Величина солнечной радиации. Радиационный баланс и его составляющие - Лекции - Материал по курсу "Учение об атмосфере" - Каталог статей - Метеорология и гидрология

Солнце является источником корпускуляр­ного и электромагнитного излучений. Корпус­кулярное излучение не проникает в атмосфе­ру ниже 90 км, тогда как электромагнитное достигает земной поверхности. В метеороло­гии его называют солнечной радиацией или просто радиацией. Она составляет одну двух­миллиардную долю от всей энергии Солнца и проходит путь от Солнца до Земли за 8,3 мин. Солнечная радиация - источник энергии поч­ти всех процессов, совершающихся в атмо­сфере и на земной поверхности. Она в основ­ном коротковолновая и состоит из невидимой ультрафиолетовой радиации - 9 %, видимой световой - 47 % и невидимой инфракрасной - 44 %. Поскольку почти половина солнечной радиации представляет собой видимый свет, Солнце служит источником не только тепла, но и света - тоже необходимого условия для жизни на Земле.

Радиацию, приходящую к Земле непосред­ственно от солнечного диска, называют пря­мой солнечной радиацией. Ввиду того что расстояние от Солнца до Земли велико, а Зем­ля мала, радиация падает на любую ее по­верхность в виде пучка параллельных лучей.

Солнечная радиация обладает определен­ной плотностью потока на единицу площади в единицу времени. За единицу измерения ин­тенсивности радиации принято количество энергии (в джоулях или калориях 1), которые получает 1 см 2 поверхности в минуту при пер­пендикулярном падении солнечных лучей. На верхней границе атмосферы при среднем рас­стоянии от Земли до Солнца она составляет 8,3 Дж/см 2 в мин, или 1,98 кал/см 2 в мин. Эта величина принята в качестве международ­ного стандарта и называется солнечной по­стоянной (S 0). Ее периодические колебания в течение года незначительны (+ 3,3 %) и обус­ловлены изменением расстояния от Земли до

1 1 кал=4,19 Дж, 1 ккал=41,9 МДж.

2 Полуденная высота Солнца зависит от географиче­ской широты и склонения Солнца.


Солнца. Непериодические колебания вызваны различной излучательной способностью Солн­ца. Климат на верхней границе атмосферы на­зывают радиационным или солярным. Он рас­считывается теоретически, исходя из угла на­клона солнечных лучей на горизонтальную поверхность.

В общих чертах солярный климат находит отражение на земной поверхности. В то же время реальная радиация и температура на Земле существенно отличаются от солярного климата за счет различных земных факторов. Главный из них - ослабление радиации в ат­мосфере за счет отражения, поглощения и рассеяния, а также в результате отражения радиации от земной поверхности.

На верхнюю границу атмосферы вся ради­ация приходит в виде прямой радиации. По данным С. П. Хромова и М. А. Петросянца, 21 % ее отражается от облаков и воздуха на­зад в космическое пространство. Остальная радиация поступает в атмосферу, где прямая радиация частично поглощается и рассеивает­ся. Оставшаяся прямая радиация (24 %) до­стигает земной поверхности, однако при этом ослабляется. Закономерности ослабления ее в атмосфере выражаются законом Бугера: S=S 0 ·p m (Дж, или кал/см 2 , в мин), где S - количество прямой солнечной радиации, дос­тигшей земной поверхности, на единицу пло­щади (см 2), расположенной перпендикулярно солнечным лучам, S 0 - солнечная постоян­ная, р - коэффициент прозрачности в долях от единицы, показывающий, какая часть ра­диации достигала земной поверхности, т - длина пути луча в атмосфере.


Реально же солнечные лучи падают на зем­ную поверхность и на любой другой уровень атмосферы под углом менее 90°. Поток пря­мой солнечной радиации на горизонтальную поверхность называют инсоляцией (5,). Она вычисляется по формуле S 1 =S·sin h ☼ (Дж, или кал/см 2 , в мин), где h ☼ - высота Солнца 2 . На единицу горизонтальной поверхности, ес­тественно, приходится меньшее количество

энергии, чем на единицу площади, располо­женной перпендикулярно солнечным лучам (рис. 22).

В атмосфере поглощается около 23 % и рассеивается около 32 % прямой солнечной радиации, входящей в атмосферу, причем 26 % рассеянной радиации приходит затем к земной поверхности, а 6 % уходит в Космос.

Солнечная радиация подвергается в атмо­сфере не только количественным, но и каче­ственным изменениям, поскольку газы возду­ха и аэрозоли поглощают и рассеивают сол­нечные лучи избирательно. Основными поглотителями радиации являются водяной пар, облака и аэрозоли, а также озон, кото­рый сильно поглощает ультрафиолетовую ра­диацию. В рассеянии радиации участвуют мо­лекулы разных газов и аэрозоли. Рассеяние - отклонение световых лучей во все стороны от первоначального направления, так что рассе­янная радиация приходит к земной поверх­ности не от солнечного диска, а от всего не­бесного свода. Рассеяние зависит от длины волн: по закону Рэлея, чем короче длина вол­ны, тем интенсивнее рассеяние. Поэтому боль­ше всех остальных рассеиваются ультрафио­летовые лучи, а из видимых - фиолетовые и синие. Отсюда голубой цвет воздуха и соот­ветственно неба в ясную погоду. Прямая же радиация оказывается в основном желтой, по­этому солнечный диск видится желтоватым. При восходе и заходе Солнца, когда путь луча в атмосфере длиннее и рассеяние боль­ше, поверхности достигают только красные лу­чи, отчего Солнце кажется красным. Рассеян­ная радиация обусловливает свет днем при пасмурной погоде и в тени при ясной погоде, с нею связано явление сумерек и белых но­чей. На Луне, где нет атмосферы и соответ­ственно рассеянной радиации, предметы, по­падающие в тень, становятся полностью не­видимыми.

С высотой, по мере уменьшения плотнос­ти воздуха и соответственно количества рас­сеивающих частиц, цвет неба становится тем­нее, переходит сначала в густо-синий, потом в сине-фиолетовый, что хорошо видно в го­рах и отражено на гималайских пейзажах Н. Рериха. В стратосфере цвет воздуха чер­но-фиолетовый. По свидетельству космонав­тов, на высоте 300 км цвет неба черный.

При наличии в атмосфере крупных аэро­золей, капель и кристаллов наблюдается уже не рассеяние, но диффузное отражение, а по­скольку диффузно отраженная радиация пред­ставляет собой белый свет, то цвет неба ста­новится белесым.

Прямая и рассеянная солнечная радиация имеют определенный суточный и годовой ход, который зависит прежде всего от высоты Солн-


Рис. 22. Приток солнечной радиации на поверхность АВ, перпендикулярную к лучам, и на горизонтальную поверх­ность АС (по С. П. Хромову)

ца над горизонтом, от прозрачности воздуха и облачности.

Поток прямой радиации в течение дня от восхода Солнца до полудня нарастает и потом убывает до захода Солнца в связи с измене­нием высоты Солнца и пути луча в атмосфе­ре. Однако, поскольку около полудня умень­шается прозрачность атмосферы за счет уве­личения водяного пара в воздухе и пыли и возрастает конвективная облачность, макси­мальные значения радиации смещены на пред-полуденные часы. Такая закономерность при­суща экваториально-тропическим широтам весь год, умеренным широтам летом. Зимой в умеренных широтах максимум радиации при­ходится на полдень.

Годовой ход среднемесячных значений пря­мой радиации зависит от широты. На эквато­ре годовой ход прямой радиации имеет вид двойной волны: максимумы в периоды весен­него и осеннего равноденствия, минимумы в периоды летнего и зимнего солнцестояния. В умеренных широтах максимальные значения прямой радиации приходятся на весенние (ап­рель в северном полушарии), а не на летние месяцы, так как воздух в это время прозрач­нее из-за меньшего содержания водяного па­ра и пыли, а также незначительной облачно­сти. Минимум радиации наблюдается в декаб­ре, когда наименьшая высота Солнца, короткий световой день, и это самый пасмурный месяц в году.

Суточный и годовой ход рассеянной ра­диации определяется изменением высоты Солнца над горизонтом и продолжительностью дня, а также прозрачностью атмосферы. Мак­симум рассеянной радиации в течение суток наблюдается днем при возрастании радиации в целом, хотя доля ее в утренние и вечерние часы больше, чем прямой, а днем, наоборот, прямая радиация преобладает над рассеянной. Годовой ход рассеянной радиации на экваторе в общем повторяет ход прямой. В остальных широтах она больше летом, чем зимой, из-за увеличения летом общего притока солнечной радиации.

Соотношение между прямой и рассеянной радиацией меняется в зависимости от высо­ты Солнца, прозрачности атмосферы и облач­ности.

Пропорции между прямой и рассеянной радиацией на разных широтах неодинаковы. В полярных и субполярных областях рассеян­ная радиация составляет 70 % от всего пото­ка радиации. На ее величину, кроме низкого положения Солнца и облачности, влияет так­же многократное отражение солнечной ради­ации от снежной поверхности. Начиная с уме­ренных широт и почти до экватора, прямая радиация преобладает над рассеянной. Осо­бенно велико ее абсолютное и относительное значение во внутриконтинентальных тропиче­ских пустынях (Сахара, Аравия), отличающих­ся минимальной облачностью и прозрачным сухим воздухом. Вдоль экватора рассеянная радиация вновь доминирует над прямой в свя­зи с большой влажностью воздуха и наличи­ем кучевых облаков, хорошо рассеивающих солнечную радиацию.

С возрастанием высоты места над уров­нем моря значительно увеличиваются абсолют-Рис. 23. Годовое количество суммарной солнечной ради­ации [МДж/(м 2 xгод)]


ная и относительная величины прямой радиа­ции и уменьшается рассеянная, так как становится тоньше слой атмосферы. На вы­соте 50-60 км поток прямой радиации при­ближается к солнечной постоянной.

Вся солнечная радиация - прямая и рассеянная, приходящая на земную поверх­ность, называется суммарной радиацией: (Q=S ·sinh ¤ +D где Q - суммарная радиация, S - прямая, D- рассеянная, h ¤ - высота Солнца над горизонтом. Суммарная радиация составляет около 50 % от солнечной радиации, приходящей на верхнюю границу атмосферы.

При безоблачном небе суммарная радиа­ция значительна и имеет суточный ход с мак­симумом около полудня и годовой ход с мак­симумом летом. Облачность уменьшает ради­ацию, поэтому летом приход ее в дополуденные часы в среднем больше, чем в послеполуден­ные. По той же причине в первую половину года она больше, чем во вторую.

В распределении суммарной радиации на земной поверхности наблюдается ряд законо­мерностей.

Главная закономерность заключается в том, что суммарная радиация распределяется зонально, убывая от экваториально-тропи-



ческих широт к полюсам в соответствии с уменьшением угла падения солнечных лучей (рис. 23). Отклонения от зонального распре­деления объясняются различной облачностью и прозрачностью атмосферы. Наибольшие го­довые величины суммарной радиации 7200 - 7500 МДж/м 2 в год (около 200 ккал/см 2 в год) приходятся на тропические широты, где малая облачность и небольшая влажность воз­духа. Во внутриконтинентальных тропических пустынях (Сахара, Аравия), где обилие пря­мой радиации и почти нет облаков, суммар­ная солнечная радиация достигает даже более 8000 МДж/м 2 в год (до 220 ккал/см 2 в год). Вблизи экватора величины суммарной радиа­ции снижаются до 5600 - 6500 МДж/м в год (140-160 ккал/см 2 в год) из-за значитель­ной облачности, большой влажности и мень­шей прозрачности воздуха. В умеренных ши­ротах суммарная радиация составляет 5000 - 3500 МДж/м 2 в год (≈ 120 - 80 ккал/см 2 в год), в приполярных - 2500 МДж/м в год (≈60 ккал/см 2 в год). Причем в Антарктиде она в 1,5-2 раза больше, чем в Арктике, прежде всего из-за большей абсолютной вы­соты материка (более 3 км) и потому малой плотности воздуха, его сухости и прозрачнос­ти, а также малооблачной погоды. Зональ­ность суммарной радиации лучше выражена над океанами, чем над континентами.

Вторая важная закономерность суммар­ной радиации заключается в том, что мате­рики получают ее больше, чем океаны, бла­годаря меньшей (на 15-30 %) облачности над


континентами. Исключение составляют лишь приэкваториальные широты, поскольку днем над океаном конвективная облачность мень­ше, чем над сушей.

Третья особенность состоит в том, что в северном, более материковом полушарии суммарная радиация в целом больше, не­жели в южном океаническом.

В июне наибольшие месячные суммы сол­нечной радиации получает северное полуша­рие, особенно внутриконтинентальные тропи­ческие и субтропические области. В умерен­ных и полярных широтах количество радиации по широтам изменяется незначительно, так как уменьшение угла падения лучей компенсиру­ется продолжительностью солнечного сияния, вплоть до полярного дня за Северным поляр­ным кругом. В южном полушарии с увеличе­нием широты радиация быстро убывает и за Южным полярным кругом равна нулю.

В декабре южное полушарие получает боль­ше радиации, чем северное. В это время наи­большие месячные суммы солнечного тепла приходятся на пустыни Австралии и Калаха­ри; далее в умеренных широтах радиация по­степенно уменьшается, но в Антарктиде вновь растет и достигает таких же значений, как в тропиках. В северном полушарии с увеличе­нием широты она быстро убывает и за Се­верным полярным кругом отсутствует.

В целом наибольшая годовая амплитуда суммарной радиации наблюдается за полярны­ми кругами, особенно в Антарктиде, наимень­шая - в экваториальной зоне.

Если бы атмосфера пропускала к поверхности земли все солнечные лучи, то климат любого пункта Земли зависел бы только от географической широты. Так и полагали в древности. Однако при прохождении солнечных лучей через земную атмосферу происходит, как мы уже видели, их ослабление вследствие одновременных процессов поглощения и рассеивания. Особенно много поглощают и рассеивают капли воды и кристаллы льда, из которых состоят облака.

Та часть солнечной радиации, которая поступает на поверхность земли после рассеяния ее атмосферой и облаками, называется рассеянной радиацией. Та часть солнечной радиации, которая проходит через атмосферу не рассеиваясь, называется прямой радиацией.

Радиация рассеивается не только облаками, но и при ясном небе - молекулами, газов и частицами пыли. Соотношение между прямой и рассеянной радиацией изменяется в широких пределах. Если при ясном небе и вертикальном падении солнечных лучей доля рассеянной радиации составляет 0,1% прямой, то


при пасмурном небе рассеянная радиация может быть больше прямой.

В тех частях земли, где преобладает ясная погода, например в Средней Азии, основным источником нагревания земной поверхности является прямая солнечная радиация. Там же, где преобладает облачная погода, как, например, на севере и северо-западе Европейской территории СССР, существенное значение приобретает рассеянная солнечная радиация. Бухта Тихая, расположенная на севере, получает рассеянной радиации почти в полтора раза больше, чем прямой (табл. 5). В Ташкенте, наоборот, рассеянная радиация составляет менее 1 / 3 прямой радиации. Прямая солнечная радиация в Якутске больше, чем в Ленинграде. Объясняется это тем, что в Ленинграде больше пасмурных дней и меньше прозрачность воздуха.

Альбедо земной поверхности. Земная поверхность обладает способностью отражать падающие на нее лучи. Количество поглощенной и отраженной радиации зависит от свойств поверхности земли. Отношение количества отраженной от поверхности тела лучистой энергии к количеству падающей лучистой энергии называется альбедо. Альбедо характеризует отражательную способность поверхности тела. Когда, например, говорят, что альбедо свежевыпавшего снега равно 80-85%, это означает, что 80-85% всей падающей на снежную поверхность радиации отражается от нее.

Альбедо снега и льда зависит от их чистоты. В промышленных городах в связи с осаждением на снег различных примесей, преимущественно копоти, альбедо меньше. Наоборот, в арктических областях альбедо снега иногда достигает 94%. Так как альбедо снега по сравнению с альбедо других видов поверхности земли наиболее высокое, то при снежном покрове прогревание земной поверхности происходит слабо. Альбедо травяной растительности и песка значительно меньше. Альбедо травяной растительности равно 26%, а песка 30%. Это означает, что трава поглощает 74% солнечной энергии, а пески - 70%. Поглощенная радиация идет на испарение, рост растений и нагревание.

Наибольшей поглощательной способностью обладает вода. Моря и океаны поглощают около 95% поступающей на их поверхность солнечной энергии, т. е. альбедо воды равно 5% (рис. 9). Правда, альбедо воды находится в зависимости от угла падения солнечных лучей (В. В. Шулейкин). При отвесном падении лучей от поверхности чистой воды отражается лишь 2% радиации, а при низком стоянии солнца - почти вся.


ЛЕКЦИЯ 3

РАДИАЦИОННЫЙ БАЛАНС И ЕГО СОСТАВЛЯЮЩИЕ

Солнечная радиация, достигшая земной поверхности, частично отражается от нее, а частично поглощается Землей. Однако Земля не только поглощает радиацию, но и сама излучает длинно­волновую радиацию в окружающую атмосферу. Атмосфера, по­глощая некоторую часть солнечной радиации и большую часть излучения земной поверхности, сама тоже излучает длинноволновую радиацию. Большая часть этого излучения атмосферы направлена к земной поверхности. Она называется встречным излу­чением атмосферы .

Разность между приходящими к деятельному слою Земли и уходящими от него потоками лучистой энергии называют радиа­ционным балансом деятельного слоя.

Радиационный баланс состоит из коротковолновой и длинно­волновой радиации. Он включает в себя следующие элементы, называемые составляющими радиационного баланса: прямая ра­диация, рассеянная радиация, отраженная радиация (ко­ротковолновая), излучение земной поверхности, встречное излучение атмосферы .

Рассмотрим составляющие радиационного баланса.

Прямая солнечная радиация

Энергетическая освещенность прямой радиации зависит от вы­соты Солнца и прозрачности атмосферы и возрастает с увеличением высоты места над уровнем моря. Облака нижнего яруса обычно пол­ностью или почти не пропускают прямую радиацию.

Длины волн солнечной радиации, достигающей земной поверх­ности, лежат в интервале 0,29-4,0 мкм. Примерно половина ее энергии приходится на фртосинтетически активную радиацию . В области ФАР ослабление радиации с уменьшением высоты Солнца происходит быстрее, чем в области инфракрасной радиа­ции. Приход прямой солнечной радиации, как уже указывалось, зависит от высоты Солнца над горизонтом, меняющейся как в те­чение суток, так и в течение года. Это обусловливает суточный и годовой ход прямой радиации.

Изменение прямой радиации в течение безоблачного дня (су­точный ход) выражено одновершинной кривой с максимумом в истинный солнечный полдень. Летом над сушей максимум мо­жет наступить до полудня, так как к полудню увеличивается за­пыленность атмосферы.

При продвижении от полюсов к экватору приход прямой ра­диации в любое время года возрастает, так как при этом увеличивается полуденная вы­сота Солнца.

Годовой ход прямой радиа­ции наиболее резко выражен на полюсах, так как зимой солнечная радиация здесь во­обще отсутствует, а летом ее приход достигает 900 Вт/м². В средних широтах максимум прямой радиации иногда на­блюдается не летом, а весной, так как в летние месяцы вследствие увеличения содер­жания водяного пара и пыли уменьшается прозрачность атмосфе­ры/Минимум приходится на период, близкий ко дню зимнего солн­цестояния (декабрь). На экваторе наблюдаются два максимума, равные примерно 920 Вт/м² в дни весеннего и осеннего равноден­ствия, и два минимума (около 550 Вт/м²) в дни летнего и зимне­го солнцестояния.

Рассеянная радиация

Максимум рассеянной радиации обычно значительно меньше, чем максимум прямой. Чем больше высота Солнца и больше загрязненность атмосферы, тем больше поток рассеянной радиации. Облака, не закрывающие Солнца, увеличивают приход рассеянной радиации по сравнению с ясным небом. Зависимость прихода рассеянной радиации от облачности сложная. Она определяется видом и количеством об­лаков, их вертикальной мощностью и оптическими свойствами. Рассеянная радиация облачного неба может колебаться более чем в 10 раз.

Снежный покров, отражающий до 70-90% прямой радиации, увеличивает рассеянную радиацию, которая затем рассеивается в атмосфере. С увеличением высоты места над уровнем моря рас­сеянная радиация при ясном небе уменьшается.

Суточный и годовой ход рассеянной радиации при ясном небе в общем соответствует ходу прямой радиации. Однако утром рас­сеянная радиация появляется еще до восхода Солнца, а вечером она еще поступает в период сумерек, т. е. после захода. В годо­вом ходе максимум рассеянной радиации наблюдается летом.

Суммарная радиация

Сумму рассеянной и прямой радиации, падающей на го­ризонтальную поверхность, называют суммарной радиацией .

Она является основной составляющей радиа­ционного баланса. Её спектральный состав по сравнению с пря­мой и рассеянной радиацией более устойчив и почти не зависит от высоты Солнца, когда, она составляет более 15°.

Соотношение между прямой и рассеянной радиацией в составе суммарной радиации зависит от высоты Солнца, облачности и за­грязненности атмосферы. С увеличением высоты Солнца доля рас­сеянной радиации при безоблачном небе уменьшается. Чем проз­рачнее атмосфера, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная радиация полностью со­стоит из рассеянной радиации. Зимой вследствие отражения ра­диации от снежного покрова и ее вторичного рассеяния в атмо­сфере доля рассеянной радиации в составе суммарной заметно увеличивается.

Приход суммарной радиации при наличии облачности меняет­ся в больших пределах. Наибольший приход ее наблюдается при ясном небе или при небольшой облачности, не закрывающей Солнца.

В суточном и годовом ходе изменения суммарной радиации почти прямо пропорциональны изменению высоты Солнца. В су­точном ходе максимум суммарной радиации при безоблачном не­бе приходится обычно на полуденное время. В годовом ходе мак­симум суммарной радиации отмечается в северном полушарии обычно в июне, в южном - в декабре.

Отраженная радиация. Альбедо

Часть суммарной радиации, приходящей к деятельному слою Земли, отражается от него. Отношение отраженной части радиа­ции к ко всей приходящей суммарной радиации называют от­ражательной способностью , или альбедо (А) данной подстилающей поверхности.

Альбедо поверхности зависит от ее цвета, шероховатости, влажности и других свойств.

Альбедо различных естественных поверхностей (по В. Л. Гаевскому и М. И. Будыко)

Поверхность

Альбедо, %

Поверхность

Альбедо, %

Свежий сухой снег

80-95

Поля ржи и пшеницы

10-25

Загрязненный снег

40-50

Картофельные поля

15-25

Морской лед

30-40

Хлопковые поля

20-25

Темные почвы

5-15

Луга

15-25

Сухие глинистые почвы

20-35

Сухая степь

20-30

Альбедо водных поверхностей при высоте Солнца свыше 60° меньше, чем альбедо суши, поскольку солнечные лучи, проникая в воду, в значительной мере поглощаются и рассеиваются в ней. При отвесном падении лучей А = 2- 5%, при высоте Солнца мень­ше 10° А = 50- 70%. Большое альбедо льда и снега обусловлива­ет замедленный ход весны в полярных районах и сохранение там вечных льдов.

Наблюдения за альбедо суши, моря и облачного покрова про­водятся с искусственных спутников Земли. Альбедо моря позво­ляет рассчитывать высоту волн, альбедо облаков характеризует их мощность, а альбедо разных участков суши позволяет судить о степени покрытия полей снегом и о состоянии растительного покрова.

Альбедо всех поверхностей, а особенно водных, зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее - утром и вечером. Это связано с тем, что при ма­лой высоте Солнца в составе суммарной радиации возрастает до­ля рассеянной, которая в большей степени, чем прямая радиа­ция, отражается от шероховатой подстилающей поверхности.

Длинноволновое излучение Земли и атмосферы

Земное излучение несколько меньше излучения абсолютно черного тела при той же температуре.

Излучение земной поверхности происходит непрерывно. Чем выше температура излучающей поверхности, тем интенсивнее ее излучение. Также непрерывно происходит излучение атмосферы, которая, поглощая часть солнечной радиации и излучения земной поверхности, сама излучает длинноволновую радиацию.

В умеренных широтах при безоблачном небе излучение атмо­сферы составляет 280-350 Вт/м², а в случае облачного неба оно на 20-30% больше. Около 62-64% этого излучения направлено к земной поверхности. Приход его на земную поверхность состав­ляет встречное излучение атмосферы. Разность этих двух потоков характеризует потерю лучистой энергии деятельным слоем. Эту разность называют эффективным излучением Еэф .

Эффективное излучение деятельного слоя зависит от его тем­пературы, от температуры и влажности воздуха, а также от об­лачности. С повышением температуры земной поверхности Еэф увеличивается, а с повышением температуры и влажности возду­ха уменьшается. Особенно влияют на эффективное излучение об­лака, так как капли облаков излучают почти так же, как и дея­тельный слой Земли. В среднем Еэф ночью и днём при ясном небе в разных пунктах земной поверхности изменяется в пределах 70-140 Вт/м².

Суточный ход эффективного излучения характеризуется мак­симумом в 12-14 ч и минимумом перед восходом Солнца. Годовой ход эффективного излу­чения в районах с континентальным климатом характеризуется максимумом в летние месяцы и минимумом в зимние. В районах с морским климатом годовой ход эффективного излучения выра­жен слабее, чем в районах, расположенных в глубине континента

Излучение земной поверхности поглощается водяным паром и углекислым газом, содержащимися в воздухе. Но коротковол­новую радиацию Солнца атмосфера в значительной степени пропускает. Это свойство атмосферы называется «оранжерейным эф­фектом» , поскольку атмосфера при этом действует подобно стек­лам в теплицах: стекло хорошо пропускает солнечные лучи, на­гревающие почву и растения в теплице, но плохо пропускает во внешнее пространство тепловое излучение нагревшейся почвы. Расчеты показывают, что при отсутствии атмосферы средняя тем­пература деятельного слоя Земли была бы на 38°С, ниже факти­чески наблюдающейся и Земля была бы покрыта вечным льдом.

Если приход радиации больше расхода, то радиационный ба­ланс положителен и деятельный слой Земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. Радиационный баланс днем обычно положителен, а ночью отри­цателен. Примерно за 1-2 ч до захода Солнца он становится от­рицательным, а утром, в среднем за 1 ч после восхода Солнца снова делается положительным. Ход радиационного баланса днем при ясном небе близок к ходу прямой радиации.

Изучение радиационного баланса сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной посевами и почвой, в зависимости от высоты Солнца, структуры посева, фазы развития растений. Для оценки разных приемов ре­гулирования температуры и влажности почвы, испарения и дру­гих величин определяют радиационный баланс сельскохозяйствен­ных полей при различных типах растительного покрова.

Методы измерения солнечной радиации и составляющих радиационного баланса

Для измерения потоков солнечной радиации применяются аб­солютные и относительные методы и соответственно разработаны абсолютные и относительные актинометрические приборы. Абсо­лютные приборы обычно применяют только для тарировки и по­верки относительных приборов.

Относительные приборы применяются при регуляр­ных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко использу­ются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов слу­жат термобатареи, составленные из двух металлов (обычно ман­ганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и воз­никает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, ко­торые определяются для данной пары: актинометрический при­бор - гальванометр.

Актинометр термоэлектрический (М-3) Савино­ва - Янишевского служит для измерения прямой радиации, при­ходящий на поверхность, перпендикулярную к солнечным лучам.

Пиранометр (М-80М) Янишевского служит для измере­ния суммарной и рассеянной радиации, приходящей на горизон­тальную поверхность.

При наблюдениях приемная часть пиранометра устанавливает­ся горизонтально. Для определения рассеянной радиации пирано­метр затеняется от прямой радиации теневым экраном в виде круглого диска, закрепленного на стержне на расстоянии 60 см от приемной поверхности. При измерении суммарной радиации те­невой экран отводится в сторону

Альбедометр - это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устрой­ство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбе­до подстилающей поверхности. Для полевых измерений использу­ют альбедометр походный М-69.

Балансомер термоэлектрический М-10М. Этот прибор применяется для измерения радиационного баланса под­стилающей поверхности.

Кроме рассмотренных приборов, используют также люкс­метры - фотометрические приборы для измерения освещенно­сти, спектрофотометры, различные приборы для измере­ния ФАР и т. д. Многие актинометрические приборы приспособ­лены для непрерывной записи составляющих радиационного баланса.

Важной характеристикой режима солнечной радиации являет­ся продолжительность солнечного сияния. Для ее определения служит гелиограф .

В полевых условиях наиболее часто применяются пиранометры, походные альбедометры, балансомеры и люксметры. Для на­блюдений среди растений наиболее удобны походные альбедомет­ры и люксметры, а также специальные микропиранометры.

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Необходимые приборы и принадлежности : термоэлектрический актинометр М-3, пиранометр универсальный М-80М, альбедометр походный, балансомер термоэлектрический М-10М, гелиограф универсальный модели ГУ–1, люксметр Ю-16.

Основным источником энергии, поступающей на Землю, является лучистая энергия, поступающая от Солнца. Поток электромагнитных волн, излучаемый Солнцем, принято называть солнечной радиацией. Эта радиация является практически единственным источником энергии для всех процессов, протекающих в атмосфере и на земной поверхности, в том числе и для всех процессов, происходящих в живых организмах.

Солнечная радиация обеспечивает растения энергией, которую они используют в процессе фотосинтеза для создания органического вещества, влияет на процессы роста и развития, на расположение и строение листьев, продолжительность вегетации и др. Количественно солнечную радиацию можно характеризовать потоком радиации.

Поток радиации – это количество лучистой энергии, которое поступает в единицу времени на единицу поверхности.

В системе единиц СИ поток радиации измеряется в ваттах на 1м 2 (Вт/м 2) или киловаттах на 1м 2 (кВт/м 2). Ранее она измерялась в калориях на 1 см 2 в минуту (кал/(см 2 ·мин)).

1кал/(см 2 ·мин) = 698 Вт/м 2 или 0.698 кВт/м 2

Плотность потока солнечной радиации на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S 0 . По международному соглашению 1981 г. S 0 = 1.37 кВт/м 2 (1.96 1кал/(см 2 ·мин)).

Если Солнце не в зените, то количество солнечной энергии, падающей на горизонтальную поверхность, будет меньше, чем на поверхность, расположенную перпендикулярно лучам Солнца. Это количество зависит от угла падения лучей на горизонтальную поверхность. Для определения количества тепла, получаемого горизонтальной поверхностью в минуту, служит формула:

S′ = S sinh ©

где S′ - количество тепла, получаемое в минуту горизонтальной поверхностью; S – количество тепла, получаемое перпендикулярной к лучу поверхностью; h © – угол, образованный солнечным лучом с горизонтальной поверхностью (угол h называется высотой солнца).

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями. Ослабление потока солнечной радиации зависит от длины пути, проходимого лучом в атмосфере, и от прозрачности атмосферы на этом пути. Длина пути луча в атмосфере зависит от высоты солнца. При положении солнца в зените солнечные лучи проходят самый короткий путь. В этом случае масса атмосферы, проходимая солнечными лучами, т.е. масса вертикального столба воздуха с основанием 1 см 2 , принимается за одну условную единицу (m = 1). По мере опускания солнца к горизонту путь лучей в атмосфере увеличивается, а следовательно, увеличивается и число проходимых масс (m> 1). Когда солнце находится у горизонта, лучи проходят в атмосфере наибольший путь. Как показывают расчеты, при этом m в 34,4 раза больше, чем при положении Солнца в зените. Ослабление потока прямой солнечной радиации в атмосфере описывается формулой Буге. Коэффициент прозрачности p показывает, какая доля солнечной радиации, поступающей на верхнюю границу атмосферы, доходит до земной поверхности при m = 1.

S m = S 0 p m ,

где S m – поток прямой солнечной радиации, дошедший до Земли; S 0 – солнечная постоянная; p – коэффициент прозрачности; m – масса атмосферы.

Коэффициент прозрачности зависит от содержания в атмосферы водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одном и том же числе проходимых масс. Коэффициент прозрачности колеблется в пределах от 0,60 до 0,85.

Виды солнечной радиации

Прямая солнечная радиация (S′) – радиация, поступающая к земной поверхность непосредственно от Солнца в виде пучка параллельных лучей.

Прямая солнечная радиация зависит от высоты солнца над горизонтом, прозрачности воздуха, облачности, высоты места над уровнем моря и расстояния между Землей и Солнцем.

Рассеянная солнечная радиация (D) часть радиации, рассеянной земной атмосферой и облаками и поступающая на земную поверхность от небесного свода. Интенсивность рассеянной радиации зависит от высоты солнца над горизонтом, облачности, прозрачности воздуха, высоты места над уровнем моря, снежный покров. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счёт рассеивания и отражения падающей на них прямой и рассеянной радиации и повторного рассеивания их в атмосфере могут в несколько раз увеличить поток рассеянной радиации.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность.

Суммарная радиация (Q) – сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность:

До восхода, днем и после захода Солнца при сплошной облачности суммарная радиация поступает на землю полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации, в составе суммарной, быстро возрастает и в дневные часы поток многократно превышает поток рассеянной радиации.

Большая часть потока суммарной радиации, поступающего на земную поверхность, поглощается верхним слоем почвы, воды и растительностью. При этом лучистая энергия превращается в тепло, нагревая поглощающие слои. Остальная часть потока суммарной радиации отражается земной поверхностью, образуя отражённую радиацию (R). Почти весь поток отражённой радиации проходит атмосферу насквозь и уходит в мировое пространство, однако некоторая доля его рассеивается в атмосфере и частично возвращается на земную поверхность, усиливая рассеянную радиацию, а, следовательно, и суммарную радиацию.

Отражательная способность различных поверхностей называется альбедо . Оно представляет собой отношение потока отраженной радиации ко всему потоку суммарной радиации, падающему на данную поверхность:

Выражается альбедо в долях единицы или в процентах. Таким образом, земной поверхностью отражается часть потока суммарной радиации, равная QА, а поглощается и превращается в тепло – Q(1-А). Последняя величина называется поглощенной радиацией .

Альбедо различных поверхностей суши зависит главным образом от цвета и шероховатости этих поверхностей. Темные и шероховатые поверхности имеют меньшие альбедо, чем светлые и гладкие. Альбедо почв уменьшается с возрастанием влажности, так как цвет их при этом становится более темным. Значения альбедо для некоторых естественных поверхностей приведены в таблице 1.

Таблица 1 – Альбедо различных естественных поверхностей

Очень велика отражательная способность верхней поверхности облаков, особенно при большой их мощности. В среднем альбедо облаков около 50-60%, в отдельных случаях – более 80-85%.

Фотосинтетически активная радиация (ФАР) – часть потока суммарной радиации, которая может использоваться зелёными растения при фотосинтезе. Поток ФАР можно рассчитать по формуле:

ФАР = 0,43S′ + 0,57D,

где S′ - прямая солнечная радиация, поступающая на горизонтальную поверхность; D – рассеянная солнечная радиация.

Поток ФАР, падающий на лист, большей частью поглощается им, значительно меньшие доли этого потока отражаются поверхностью и пропускаются листом насквозь. Листья большинства древесных пород поглощают примерно 80%, отражают и пропускают до 10-12% от всего потока ФАР. Из поглощенной листьями части потока ФАР лишь несколько процентов лучистой энергии используется растениями непосредственно на фотосинтез и преобразуется в химическую энергию органических веществ, синтезированных листьями. Остальные, более 95% лучистой энергии, превращается в тепло и расходуется в основном на транспирацию, нагрев самих листьев и теплообмен их с окружающим воздухом.

Длинноволновое излучение Земли и атмосферы.

Радиационный баланс земной поверхности

Большая часть солнечной энергии, поступающей на Землю, поглощается её поверхностью и атмосферой, некоторая её часть излучается. Излучение земной поверхностью происходит круглосуточно.

Часть лучей, излучаемых земной поверхностью, поглощается атмосферой и таким образом способствует нагреванию атмосферы. Атмосфера в свою очередь посылает лучи обратно к поверхности земли, а также в космическое пространство. Это свойство атмосферы сохранять тепло, излучаемое земной поверхностью, называют оранжерейным эффектом . Разность между приходом тепла в виде встречного излучения атмосферы и расходом его в виде излучения деятельного слоя называется эффективным излучением деятельного слоя. Особенно большим эффективное излучение бывает ночью, когда потеря тепла земной поверхностью значительно превышает приток тепла, излучаемого атмосферой. Днём же, когда к излучению атмосферы добавляется суммарная солнечная радиация, получается избыток тепла, который идёт на нагревание почвы и воздуха, испарение воды и т.п.

Разность между поглощенной суммарной радиацией и эффективным излучением деятельного слоя называют радиационным балансом деятельного слоя.

Приходную часть радиационного баланса составляют прямая и рассеянная солнечная радиация, а также встречное излучение атмосферы. Расходную часть составляют отраженная солнечная радиация и длинноволновое излучение земной поверхности.

Радиационный баланс представляет собой фактический приход лучистой энергии на поверхность Земли, от которого зависит, будет происходить её нагревание или охлаждение.

Если приход лучистой энергии больше её расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то баланс отрицателен и поверхность охлаждается. Радиационный баланс земной поверхности является одним из основных климатообразующих факторов. Он зависит от высоты Солнца, продолжительности солнечного сияния, характера и состояния земной поверхности, замутнённости атмосферы, содержания в ней водяного пара, наличия облаков и др.

Приборы для измерения солнечной радиации

Термоэлектрический актинометр М-3 (Рис.3) предназначен для измерения интенсивности прямой солнечной радиации на перпендикулярную к лучам солнца поверхность.

Приемником актинометра является термобатарея из чередующихся пластинок манганина и константана, выполненная в виде звездочки. Внутренние спаи термобатареи через изоляционную прокладку подклеены к диску из серебряной фольги, обращённая к солнцу сторона диска зачернена. Внешние спаи через изоляционную прокладку подклеены к массивному медному кольцу. От нагрева радиацией оно защищено хромированным колпачком. Термобатарея расположена на дне металлической трубки, которая при измерениях направляется на солнце. Внутренняя поверхность трубки зачернена, и в трубке устроены 7 диафрагм (кольцеобразных сужений), чтобы предотвратить попадание рассеянной радиации на приемник актинометра.

Для наблюдений стрелку на основании прибора 11 (рис. 2) ориентируют на север и для облегчения слежения за солнцем устанавливают актинометр по широте места наблюдений (по сектору 9 и риске в верхней части стойки прибора 10 ). Наводка на солнце производится с помощью винта 3 и рукоятки 6 , расположенных в верхней части прибора. Винт позволяет поворачивать трубку в вертикальной плоскости, при вращении рукоятки обеспечивается ведение трубки за солнцем. Для точной наводки на Солнце в наружной диафрагме сделано небольшое отверстие. Против этого отверстия в нижней части прибора имеется белый экран 5 . При правильной установке прибора солнечный луч, проникающий через это отверстие должен дать светлое пятно (зайчик) в центре экрана.

Рис. 3 Актинометр термоэлектрический М-3: 1 – крышка; 2, 3 – винты; 4 – ось; 5 – экран; 6 – рукоятка; 7 – трубка; 8 – ось; 9 – сектор широт; 10 – стойка; 11 – основание.

Пиранометр универсальный М-80М (Рис. 4) предназначен для измерения суммарной (Q) и рассеянной (D) радиации. Зная их, можно вычислить интенсивность прямой солнечной радиации на горизонтальную поверхность S′. Пиранометр М-80М имеет устройство, для опрокидывания стойки прибора приемником вниз, что позволяет измерить интенсивность отражённой радиации и определить альбедо подстилающей поверхности.

Приёмником пиранометра 1 является термоэлектрическая батарея, устроенная в форме квадрата. Приёмная поверхность ее окрашена в чёрный и белый цвета в виде шахматной доски. Половина спаев термобатареи находится под белыми, другая половина – под черными клеточками. Сверху приёмник закрыт полусферическим стеклом для защиты от ветра и осадков. Для измерения интенсивности рассеянной радиации приемник затеняется специальным экраном 3 . Во время измерений приёмник прибора устанавливается строго горизонтально, для этого пиранометр снабжён круглым уровнем 7 и установочными винтами 4. В нижней части приёмника размещена стеклянная сушилка, заполненная водопоглощающим веществом, которая предотвращает конденсацию влаги на приёмнике и стекле. В нерабочем состоянии приёмник пиранометра закрывается металлическим колпаком.

Рис. 4 Пиранометр универсальный М–80М: 1 – головка пиранометра; 2 – стопорная пружина; 3 – шарнир затенителя; 4 – установочный винт; 5 – основание; 6 – шарнир откидного штатива; 7 – уровень; 8 – винт; 9 – стойка с осушителем внутри; 10 – приёмная поверхность термобатареи.

Альбедометр походный (рис. 5) предназначен для измерения интенсивностей суммарной, рассеянной и отражательной радиаций в полевых условиях. Приемником является головка пиранометра 1 , установленная на самоуравновешивающийся карданный подвес 3 . Этот подвес позволяет установить прибор в двух положениях – приемником вверх и вниз, причем горизонтальность приемников обеспечивается автоматически. При положении приемной поверхности прибора вверх определяется суммарная радиация Q. Затем для измерения отраженной радиации R рукоятку альбедометра поворачивают на 180 0 . Зная эти величины можно определить альбедо.

Балансомер термоэлектрический М-10М (рис. 6) предназначен для измерения полного радиационного баланса подстилающей поверхности. Приемником балансомера является термобатарея квадратной формы состоящая, из множества медных брусков 5 , обмотанных константановой лентой 10 . Половина каждого винта ленты гальваническим путем посеребрена, начало и конец серебряного слоя 9 являются термоспаями. Половина спаев подклеивается к верхней, другая половина – к нижней приемным поверхностям, в качестве которых используются медные пластинки 2 , окрашенные в черный цвет. Приемник балансомера помещен в круглую металлическую оправу 1 . При измерениях он располагается строго горизонтально с помощью специального накладного уровня. Для этого приемник балансомера крепится на шаровом шарнире 15 . Для повышения точности измерений приемник балансомера может защищаться от прямой солнечной радиации круглым экраном 12 . Интенсивность прямой солнечной радиации измеряется в этом случае актинометром или пиранометром.

Рис. 5 Альбедометр походный: 1 – головка пиранометра; 2 – трубка; 3 – карданный подвес; 4 – рукоятка

Рис. 6 Балансомер термоэлектрический М-10М: а) – схематическое поперечное сечение: б) – отдельная термобатарея; в) – внешний вид; 1 – оправа приемника; 2 – приемная пластинка; 3, 4 – спаи; 5 – медный брусок; 6, 7 – изоляция; 8 – термобатарея; 9 – серебряный слой; 10 – константановая лента; 11 – рукоятка; 12 – теневой экран; 13, 15 – шарниры; 14 – планка; 16 – винт; 17 - чехол

Приборы для измерения продолжительности солнечного

сияния и освещённости

Продолжительность солнечного сияния есть время, в течение которого прямая солнечная радиация равна или больше 0,1 кВт/м 2 . Выражается в часах за сутки.

Метод определения продолжительности солнечного сияния основан на регистрации времени, в течение которого интенсивность прямой солнечной радиации достаточна для получения прожога на специальной ленте, укреплённой в оптическом фокусе шаровой стеклянной линзы, и составляет не менее 0,1 кВт/м 2 .

Продолжительность солнечного сияния измеряется прибором гелиографом (рис. 7).

Гелиограф универсальный модели ГУ–1 (рис. 7). Основанием прибора является плоская металлическая плита с двумя стойками 1 . Между стойками на горизонтальной оси 2 укреплена подвижная часть прибора, состоящая из колонки 3 с лимбом 4 и нижним упором 7 , скобы 6 с чашкой 5 и верхним упором 15 и стеклянного шара 8 , который является сферической линзой. На одном конце горизонтальной оси закреплён сектор 9 со шкалой широт. При перемещении горизонтальной оси 2 прибора с запада на восток и повороте верхней части прибора вокруг неё, ось колонки 3 устанавливается параллельно оси вращения Земли (оси мира). Для закрепления установленного угла наклона оси колонки служит винт 11 .

Верхняя часть прибора может поворачиваться вокруг оси колонки 3 и фиксироваться в четырех определенных положениях. Для этого используется специальный штифт 12 , который вставляется через отверстие лимба 4 в одно из четырёх отверстий диска 13 , закреплённого на оси 2 . Совпадение отверстий лимба 4 и диска 13 определяется по совпадению меток А, Б, В и Г на лимбе 4 с индексом 14 на диске.

Рис. 7 Гелиограф универсальный модели ГУ–1.

1 – стойка; 2 – горизонтальная ось; 3 – колонка; 4 – лимб; 5 – чашка; 6 – скоба; 7 – упор; 8 – стеклянный шар; 9 – сектор; 10 – указатель широты; 11 – винт для закрепления угла наклона оси; 12 – штифт; 13 – диск; 14 – индекс на диске; 15 – верхний упор.

На метеорологической площадке гелиограф устанавливается на бетонном или деревянном столбе высотой 2 м, на верхней части которого закреплена площадка из досок толщиной не менее 50 мм, так, чтобы при любом положении Солнца относительно сторон горизонта отдельные постройки, деревья и случайные предметы не затеняли его. Он устанавливается строго горизонтально и ориентирован по географическому меридиану и широте метеорологической станции; ось гелиографа должна быть строго параллельна оси мира.

Шар гелиографа должен содержаться в чистоте, так как наличие пыли, следов осадков, отложение росы, инея, изморози и гололёда на шаре ослабляет и искажает прожог на ленте гелиографа.

В зависимости от возможной продолжительности солнечного сияния запись за одни сутки должна производиться на одной, двух или трёх лентах. В зависимости от сезона должны применяться прямые или изогнутые ленты, которые следует закладывать в верхний, средний или нижний пазы чашки. Ленты для закладки в течение месяца должны подбираться одного цвета.

Для удобства работы с гелиографом к югу от подставки (столба) с прибором устанавливается лесенка с площадкой. Лесенка не должна касаться столба и должна быть достаточно удобной.

Люксметр Ю-16 (рис. 8) применяется для измерения освещённости, создаваемой светом или искусственными источниками света.

Рис. 8 Люксметр Ю–16. 1 – фотоэлемент; 2 – провод; 3 – измеритель; 4 – поглотитель; 5 – клеммы; 6 – переключатель пределов измерения; 7 – корректор.

Прибор состоит из селенового фотоэлемента 1 , соединённого проводом 2 с измерителем 3 , и поглотителя 4 . Фотоэлемент заключён в пластмассовый корпус с металлической оправой, для увеличения пределов измерения в 100 раз на корпус надевается поглотитель из молочного стекла. Измерителем люксметра является магнитоэлектрический стрелочный прибор, смонтированный в пластмассовом корпусе с окном для шкалы. В нижней части корпуса находится корректор 7 для установки стрелки на нуль, в верхней части – клеммы 5 для присоединения проводов от фотоэлемента и ручки переключения пределов измерения 6 .

Шкала измерителя разбита на 50 делений и имеет 3 ряда цифр соответственно трём пределам измерения - до 25, 100 и 500 люкс (лк). При использовании поглотителя пределы увеличиваются до 2500, 10000 и 50000 лк.

Во время работы с люксметром необходимо тщательно следить за чистотой фотоэлемента и поглотителя, при загрязнении их протирают ваткой, смоченной в спирте.

Фотоэлемент при измерениях располагается горизонтально. Корректором устанавливают стрелку измерителя на нулевое деление. Присоединяют фотоэлемент к измерителю и через 4-5 с проводят измерения. Для уменьшения перегрузок начинают с большего предела измерений, затем переходят на меньшие пределы, пока стрелка не окажется в рабочей части шкалы. Отсчёт снимают в делениях шкалы. При малых отклонениях стрелки для повышения точности измерений рекомендуется переключить измеритель на меньший предел. Для предупреждения усталости селенового фотоэлемента через каждые 5-10 мин работы прибора необходимо затенять фотоэлемент на 3-5 мин.

Освещенность определяется умножением отсчёта на цену деления шкал и на поправочный коэффициент (для естественного света он равен 0.8, для ламп накаливания -1). Цена деления шкалы равна пределу измерения, делённому на 50. При использовании одного или двух поглотителей полученную величину умножают, соответственно, на 100 или 10000.

1 Ознакомиться с устройством термоэлектрических приборов (актинометр, пиранометр, альбедометр, балансомер).

2 Ознакомиться с устройством гелиографа универсального, со способами его установки в различное время года.

3 Ознакомиться с устройством люксметра, измерить в аудитории освещенность естественную и искусственную.

Записи оформить в тетрадь.