009 .

Смотреть что такое "диэлектрическая проницаемость" в других словарях:

    Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. В изотропной среде e связана с диэлектрической восприимчивостью c соотношением: e = 1 + 4pc. Диэлектрическая проницаемость… … Большой Энциклопедический словарь

    Величина e, характеризующая поляризацию диэлектриков под действием электрич. поля Е. Д. п. входит в Кулона закон как величина, показывающая, во сколько раз сила вз ствия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление вз… … Физическая энциклопедия

    ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, Величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Современная энциклопедия

    - (обозначение e), в физике одно из свойств различных материалов (см. ДИЭЛЕКТРИК). Выражается отношением плотности ЭЛЕКТРИЧЕСКОГО ПОТОКА в среде к напряженности ЭЛЕКТРИЧЕСКОГО ПОЛЯ, которое его вызывает. Диэлектрическая проницаемость вакуума… … Научно-технический энциклопедический словарь

    диэлектрическая проницаемость - Величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению. [ГОСТ Р 52002 2003]… … Справочник технического переводчика

    Диэлектрическая проницаемость - ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина e, показывающая, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Величина e колеблется в широких пределах: водород 1,00026, трансформаторное масло 2,24,… … Иллюстрированный энциклопедический словарь

    Диэлектрическая проницаемость - величина, характеризующая диэлектрические свойства вещества, скалярная для изотропного вещества и тензорная для анизотропного вещества, произведение которой на напряженность электрического поля равно электрическому смещению... Источник:… … Официальная терминология

    диэлектрическая проницаемость - абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь

    Абсолютная диэлектрическая проницаемость Относительная диэлектрическая проницаемость Диэлектрическая проницаемость вакуума … Википедия

    диэлектрическая проницаемость - dielektrinė skvarba statusas T sritis chemija apibrėžtis Elektrinio srauto tankio tiriamojoje medžiagoje ir elektrinio lauko stiprio santykis. atitikmenys: angl. dielectric constant; dielectric permittivity; permittivity rus. диэлектрическая… … Chemijos terminų aiškinamasis žodynas

Книги

  • Свойства материалов. Анизотропия, симметрия, структура. Пер. с англ. , Ньюнхем Р.Э.. Эта книга посвящена анизотропии и взаимосвязи структуры материалов с их свойствами. Она охватывает обширный диапазон тем и является своего рода вводным курсом пофизическим свойствам…

Относи́тельная диэлектри́ческая проница́емость среды ε - безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока - около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Практическое применение

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов . Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат . Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются.

Значения диэлектрической проницаемости для некоторых веществ

Вещество Химическая формула Условия измерения Характерное значение ε r
Алюминий Al 1 кГц -1300 + 1,3Шаблон:Ei
Серебро Ag 1 кГц -85 + 8Шаблон:Ei
Вакуум - - 1
Воздух - Нормальные условия , 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO 2 Нормальные условия 1,0009
Тефлон - - 2,1
Нейлон - - 3,2
Полиэтилен [-СН 2 -СН 2 -] n - 2,25
Полистирол [-СН 2 -С(С 6 Н 5)Н-] n - 2,4-2,7
Каучук - - 2,4
Битум - - 2,5-3,0
Сероуглерод CS 2 - 2,6
Парафин С 18 Н 38 − С 35 Н 72 - 2,0-3,0
Бумага - - 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C 6 H 9 S) 2 2,5-3,0
Плексиглас (оргстекло) - - 3,5
Кварц SiO 2 - 3,5-4,5
Диоксид кремния SiO 2 3,9
Бакелит - - 4,5
Бетон 4,5
Фарфор 4,5-4,7
Стекло 4,7 (3,7-10)
Стеклотекстолит FR-4 - - 4,5-5,2
Гетинакс - - 5-6
Слюда - - 7,5
Резина 7
Поликор 98 % Al 2 O 3 - 9,7
Алмаз 5,5-10
Поваренная соль NaCl 3-15
Графит C 10-15
Керамика 10-20
Кремний Si 11.68
Бор B 2.01
Аммиак NH 3 20 °C 17
0 °C 20
−40 °C 22
−80 °C 26
Спирт этиловый C 2 H 5 OH или CH 3 -CH 2 -OH 27
Метанол CH 3 OH 30
Этиленгликоль HO-CH 2 -CH 2 -OH 37
Фурфурол C 5 H 4 O 2 42

Диэлектрическая проницаемость – это один из основных параметров, характеризующих электрические свойства диэлектриков . Другими словами он определяет насколько хорошим изолятором является тот или иной материал.

Значение диэлектрической проницаемости показывает зависимость электрической индукции в диэлектрике от напряженности электрического поля , воздействующего на него. При этом на ее величину оказывают влияние не только физические свойства самого материала или среды, но еще и частота поля. Как правило в справочниках указывается величина, измеренная для статического или низкочастотного поля.

Различают два вида диэлектрической проницаемости: абсолютную и относительную.

Относительная диэлектрическая проницаемость показывает отношение изолирующих (диэлектрических) свойств исследуемого материала к аналогичным свойствам вакуума. Она характеризует изолирующие свойства вещества в газообразном, жидком или твердом состояниях. То есть применима практически ко всем диэлектрикам. Величина относительной диэлектрической проницаемости для веществ в газообразном состоянии, как правило, находится в переделах 1. Для жидкостей и твердых тел она может находиться в очень широких пределах – от 2 и практически до бесконечности.

К примеру, относительная диэлектрическая проницаемость пресной воды равна 80, а сегнетоэлектриков – десятки, а то и сотни единиц в зависимости от свойств материала.

Абсолютная диэлектрическая проницаемость – это постоянная величина. Она характеризует изолирующие свойства конкретного вещества или материала, не зависимо от его местоположения и воздействующих на него внешних факторов.

Использование

Диэлектрическую проницаемость, а точнее ее значения используют при разработке и проектировании новых электронных компонентов , в частности конденсаторов . От ее значения зависят будущие размеры и электрические характеристики компонента. Эту величину также учитывают и при разработке целых электрических схем (особенно в высокочастотной электронике) и даже

Диэлектрическая проницаемость

О явлении поляризации судят по значению диэлектрической проницаемости ε. Параметр ε, характеризующий способность материала образовывать емкость, называется относительной диэлектрической проницаемостью.

Слово “относительная” обычно опускается. Надо учесть, что электрическая емкость участка изоляции с электродами, т.е. конденсатора, зависит от геометрических размеров, конфигурации электродов и от структуры материала, образующего диэлектрик этого конденсатора.

В вакууме ε = 1, а любого диэлектрика всегда больше 1. Если С0 - ем-

кость, между обкладками которого находится вакуум, произвольной формы и размеров, а С - емкость конденсатора таких же размеров и формы, но заполненного диэлектриком с диэлектрической проницаемостью ε, то

Обозначив через С0 электрическую постоянную (Ф/м), равную

С0 = 8,854.10-12,

найдем абсолютную диэлектрическую проницаемость

ε’ = ε0 .ε.

Определим величины емкостей для некоторых форм диэлектриков.

Для плоского конденсатора

С = ε0 ε S/h = 8,854 1О-12 ε S/h.

где S - площадь поперечного сечения электрода, м2;

h - расстояние между электродами, м.

Практическое значение диэлектрической проницаемости очень велико. Она определяет не только способность материала образовывать емкость, но и входит в ряд основных уравнений, которые характеризуют физические процессы, протекающие в диэлектрике.

Диэлектрическая проницаемость газов, вследствие их малой плотности (из-за больших расстояний между молекулами) незначительна и близка к единице. Обычно поляризация газа электронная или дипольная, если молекулы полярные. ε газа тем выше, чем больше радиус молекулы. Изменение числа молекул газа в единице объема газа (n) при изменении температуры и давления вызывает изменение диэлектрической проницаемости газа. Число молекул N пропорционально давлению и обратно пропорционально абсолютной температуре.

При изменении влажности диэлектрическая проницаемость воздуха незначительно меняется прямо пропорционально изменению влажности (при комнатной температуре). При повышенной температуре влияние влажности значительно усиливается. Температурная зависимость диэлектрической проницаемости характеризуется выражением

T K ε = 1 / ε (dε / dT).

По этому выражению можно вычислить относительное изменение диэлектрической проницаемости при изменении температуры на 1 0 К - так называемый температурный коэффициент ТК диэлектрической проницаемости.

Значение ТК неполярного газа находится по формуле

T K ε = (ε -1) / dT.

где Т - температура. К.

Диэлектрическая проницаемость жидкостей сильно зависит от их структуры. Значения ε неполярных жидкостей невелики и близки к квадрату показателя преломления света n 2. Диэлектрическая проницаемость полярных жидкостей, которые используются в качестве технических диэлектриков, лежит в пределах от 3,5 до 5, что заметно выше, чем у неполярных жидкостей.

Так поляризация жидкостей, содержащих дипольные молекулы, определяется одновременно электронной и дипольно-релаксационной поляризациями.

Сильнополярные жидкости, характеризуются высоким значением ε из-за их большой проводимости. Температурная зависимость ε в дипольных жидкостях имеет более сложный характер, чем нейтральные жидкости.

Поэтому ε на частоте 50 Гц для хлорированного дифенила (савол) быстро возрастает из-за резкого падения вязкости жидкости, а дипольные

молекулы успевают ориентироваться вслед за изменением температуры.

Уменьшение ε происходит вследствие усиления теплового движения молекул, препятствующего их ориентации в направлении электрического поля.

Диэлектрики по виду поляризации делятся на четыре группы:

Первая группа – однокомпозиционные, однородные, чистые без добавок, диэлектрики, у которых в основном электронная поляризация или плотная упаковка ионов. К ним относятся неполярные и слабополярные твердые диэлектрики в кристаллическом или аморфном состоянии, а также неполярные и слабополярные жидкости и газы.

Вторая группа – технические диэлектрики с электронной, ионной и одновременно с дипольно-релаксационной поляризациями. К ним относятся полярные (дипольные) органические полужидкие и твердые вещества, например масляно-канифольные компаунды, целлюлоза, эпоксидные смолы и композиционные материалы, составленные из этих веществ.

Третья группа – технические диэлектрики с ионной и электронной поляризациями; диэлектрики с электронной, ионной релаксационными поляризациями делится на две подгруппы. К первой подгруппе относятся в основном кристаллические вещества с плотной упаковкой ионов ε < 3,0.

Ко второй подгруппе относятся неорганические стекла и материалы, содержащие стекловидную фазу, а также кристаллические вещества с неплотной упаковкой ионов.

Четвертую группу составляют сегнетоэлектрики, имеющие спонтанную, электронную, ионную, электронно-ионно-релаксационные поляризации, а также миграционную или высоковольтную для композиционных, сложных и слоистых материалов.

4.Диэлектрические потери электроизоляционных материалов. Виды диэлектрических потерь.

Диэлектрическими потерями называют мощность, рассеиваемую в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Потери в диэлектриках наблюдаются как при переменном напряжении, так и при постоянном, поскольку в материале обнаруживается сквозной ток, обусловленный проводимо­стью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется, как указыва­лось выше, значениями удельных объемного и поверхностного сопротивлений. При пере­менном напряжении необходимо использо­вать какую-то другую характеристику качества материала, так как в этом случае, кроме сквозного тока, возникают дополнитель­ные причины, вызывающие потери в диэлектрике.

Диэлектрические потери в электроизоляционном материале можно характеризовать рассеиваемой мощностью, отнесенной к единице объема, или удельными потерями; чаще для оценки способности диэлектрика рассеивать мощность в электрическом поле пользуются углом диэлектрических потерь, а также тангенсом этого угла.

Рис. 3-1. Зависимость заряда от напряжения для ли­нейного диэлектрика без потерь (а), c потерями (б)



Углом диэлектрических потерь называется угол, дополняющий до 90° угол фазового сдвига между током и напряжением в емкост­ной цепи. Для идеального диэлектрика вектор тока в такой цепи будет опережать вектор напряжения на 90°, при этом угол диэлек­трических потерь будет равен нулю. Чем больше рассеиваемая в диэлектрике мощность, переходящая в теплоту, тем меньше угол фазового сдвига и тем больше угол и его функция tg .

Из теории переменных токов известно, что активная мощность

Ра = UI cos (3-1)

Выразим мощности для последовательной и параллельной схем через емкости Cs и Сp и угол , который является дополнением угла до 90°.

Для последовательной схемы, используя выражение (3-1) и со­ответствующую векторную диаграмму, имеем

P a = (3-2)

tg = C s r s (3-3)

Для параллельной схемы

P a =UI a =U 2 C p tg (3-4)

tg = (3-5)

Приравнивая друг к другу выражения (3-2) и (3-4), а также (3-3) и (3-5) находим соотношения между Сp и Cs и между rp и rs

C p =C s /1+tg 2 (3-6)

r p = r s (1+ 1/ tg 2 ) (3-7)

Для высококачественных диэлектриков можно пренебречь значени­ем tg2 по сравнению с единицей в формуле (3-8) и считать Ср Cs С. Выражения для мощности, рассеиваемой в диэлектрике, в этом случае будут одинаковы для обеих схем:

P a U 2 C tg (3-8)

где Ра - активная мощность, Вт; U - напряжение, В; - угло­вая частота, с-1; С - емкость, Ф.

Сопротивление rр в параллельной схеме, как следует из выражения (3-7), во много раз больше сопротивления rs.Выражение для удельных диэлектрических потерь, т. е. мощности, рассеиваемой в единице объема диэлектрика, имеет вид:

(3-9)

где р - удельные потери, Вт/м3; =2 - угловая частота, с-1, Е -напряженность электрического поля, В/м.

Действительно, емкость между противоположными гранями куба со стороной 1 м будет

С1 = 0 r , реактивная составляющая удельной проводимости

(3-10)

a активная составляющая

Определив каким-либо методом при некоторой частоте параметры эквивалентной схемы исследуемого диэлектрика (Ср и rр или Cs и rs), l общем случае нельзя считать полученные значения емкости и сопротивления присущими данному конденсатору и пользоваться этими данными для расчета угла потерь при другой частоте. Такой расчет может быть сделан только в том случае, если эквивалентная схема имеет определенное физическое обоснование. Так, например, если известно для данного диэлектрика, что потери в нем определя­ются только потерями от сквозной электропроводности в широком диапазоне частот, то угол потерь конденсатора с таким диэлектриком может быть вычислен для любой частоты, лежащей в этом диапазоне

tg =1/ Crp (3-12)

где С и rp - постоянные емкость и сопротивление, измеренные приданной частоте.

Потери в таком конденсаторе, как легко видеть, не зависят от частоты:

Pa=U2/ rp (3-13)

наоборот если потери в конденсаторе обусловливаются главным образом сопротивлением подводящих проводов, а также сопротивлением самих электродов (например, тонкий слой серебра), то рассеиваемая мощность в таком конденсаторе будет возрастать пропор­ционально квадрату частоты:

Pa=U2 C tg =U2 C Crs=U2 2C2rs (3-14)

Из последнего выражения можно сделать весьма важный практический вывод: конденсаторы, предназначенные для работы на вы­сокой частоте, должны иметь по возможности малое сопротивление как электродов, так и соединительных проводов и переходных кон­тактов.

Диэлектрические потери по их особенностям и физической при­роде можно подразделить на четыре основных вида:

1) диэлектрические потери, обусловленные поляризацией;

2) диэлектрические потери, обусловленные сквозной электропроводностью;

ионизационные диэлектрические потери;

диэлектрические потери, обусловленные неоднородностью структуры.

Диэлектрические потери, обусловленные поляризацией, особенно отчетливо наблюдаются в веществах, обладающих релаксационной поляризацией: в диэлектриках дипольной структуры и в диэлектриках ионной структуры с неплотной упаковкой ионов.

Релаксационные диэлектрические потери обусловлены нарушением теплового движения частиц под влиянием сил электрического поля.

Диэлектрические потери, наблюдаемые в сегнетоэлектриках, свя­заны с явлением спонтанной поляризации. Поэтому потери в сегнетоэлектриках значительны при температурах ниже точки Кюри, когда наблюдается спонтанная поляризация. При температурах выше точ­ки Кюри потери в сегнетоэлектриках уменьшаются. Электрическое старение сегнетоэлектрика со временем сопровождается некоторым уменьшением потерь.

К диэлектрическим потерям, обусловленным поляризацией, сле­дует отнести также так называемые резонансные потери, проявля­ющиеся в диэлектриках при высоких частотах. Этот вид потерь с особой четкостью наблюдается в некоторых газах при строго оп­ределенной частоте и выражается в интенсивном поглощении энер­гии электрического поля.

Резонансные потери возможны и в твердых веществах, если частота вынужденных колебаний, вызываемых электрическим полем, сов­падает с частотой собственных колебаний частиц твердого вещества. Наличие максимума в частотной зависимости tg характерно также и для резонансного механизма потерь, однако в данном случае температура не влияет на положение максимума.

Диэлектрические потери, обусловленные сквозной электропроводностью, обнаруживаются в диэлектриках, имеющих заметную объемную или поверхностную проводимость.

Тангенс угла диэлектрических потерь в этом случае можно вычислить по формуле

Диэлектрические потери этого вида не зависят от частоты поля; tg уменьшается с частотой по гиперболическому закону.

Диэлектрические потери, обусловленные электропроводностью, возрастают с температурой по экспоненциальному закону

PaT=Aexp(-b/T) (3-16)

где А,b - постоянные материала. Приближенно формулу (3-16) можно переписать так:

PaT=Pa0exp( t) (3-17)

где PaT - потери при температуре t, °С; Ра0 - потери при температуре 0°С; - постоянная материала.

Тангенс диэлектрических потерь в зависимости от температуры изменяется по тому же закону, который использован для аппроксимации температурной зависимости Ра, так как температурным изменением емкости можно пренебречь.

Ионизационные диэлектрические потери свойственны диэлектрикам и газообразном состоянии; Ионизационные потери проявляются в неоднородных электрических полях при напряженностях, превышающих значение, соответствующее началу ионизации данного газа. Ионизационные потери можно вычислить по формуле

Pa.и=A1f(U-Uи)3 (3-18)

где А1 - постоянный коэффициент; f - частота поля; U - прило­женное напряжение; Uи - напряжение, соответствующее началу ионизации.

Формула (3-18) справедлива при U > Uи и линейной зависи­мости tg от Е. Ионизационное напряжение Uи зависит от давления, при котором находится газ, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега носителей заряда.

Диэлектрические потери, обусловленные неоднородностью струк­туры, наблюдаются в слоистых диэлектриках, из пропитанной бумаги и ткани, в пластмассах с наполнителем, в пористой керамике в миканитах, микалексе и т. д.

Ввиду разнообразия структуры неоднородных диэлектриков и особенностей содержащихся в них компонентов не существует общей формулы расчета диэлектрических потерь этого вида.