Сокращенное деление с помощью схемы горнера исследование. Тема урока "Теорема Безу

Вычисление значения многочлена в точке является одной из простейших классических задач программирования.
При проведении различного рода вычислений часто приходится определять значения многочленов при заданных значениях аргументов. Часто приближенное вычисление функций сводится к вычислению аппроксимирующих многочленов.
Рядового читателя Хабрахабр нельзя назвать неискушенным в применении всяческих извращений. Каждый второй скажет, что многочлен надо вычислять по правилу Горнера . Но всегда есть маленькое «но», всегда ли схема Горнера является самой эффективной?


Я не ставлю цель точно описать алгоритмы для вычисления многочленов, а лишь показать, что в некоторых случаях можно (нужно) применять схемы отличные правила Горнера. Для тех, кого заинтересует материал, в конце статьи приведен список литературы, с которой можно ознакомиться для более детального изучения вопроса.
Кроме того, иногда становиться обидно, что фамилии наших русских математиков остаются малоизвестными. К тому же мне просто приятно рассказать о работах наших математиков.

Схема Горнера

При вычислении значений многочленов очень широкое применение получило правило Горнера. Метод назван в честь британского математика Уильяма Джорджа Горнера.
В соответствии с этим правилом многочлен n-й степени:

представляется в виде

Вычисление значения многочлена производится в порядке, определяемом скобками. Что имеем? Чтобы вычислить многочлен по схеме Горнера, надо выполнить n умножений и n-k сложений (здесь k – число коэффициентов многочлена, равных 0). Если , то умножений будет n-1.
Можно показать, что для вычисления многочленов, общего вида нельзя построить схему более экономичную по числу операций, чем схема Горнера.
Самая большая привлекательность схемы Горнера состоит в простоте алгоритма для вычисления значения многочлена.

Исключения

При вычислении многочленов специального вида может потребоваться меньшее число операций, чем при применении универсальной схемы Горнера. Например, вычисление степени по схеме Горнера означает последовательное перемножение n множителей и требует n-1 умножение. Однако каждый первый читатель скажет, что для вычисления, например, нужно последовательно вычислить , , , т.е. выполнить всего 3 умножения вместо 7.

А есть что-то еще, ведь схема Горнера самая экономичная?

На самом деле все решают объемы вычислений. Если надо вычислить одно значение многочлена, то лучше схемы Горнера ничего не придумано. Но если значения многочлена вычисляются во многих точках, то появляется возможность сэкономить большое число операций умножения за счет предварительных вычислений, выполняемых ровно один раз. Это может значительно ускорить работу программы.

В некоторых случаях для получения значений полиномов целесообразно использовать двухэтапные схемы. На первом этапе выполняются действия только над коэффициентами многочлена, он преобразуется к специальному виду. На втором же этапе вычисляют уже значение самого многочлена при заданных значениях аргумента. При этом может оказаться, что количество операций, выполняемых на втором этапе будет меньше, чем при вычислениях по схеме Горнера.

Снова замечу, что такие методы вычислений целесообразны при вычислении значений многочлена для большого числа значений x. Выигрыш получается, за счет того, что первый этап для многочлена выполняется лишь один раз. Примером может послужить вычисление элементарных функций, где приближающий многочлен готовиться заранее.

В дальнейших рассуждениях, говоря о количестве операций для вычисления , я буду иметь в виду сложность второго этапа вычислений.

Схема Дж.Тодта для многочленов 6 степени

Имеем следующий многочлен:
Для вычислений используем следующие вспомогательные многочлены:

Коэффициенты определяются методом неопределенных коэффициентов исходя из условия . Из последнего условия составляем систему уравнений, приравнивая коэффициенты при равных степенях многочленов.

Саму систему, здесь приводить не буду. Но она легко решается методом подстановок, при этом приходится решать квадратные уравнения. Коэффициенты могут получиться комплексными, но если коэффициенты оказываются действительными, то вычисления требуют трех умножений и семи сложений вместо пяти умножений и шести сложений по схеме Горнера.

Говорить об универсальности данной схемы не приходится, но зато читатель наглядно может оценить уменьшение числа операций по сравнению со схемой Горнера.

Схема Ю.Л. Кеткова

Наконец-то, добрался и до наших математиков.

Ю.Л. Кетков дал общее представление многочлена n-й степени для n>5, всегда приводящее к действительным выражениям и требующее для вычисления многочлене n-й степени выполнения [(n+1)/2]+ умножений и n+1 сложений.

Например, при n=2k схема Кеткова сводится к нахождению многочленов:






где , при k –четном, и , , если k нечетное (k>2).

Все неизвестные коэффициенты находятся из равенства . В работах Кеткова для решения получающихся систем дается метод, дающий всегда действительные коэффициенты .

Схемы В.Я. Пана

Э. Белага в своих работах дал строгое доказательство невозможности построения схемы вычисления произвольных многочленов n-й степени, использующей на втором этапе меньше, чем [(n+1)/2]+1 умножений и n сложений.

В.Я. Пан занимался вопросами оптимального вычисления многочленов. В частности, им предложено несколько схем для вычисления действительных многочленов, которые весьма близко подобрались к оценкам Э. Белаги. Приведу некоторые схемы Пана для действительных многочленов.
1. Схема для вычисления многочленов четвертой степени.
Рассматривается многочлен .

Представим в виде:



где

2. Схема для вычисления , .
Строим вспомогательные многочлены , , :
, s=1,2,…,k.

Для вычисления значения многочлена используем выражения:

Эта схема на втором этапе требует умножения и сложения.

Особенностью данной схемы является то, что коэффициенты всегда существуют при и действительных коэффициентах исходного многочлена.

У В.Я. Пана существуют и другие схемы для вычисления многочленов, в том числе и для комплексных.

Заключение

Резюмируя сказанное, замечу, что вычисление одного или нескольких значений полинома бесспорно нужно проводить с использованием схемы Горнера.

Однако, если число значений полинома, которые потребуется вычислить велико, а производительность очень важна, то имеет смысл рассмотреть применение специальных методов вычисления многочленов.

Некоторые читатели скажут, что возиться с применением схем, отличных от схемы Горнера, сложно, муторно и не стоит с этим связываться. Однако в реальной жизни встречаются задачи, в которых требуется вычислять просто огромное число значений многочленов с большими степенями (например, на их вычисление могут уходить месяцы), и уменьшение числа умножений в два раза даст существенный выигрыш во времени, даже если вам придется потратить пару дней на реализацию конкретной схемы для вычисления многочленов.

Литература

  1. Кетков Ю.Л. Об одном способе вычисления полиномов на математических машинах. // Известия ВУЗ"ов. Радиофизика, т.1., № 4, 1958
  2. В. Я. Пан, “Вычисление многочленов по схемам с предварительной обработкой коэффициентов и программа автоматического нахождения параметров”, Ж. вычисл. матем. и матем. физ., 2:1 (1962), 133–140
  3. В. Я. Пан, “О способах вычисления значений многочленов”, УМН, 21:1(127) (1966), 103–134
  4. В. Я. Пан, “О вычислении многочленов пятой и седьмой степени с вещественными коэффициентами”, Ж. вычисл. матем. и матем. физ., 5:1 (1965), 116–118
  5. Пан В. Я. Некоторые схемы для вычисления значений полиномов с вещественными коэффициентами. Проблемы кибернетики. Вып. 5. М.: Наука, 1961, 17–29.
  6. Белага Э. Г. О вычислении значений многочлена от одного переменного с предварительной обработкой коэффициентов. Проблемы кибернетики. Вып. 5. М.: Физматгиз, 1961, 7–15.

Существует алгоритм деления многочлена f (x ) на (x – a ), который называется схемой Горнера.

Пусть f (x ) = , deg f (x ) = n , a n 0. Разделим f (x ) на (x – a ), получим: (*) f (x ) = (x – а ) × q (x ) + r , где r Î F , deg q (x ) = n – 1.

Запишем q (x ) = b n -1 x n -1 + b n -2 x n -2 + … + b 1 x + b 0 . Тогда подставив в равенство (*) вместо f (x ) и q (x ) их выражения, получим:

a n x n + a n-1 x n-1 + … + a 1 x + a 0 = (х – а ) (b n-1 x n-1 + b n-2 x n-2 + … + b 1 x + b 0 ) + r

Так как многочлены равны, то и коэффициенты при соответствующих степенях должны быть равны.

r – ab 0 = a 0 r = a 0 + ab 0

b 0 – ab 1 = a 1 b 0 = a 1 + ab 1

…………… .. ……………

b n -1 = a n a n = a n -1

Вычисление коэффициентов многочлена q (x ) удобнее осуществлять с помощью таблицы (схемы Горнера).

a n a n-1 a 1 a 0
b n -1 = a n b n - 2 = ab n-1 + a n-1 b 0 = ab 1 +a 1 r = a 0 + ab 0

С помощью схемы Горнера можно решать такие типы задач:

1. Найти q(x) и r при делении f (x ) на (х – а );

2. Вычислить значение многочлена f (x ) при x = a ;

3. Выяснить, будет ли х = а корнем многочлена f (x ), а F ;

4. Определить кратность корня;

5. Разложить многочлен по степеням (х – а ).

6. Вычислить значение многочлена f (x ) и всех его производных при х = а .

Пример. Пусть f (x ) = x 5 – 15 x 4 + 76 x 3 – 140x 2 + 75x – 125 и а = 5.

Составим схему Горнера:

-15 -140 -125
-10 -10 0 = с 0
-5 -5 0 = с 1
0 =с 2
5 26 = с 3
10 = с 4
1 = с 5

1. Вычислим неполное частное q (x ) и остаток r при делении f (x ) на (х – 5). Во второй строке таблицы видим, что коэффициенты частного q (x ) равны: 1, – 10, 26, – 10, 25, поэтому q (x ) = 1х 4 – 10х 3 + 26х 2 – 10х + 25, а остаток r равен 0.

2. Вычислим значение многочлена f (x ) при x = 5. Воспользуемся теоремой Безу: f (5) = r = 0.

3. Выясним, будет ли х = 5 корнем многочлена f (x ). По определению а – корень f (x ), если f (а ) = 0. Так как f (5) = r = 0, то 5 – корень f (x ).

4. Из второй, третьей и четвертой строк таблицы мы видим, что f (x ) делится на (х – 5) 3 , но f (x ) не делится на (х – 5) 4 . Следовательно, число корень 5 имеет кратность 3.

5. Разложим многочлен f (x ) по степеням (х – 5), коэффициенты разложения с 0 , с 1 , с 2 , с 3 , с 4 , с 5 получаются в последних клетках второй, третьей, четвертой, пятой, шестой и седьмой строки схемы Горнера:

f (x ) = с 0 + с 1 (х – 5)+ с 2 (х – 5) 2 + с 3 (х – 5) 3 + с 4 (х – 5) 4 + с 5 (х – 5) 5 или

f (x ) = 26 (х – 5) 3 + 10 (х – 5) 4 + (х – 5) 5 .

6. Вычислим значение многочлена f (x ) и всех его производных при х = 5.

с 0 = f (5) = 0, с 1 = f ′ (5) = 0, с 2 = = 0 f ′′(5) = 0,

с 3 = = 26 f ′′′ (5) = 26 ∙ 3! = 156, с 4 = = 10 f ′ v (5) = 10 ∙ 4! = 240,

с 5 = = 1 f v (5) = 1 ∙ 5! = 120.

МЕТОДИКА 15. «Логарифмическая функция».

1. Логико – математический анализ темы.

Данная тема изучается в 10 классе.

Основные понятия:

Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Термин – логарифмическая функция.

Род – функция.

Видовые отличия: 1) а>0, а≠0; 2) функция задана формулой у=log а х.

Основные предложения:

Свойства логарифмической функции.

1°. Область определения логарифмической функции – множество всех положительных чисел R + , т.е. D(log)=R + .

2°. Область значений логарифмической функции – множество всех действительных чисел.

3°. Логарифмическая функция на всей области определения возрастает (при а>1) или убывает (при 0<а<1).

Справедливо следующее утверждение: графики показательной и логарифмической функций, имеющих одинаковое основание, симметричны относительно прямой у=х.

Основные идеи и методы изучения:

Определения понятий явные, через ближайший род и видовые отличия – конструктивные.

Методы доказательства:

Дедуктивные (на основе определения) с использованием математических методов: логарифмирование степени, основные свойства степени, метод от противного.

Например, свойство о том, что при а>1 функция возрастает, доказывается с помощью определения возрастающей функции, при этом применяется метод от противного.

Ранее изученный материал Теоретический материал темы Применение изученного материала
- показательная функция; - показательные уравнения и неравенства; - логарифмы и их свойства; - убывающая и возрастающая функции; - график функции. Область определения функции Множество значений функции График функции Логарифм числа Десятичный и натуральный логарифмы Основные логарифмические тождества Логарифмическая функция Свойства логарифма Логарифмические уравнения Логарифмические неравенства - при решении логарифмических уравнений и неравенств; - в астрономии (оценка яркости звезд); - в физике; - в высшей математике (математическая логика, математический анализ).
  1. Основные типы математических задач по теме

Найти область определения функции;



Построить график функции;

Найти область значения функции;

Найти промежутки знакопостоянства функции;

Исследовать функцию и построить ее график;

Найти наибольшее и наименьшее значение функции;

Найти значение выражения.

Типичные ошибки и затруднения изучения темы

Математические ошибки:

ü вычислительные ошибки: при решении уравнений и неравенств, при нахождении значений функции, при действиях со степенями;

ü логические ошибки: в выполнении тождественных преобразований, в использовании свойств логарифмов, при определении понятий, при выводе формул;

ü графические ошибки: при построении графиков функций (не учитывают свойства функций); неправильно применяют преобразование графиков.

3. методы и приемы работы учащихся с учебником математики в соответствии с возрастными особенностями учащихся.

В 5-6 классах используют следующие методы работы с учебником:

1. чтение правил, определений, формулировок теорем учащимися после объяснения учителя

2. чтение вслух учителя ученикам с выделением главного и существенного

3. работа с формулами и иллюстрациями на обложке учебника

4. чтение учебника учащимися и ответы на вопросы учителя

В 7-8 классах добавляются следующие методы работы с учебником:

1. чтение текстов после их объяснения учителем

2. чтение текста учащимися и разбивка его на смысловые абзацы

3. чтение текста из учебника учащимися и запись основных предложений темы по плану, предложенному учителем

В 9 – 11 классах ко всему предложенному добавляется:

1. разбор примеров учащимися в учебнике, после объяснения темы учителем

2. чтение текста учащимися и запись опорного конспекта по данному тексту

3. чтение текста учебника и самостоятельное составление учащимися плана по данному тексту.

4. чтение текста учебника и ответ учащегося по самостоятельно составленному плану

2. Фрагмент урока изучения новой темы: «Логарифмическая функция».

Цели урока:

Обучающие: обеспечить в ходе урока усвоения понятия логарифмическая функция, формировать умения определять свойства логарифмических функций, формировать умение изображать графики логарифмической функции.

Развивающие: способствовать развитию мышления, восприятия, памяти, воображению, внимания.

Воспитательные: воспитывать устойчивый интерес к математике, воспитывать отдельные качества личности: аккуратность, настойчивость, трудолюбие.

Тип урока: изучение нового материала

Структура урока:

1.организационный момент; 2. постановка целей урока; 3.проверка домашнего задания; 4. подготовка к изучению нового материала; 5. изучение нового материала; 6.первичное закрепление и осмысление нового материала; 7.постановка домашнего задания; 8.подведение итогов урока.;

Действия учителя Действия учеников
ответьте на вопрос 1. что называется функцией? 2. какие функции вы узнали в этом году? 3. какие свойства функций вы знаете? 4. что называется графиком функции? Сегодня мы изучим новую функцию логарифмическую. Когда мы изучали показательную функцию, мы оформляли ее свойства в таблицу. Сейчас я предлагаю открыть вам страницу 98 в ваших учебниках прочитать параграф 18 и записать в тетрадях опорный конспект по плану предложенному на доске. Опорный конспект вы будите оформлять так же, как оформляли при изучении показательной функции. План опорного конспекта. 3. определение логарифмической функции 4. свойства логарифмической функции оформите в таблицу.

А теперь к доске я приглашаю одного человека который оформит правильно конспект на доске.

5. Числовой функцией с областью определении D называется соответствие, при котором каждому числу х из множества D сопоставляется по некоторому правилу число у, зависящее от х. 6. степенная, показательная. 7. Область определения, область значений, непрерывность, возрастание, убывание функции. 8. Графиком функции f называют множество всех точек (х; у) координатной плоскости, где y=f(x), а х «пробегает» всю область определения функции f. Ответы: Функцию, заданную формулой у=log а х, где а>0, а≠0 называют логарифмической функцией с основанием а.

Горнер Уильям Джордж () Английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен (х – а) (схема Горнера).


Вывод формул для схемы Горнера Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r Запишем это равенство подробно: f 0 x n + f 1 x n-1 + f 2 x n-2 + …+f n-1 x + f n = =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +…+ q n-2 x + q n-1)+r Приравняем коэффициенты при одинаковых степенях: x n: f 0 = q 0 => q 0 = f 0 x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0 x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1 … X 0: f n = q n - c q n-1 => q n = f n + c q n-1 q 0 = f 0 x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0 x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1 … X 0: f n = q n - c q n-1 => q n = f n + c q n-1">


Демонстрация работы схемы Горнера С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x на двучлен x-2 Записываем коэффициенты исходного многочлена f 0, f 1, f 2, f 3. f0f0 f1f1 f2f2 f3f c 2 Если делим на (x-c), то во второй строке слева пишем с Готовим пустые клетки для остатка r и коэффициентов неполного частного q 0, q 1,q 2 q0q0 q1q1 q2q2 r g 0:=f 0 =1 1 g 1:= с *g 0 + f 1 * + =2 * 1 + (-5)=-3 g 2:= с *g 1 + f 2 =2 * (-3) + 0=-6 * + r:= с *g 2 + f 3 =2 * (-6) + 8= * + -4 Ответ: g(x)=x 2 -3x-6 ; r= -4. f(x)= (x-2)(x 2 -3x-6)-4


Разложение многочлена по степеням двучлена Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2) f(x)=x 3 +3x 2 -2x+4 =(x+2)(x 2 +x-4) f(x)=x 3 +3x 2 -2x+4= (x+2)((x-1)(x+2)-2) f(x)=x 3 +3x 2 -2x+4= (((1*(x+2)-3)(x+2)-2)(x+2)) f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12


Домашняя работ а 1. Разделить f(x)=2x 5 -x 4 -3x 3 +x-3 на x-3; 2. Используя схему Горнера, найдите целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6 (*Замечание: целые корни многочлена с целыми коэффициентами нужно искать среди делителей свободного члена ±1;±2;±3;±6)



Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

Описание алгоритма

Задан многочлен :

.

Пусть требуется вычислить значение данного многочлена при фиксированном значении . Представим многочлен в следующем виде:

.

Определим следующую последовательность:

… …

Искомое значение . Покажем, что это так.

В полученную форму записи подставим и будем вычислять значение выражения, начиная со внутренних скобок. Для этого будем заменять подвыражения через :

Использование схемы Горнера для деления многочлена на бином

При делении многочлена на получается многочлен с остатком .

При этом коэффициенты результирующего многочлена удовлетворяют рекуррентным соотношениям:

, .

Таким же образом можно определить кратность корней (использовать схему Горнера для нового полинома). Так же схему можно использовать для нахождения коэффициентов при разложении полинома по степеням:

Примечания

См. также

Литература

  • Ананий В. Левитин Глава 6. Метод преобразования: Схема Горнера и возведение в степень // Алгоритмы: введение в разработку и анализ = Introduction to The Design and Analysis of Aigorithms. - М .: «Вильямс», 2006. - С. 284-291. - ISBN 0-201-74395-7
  • Волков Е. А. § 2. Вычисление значений многочлена. Схема Горнера // Численные методы. - Учеб. пособие для вузов. - 2-е изд., испр. - М .: Наука, 1987. - 248 с.
  • С. Б. Гашков §14. Схема Горнера и перевод из одной позиционной системы в другую // Системы счисления и их применение . - М .: МЦНМО , 2004. - С. 37-39. - (Библиотека «Математическое просвещение»). - ISBN 5-94057-146-8

Ссылки

  • Вычисление многомерных полиномов - обобщение схемы Горнера на случай полинома от нескольких переменных.

Wikimedia Foundation . 2010 .

  • Хлорхинальдол
  • Штильмарк, Александр Робертович

Смотреть что такое "Схема Горнера" в других словарях:

    ГОРНЕРА СХЕМА - прием для нахождения неполного частного и остатка при делении многочлена на двучлен, где все коэффициенты лежат в нек ром поле, напр., в поле комплексных чисел. Всякий многочлен единственным способом представим в виде где есть неполное частное,… … Математическая энциклопедия

    Метод Горнера - Схема Горнера (или правило Горнера, метод Горнера) алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Метод Горнера позволяет найти корни многочлена, а также вычислить производные… … Википедия

    Корень многочлена - У этого термина существуют и другие значения, см. Корень (значения). Корень многочлена (не равного тождественно нулю) над полем k элемент, такой что выполняются два следующих равносильных условия: данный многочлен делится на многочлен;… … Википедия

    Деление многочленов столбиком - В алгебре деление многочленов столбиком алгоритм деления многочлена на многочлен, степень которого меньше или равна степени многочлена. Алгоритм представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную. Для… … Википедия

    Хорнер, Уильям Джордж - Уильям Джордж Хорнер (1786 год, Бристоль 22 сентября 1837 года) британский математик. Родился в 1786 году в городе Бристоль в Англии. Получил образование в Кингствудской школе Бристоля. В возрасте 14 лет он стал помощником директора в… … Википедия

    Плечевое сплетение - I Плечевое сплетение (plexus brachialis) сплетение нервных волокон передних ветвей 4 8 шейных и 1 2 грудных спинномозговых нервов в несколько стволов и пучков, в результате последующего разделения которых формируются короткие и длинные нервы… … Медицинская энциклопедия

    РАДИКУЛИТЫ - (от лат. radix корень), заболевания корешков спинномозговых нервов, термин, утвердившийся в начале 20 в. благодаря работам Дежерина и его школы. В основе Р. лежит воспалительно дегенеративный процесс в корешках [см. отдельную таблицу (ст. 255… …

    ЩИТОВИДНАЯ ЖЕЛЕЗА - (gl. thyreoidea, син. corpus thyreoideum), одна из важнейших желез внутренней секреции позвоночных животных. В эмбриональном развитии Щ. ж. возникает из эпителия нижней стенки жаберной части кишечника; у личинок круглоротых рыб она имеет еще вид… … Большая медицинская энциклопедия

    Радикулит - I Радикулит (radiculitis; лат. radicula корешок + itis) воспалительное и компрессионное поражение корешков спинномозговых нервов. Сочетанное поражение переднего и заднего корешков на уровне их соединения в общий канатик (рис.) ранее обозначали… … Медицинская энциклопедия

    Спина́льное кровообраще́ние - (синоним спинномозговое кровообращение) Установлено, что несколько верхних шейных сегментов спинного мозга снабжают кровью передняя и задняя спинальные артерии, отходящие от позвоночных артерий. Сегменты, расположенные ниже сегментов CIII CIV,… … Медицинская энциклопедия