Первообразная и интегралы. Большая энциклопедия нефти и газа


Физический смысл интеграла очень прост.  


Физический смысл интеграла (аа аа) заключается в том, что он описывает отталкивание между двумя электронами, принадлежащими одному и тому же атомному центру.  

Физический смысл интегралов Ариса можно описать лишь весьма приближенно; однако всегда полезно наглядно представить себе факторы, входящие в выражение для высоты, эквивалентной теоретической тарелке. Грубо говоря, интегрирование по t дает время, которое возрастает с увеличением размеров колонки. Это можно объяснить тем, что при увеличении размеров колонки возрастают расстояния, вдоль которых диффундируют молекулы. Однако, несмотря на это, действительное значение Н (х) определяется эффективной скоростью, значение которой в свою очередь определяется профилем скоростей.  

Обратим внимание на физический смысл интегралов в этом уравнении. Первый интеграл выражает уменьшение секундного расхода через сечение в пограничном слое высотой 8, обусловленное влиянием вязкости.  

Для последующего вывода необязательно дать физический смысл Зтого интеграла, но легко сообразить, что он выражает удвоенную работу внешних нагрузок в процессе деформации тела, если эти нагрузки возрастают весьма медленно от начального естественного состояния тела.  

Рассмотрим теперь более подробно природу и физический смысл интегралов такого рода.  

Цель работы состоит в изучении основных явлений, демонстрирующих общие законы динамики системы точек и физический смысл интегралов движения. В общем случае задача нелинейна, и получить ее аналитическое решение не удается. В то же время проведение серии машинных экспериментов позволяет составить достаточно полное и наглядное представление об особенностях движения изучаемой механической системы. Специфика постановки машинного эксперимента проявляется, во-первых, в необходимости предварительной оценки характерного времени протекания процессов для правильной организации вывода результатов решения задачи. Эта оценка определяется заданием конкретных значений параметров системы и начальных условий и проводится студентом предварительно перед каждым вводом исходных данных. Во-вторых, некорректное задание параметров или начальных условий может приводить к аварийным прерываниям решения, не связанным с существом задачи и определяемым ее конкретной реализацией на машине. Студенты убеждаются также, что точность решения зависит как от выбора алгоритма, так и от исходных данных. Нетрудно проследить, например, как изменяют свое численное значение интегралы движения, если выбран сравнительно крупный шаг интегрирования дифференциальных уравнений.  

Вместе с тем, для многих приложе ний наиболее существенна именно / Атеория, что, в частности, объясняется физическим смыслом интеграла от квадрата модуля.  

При этом существование предела (4) для конечной функции, заданной на конечной области, может быть доказано математически, без ссылки на физический смысл интеграла.  

На рис. 1 а и 1, б изображены типичные примеры; на рис. 1, в показано, что две кривые могут быть зацеплены даже когда коэффициент зацепления равен нулю, а соленоид на рис. 1 г демонстрирует физический смысл интеграла Гаусса как работы по переносу единичного магнитного полюса по замкнутой кривой в магнитном поле, вызванном протеканием единичного электрического тока по другой кривой.  

Формула (2.27) представляет собой модифицированный принцип Гюйгенса - Френеля в нелинейной оптике. Физический смысл интеграла (2.27) довольно прост.  

Возможны дальнейшие обобщения интеграла Мора, когда прикладывается не единичный силовой фактор, а единичная система сил. Физический смысл интеграла Мора вытекает на того, что он представляет возможную работу единичной системы сил на перемещениях основной системы.  

Страницы:      1

Функция F(x ) называется первообразной для функции f(x ) на заданном промежутке, если для всех x из этого промежутка выполняется равенство

F"(x ) = f (x ) .

Например, функция F(x) = х 2 f(x ) = 2х , так как

F"(x) = (х 2 )" = 2x = f(x).

Основное свойство первообразной

Если F(x) — первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С — произвольная постоянная.

Например.

Функция F(x) = х 2 + 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 + 1 )" = 2 x = f(x) ;

функция F(x) = х 2 - 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 1)" = 2x = f(x) ;

функция F(x) = х 2 - 3 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 3)" = 2 x = f(x) ;

любая функция F(x) = х 2 + С , где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x ) = 2х .

Правила вычисления первообразных

  1. Если F(x) — первообразная для f(x) , а G(x) — первообразная для g(x) , то F(x) + G(x) — первообразная для f(x) + g(x) . Иными словами, первообразная суммы равна сумме первообразных .
  2. Если F(x) — первообразная для f(x) , и k — постоянная, то k ·F(x) — первообразная для k ·f(x) . Иными словами, постоянный множитель можно выносить за знак производной .
  3. Если F(x) — первообразная для f(x) , и k , b — постоянные, причём k ≠ 0 , то 1 / k · F(k x + b ) — первообразная для f (k x + b ) .

Неопределённый интеграл

Неопределённым интегралом от функции f(x) называется выражение F(x) + С , то есть совокупность всех первообразных данной функции f(x) . Обозначается неопределённый интеграл так:

f(x) dx = F(x) + С ,

f(x) — называют подынтегральной функцией ;

f(x) dx — называют подынтегральным выражением ;

x — называют переменной интегрирования ;

F(x) — одна из первообразных функции f(x) ;

С — произвольная постоянная.

Например, 2 x dx = х 2 + С , cos x dx = sin х + С и так далее.

Слово "интеграл" происходит от латинского слова integer , что означает "восстановленный". Считая неопределённый интеграл от 2 x , мы как бы восстанавливаем функцию х 2 , производная которой равна 2 x . Восстановление функции по её производной, или, что то же, отыскание неопределённого интеграла по данной подынтегральной функции, называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Основные свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции:
  2. ( f(x) dx )" = f(x) .

  3. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла:
  4. k · f(x) dx = k · f(x) dx .

  5. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:
  6. ( f(x) ± g(x ) ) dx = f(x) dx ± g(x ) dx .

  7. Если k , b — постоянные, причём k ≠ 0 , то
  8. f (k x + b ) dx = 1 / k · F(k x + b ) + С .

Таблица первообразных и неопределённых интегралов


f(x)
F(x) + C
f(x) dx = F(x) + С
I.
$$0$$
$$C$$
$$\int 0dx=C$$
II.
$$k$$
$$kx+C$$
$$\int kdx=kx+C$$
III.
$$x^n~(n\neq-1)$$
$$\frac{x^{n+1}}{n+1}+C$$
$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$
IV.
$$\frac{1}{x}$$
$$\ln |x|+C$$
$$\int\frac{dx}{x}=\ln |x|+C$$
V.
$$\sin x$$
$$-\cos x+C$$
$$\int\sin x~dx=-\cos x+C$$
VI.
$$\cos x$$
$$\sin x+C$$
$$\int\cos x~dx=\sin x+C$$
VII.
$$\frac{1}{\cos^2x}$$
$$\textrm{tg} ~x+C$$
$$\int\frac{dx}{\cos^2x}=\textrm{tg} ~x+C$$
VIII.
$$\frac{1}{\sin^2x}$$
$$-\textrm{ctg} ~x+C$$
$$\int\frac{dx}{\sin^2x}=-\textrm{ctg} ~x+C$$
IX.
$$e^x$$
$$e^x+C$$
$$\int e^xdx=e^x+C$$
X.
$$a^x$$
$$\frac{a^x}{\ln a}+C$$
$$\int a^xdx=\frac{a^x}{\ln a}+C$$
XI.
$$\frac{1}{\sqrt{1-x^2}}$$
$$\arcsin x +C$$
$$\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x +C$$
XII.
$$\frac{1}{\sqrt{a^2-x^2}}$$
$$\arcsin \frac{x}{a}+C$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C$$
XIII.
$$\frac{1}{1+x^2}$$
$$\textrm{arctg} ~x+C$$
$$\int \frac{dx}{1+x^2}=\textrm{arctg} ~x+C$$
XIV.
$$\frac{1}{a^2+x^2}$$
$$\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
$$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
XV.
$$\frac{1}{\sqrt{a^2+x^2}}$$
$$\ln|x+\sqrt{a^2+x^2}|+C$$
$$\int\frac{dx}{\sqrt{a^2+x^2}}=\ln|x+\sqrt{a^2+x^2}|+C$$
XVI.
$$\frac{1}{x^2-a^2}~(a\neq0)$$
$$\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
$$\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
XVII.
$$\textrm{tg} ~x$$
$$-\ln |\cos x|+C$$
$$\int \textrm{tg} ~x ~dx=-\ln |\cos x|+C$$
XVIII.
$$\textrm{ctg} ~x$$
$$\ln |\sin x|+C$$
$$\int \textrm{ctg} ~x ~dx=\ln |\sin x|+C$$
XIX.
$$ \frac{1}{\sin x} $$
$$\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
$$\int \frac{dx}{\sin x}=\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
XX.
$$ \frac{1}{\cos x} $$
$$\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
$$\int \frac{dx}{\cos x}=\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
Первообразные и неопределённые интегралы, приведённые в этой таблице, принято называть табличными первообразными и табличными интегралами .

Определённый интеграл

Пусть на промежутке [a ; b ] задана непрерывная функция y = f(x) , тогда определённым интегралом от a до b функции f(x) называется приращение первообразной F(x) этой функции, то есть

$$\int_{a}^{b}f(x)dx=F(x)|{_a^b} = ~~F(a)-F(b).$$

Числа a и b называются соответственно нижним и верхним пределами интегрирования.

Основные правила вычисления определённого интеграла

1. \(\int_{a}^{a}f(x)dx=0\);

2. \(\int_{a}^{b}f(x)dx=- \int_{b}^{a}f(x)dx\);

3. \(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx,\) где k — постоянная;

4. \(\int_{a}^{b}(f(x) ± g(x))dx=\int_{a}^{b}f(x) dx±\int_{a}^{b}g(x) dx \);

5. \(\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx\);

6. \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\), где f(x) — четная функция;

7. \(\int_{-a}^{a}f(x)dx=0\), где f(x) — нечетная функция.

Замечание . Во всех случаях предполагается, что подынтегральные функции интегрируемые на числовых промежутках, границами которых являются пределы интегрирования.

Геометрический и физический смысл определённого интеграла

Геометрический смысл
определённого интеграла


Физический смысл
определённого интеграла



Площадь S криволинейной трапеции (фигура, ограниченная графиком непрерывной положительной на промежутке [a ; b ] функции f(x) , осью Ox и прямыми x=a , x=b ) вычисляется по формуле

$$S=\int_{a}^{b}f(x)dx.$$

Путь s , который преодолела материальная точка, двигаясь прямолинейно со скоростью, изменяющейся по закону v(t) , за промежуток времени a ; b ] , то площадь фигуры, ограниченной графиками этих функций и прямыми x = a , x = b , вычисляется по формуле

$$S=\int_{a}^{b}(f(x)-g(x))dx.$$


Например. Вычислим площадь фигуры, ограниченной линиями

y = x 2 и y = 2 - x .


Изобразим схематически графики данных функций и выделим другим цветом фигуру, площадь которой необходимо найти. Для нахождения пределов интегрирования решим уравнение:

x 2 = 2 - x ; x 2 + x - 2 = 0 ; x 1 = -2, x 2 = 1 .

$$S=\int_{-2}^{1}((2-x)-x^2)dx=$$

$$=\int_{-2}^{1}(2-x-x^2)dx=\left (2x-\frac{x^2}{2}-\frac{x^3}{2} \right)\bigm|{_{-2}^{~1}}=4\frac{1}{2}. $$

Объём тела вращения


Если тело получено в результате вращения около оси Ox криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на промежутке [a ; b ] функции y = f(x) и прямыми x = a и x = b , то его называют телом вращения .

Объём тела вращения вычисляется по формуле

$$V=\pi\int_{a}^{b}f^2(x)dx.$$

Если тело вращения получено в результате вращения фигуры, ограниченной сверху и снизу графиками функций y = f(x) и y = g(x) , соответственно, то

$$V=\pi\int_{a}^{b}(f^2(x)-g^2(x))dx.$$


Например. Вычислим объём конуса с радиусом r и высотой h .

Расположим конус в прямоугольной системе координат так, чтобы его ось совпадала с осью Ox , а центр основания располагался в начале координат. Вращение образующей AB определяет конус. Так как уравнение AB

$$\frac{x}{h}+\frac{y}{r}=1,$$

$$y=r-\frac{rx}{h}$$

и для объёма конуса имеем

$$V=\pi\int_{0}^{h}(r-\frac{rx}{h})^2dx=\pi r^2\int_{0}^{h}(1-\frac{x}{h})^2dx=-\pi r^2h\cdot \frac{(1-\frac{x}{h})^3}{3}|{_0^h}=-\pi r^2h\left (0-\frac{1}{3} \right)=\frac{\pi r^2h}{3}.$$

Возникновение понятия интеграла было обусловлено необходимостью нахождения первообразной функции по ее производной, а также определения величины работы, площади сложных фигур, расстояния пройденного пути, при параметрах, очерченных кривыми, описываемыми нелинейными формулами.

а что работа равна произведению силы на расстояние. Если все движение происходит с постоянной скоростью или расстояние преодолевается с приложением одной и той же силы, то все понятно, нужно их просто перемножить. Что такое интеграл от константы? вида y=kx+c.

Но сила на протяжении работы может меняться, причем в какой-то закономерной зависимости. Такая же ситуация возникает и с вычислением пройденного расстояния, если скорость непостоянна.

Итак, понятно, для чего нужен интеграл. Определение его как суммы произведений значений функции на бесконечно малое приращение аргумента вполне описывает главный смысл этого понятия как площадь фигуры, ограниченной сверху линией функции, а по краям - границами определения.

Жан Гастон Дарбу, французский математик, во второй половине XIX века очень наглядно объяснил, что такое интеграл. Он сделал это настолько понятно, что в целом разобраться в этом вопросе не составит труда даже школьнику младших классов средней школы.

Допустим, есть функция любой сложной формы. Ось ординат, на которой откладываются значения аргумента, разбивается на небольшие интервалы, в идеале они бесконечно малы, но так как понятие бесконечности довольно абстрактно, то достаточно представить себе просто небольшие отрезки, величину которых обычно обозначают греческой буквой Δ (дельта).

Функция оказалась «нарезанной» на маленькие кирпичики.

Каждому значению аргумента соответствует точка на оси ординат, на которой откладываются соответствующие значения функции. Но так как границ у выделенного участка две, то и значений функции тоже будет два, большее и меньшее.

Сумма произведений бо́льших значений на приращение Δ называется большой суммой Дарбу, и обозначается как S. Соответственно, меньшие на ограниченном участке значения, умноженные на Δ, все вместе образуют малую сумму Дарбу s. Сам участок напоминает прямоугольную трапецию, так как кривизной линии функции при бесконечно малом ее приращении можно пренебречь. Самый простой способ найти площадь такой геометрической фигуры - это сложить произведения большего и меньшего значения функции на Δ-приращение и поделить на два, то есть определить как среднее арифметическое.

Вот что такое интеграл по Дарбу:

s=Σf(x) Δ - малая сумма;

S= Σf(x+Δ)Δ - большая сумма.

Итак, что такое интеграл? Площадь, ограниченная линией функции и границами определения будет равна:

∫f(x)dx = {(S+s)/2} +c

То есть среднее арифметическое большой и малой сумм Дарбу.с - величина постоянная, обнуляемая при дифференцировании.

Исходя из геометрического выражения этого понятия, становится понятен и физический смысл интеграла. очерченная функцией скорости, и ограниченная временным интервалом по оси абсцисс, будет составлять длину пройденного пути.

L = ∫f(x)dx на промежутке от t1 до t2,

f(x) - функция скорости, то есть формула, по которой она меняется во времени;

L - длина пути;

t1 - время начала пути;

t2 - время окончания пути.

Точно по такому же принципу определяется величина работы, только по абсциссе будет откладываться расстояние, а по ординате - величина силы, прилагаемая в каждой конкретной точке.

Инструкция

Интегрирование - это операция, которая противоположна дифференцированию. Поэтому, если вы хотите хорошо научиться интегрировать, то вам сначала необходимо научиться находить от любых функций производные. Научиться этому можно достаточно быстро. Ведь есть специальная производных. При ее помощи уже можно простые интегралы. А есть и таблица основных неопределенных интегралов. Она представлена на рисунке.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8