Чему равна сила инерции. Сила инерции

Эта тема будет посвящена рассмотрению особого вида сил – сил инерции. Особенность этих сил состоит в следующем. Все механические силы – будь то силы гравитационного, упругого взаимодействия или силы трения – возникают тогда, когда на тело имеет место воздействие со стороны других тел. С силами инерции дело обстоит иначе.

Для начала вспомним, что такое инерция. Инерция – это физическое явление, состоящее в том, что тело всегда стремится сохранить свою первоначальную скорость. И силы инерции возникают тогда, когда у тела изменяется скорость – т.е. появляется ускорение. В зависимости от того, в каком движении принимает участие тело, у него возникает то или иное ускорение, и оно порождает ту или иную силу инерции. Но все эти силы объединяет одна и та же закономерность: сила инерции всегда направлена противоположно ускорению ее породившему.

По своей природе силы инерции отличаются от других механических сил. Все остальные механические силы возникают в результате воздействия одного тела на другое. Тогда как силы инерции обусловлены свойствами механического движения тела. Кстати, в зависимости от того, в каком движении участвует тело, возникает та или иная сила инерции:

Движение может быть прямолинейным, и тогда речь пойдет о силе инерции поступательного движения;

Движение может быть криволинейным, и тогда речь пойдет о центробежной силе инерции;

Наконец, движение может быть одновременно и прямо-, и криволинейным (если тело перемещается во вращающейся системе или перемещается, вращаясь), и тогда речь пойдет о силе Кориолиса.

Рассмотрим подробнее виды сил инерции и условия их возникновения.

1. СИЛА ИНЕРЦИИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯF i . Она возникает, когда тело движется по прямолинейной траектории. Мы постоянно сталкиваемся с действием этой силы в транспорте, движущемся по прямой дороге, при торможении и при наборе скорости. При торможении нас бросает вперед, т.к. скорость движения резко уменьшается, а наше тело старается сохранить ту скорость, которая у него была. При наборе скорости нас вдавливает в спинку сидения по той же причине. На рис. 2.1

Изображены направления ускорения и силы инерции поступательного движения в случае уменьшения скорости: ускорение направлено противоположно движению, а сила инерции направлена противоположно ускорению. Формула силы инерции задается вторым законом Ньютона: . Знак «минус» обусловлен тем, что векторы и имеют противоположные направления. Численное значение (модуль) этой силы соответственно вычисляется по формуле:

F = ma (3.1)

2. ЦЕНТРОБЕЖНАЯ СИЛА ИНЕРЦИИF i . Чтобы понять, как возникает эта сила, рассмотрим рис. 3.2, на котором изображен диск, вращающийся в горизонтальной плоскости, с шариком, прикрепленным к центру диска посредством растяжимой связи (например, резинки). Когда диск начинает вращаться, шарик стремится удалиться от


центра и натягивает резинку. Причем чем быстрее вращается диск, тем дальше удаляется шарик от центра диска. Такое перемещение шарика по плоскости диска обусловлено действием силы, которая называется центробежной силой инерции (F цб) . Таким образом, центробежная сила возникает при вращении и направлена вдоль радиуса от центра вращения.F цб является силой инерции, а значит ее возникновение обусловлено наличием ускорения, которое должно быть направлено противоположно этой силе. Если центробежная сила направлена от центра, то очевидно, что причиной возникновения этой силы является нормальное (центростремительное) ускорение а n , ведь именно оно направлено к центру вращения (см. Тема 1, §1.2, п.3). Исходя из этого, получаем формулу центробежной силы. Согласно второму закону Ньютона F=ma , где m – масса тела. Тогда для центробежной силы инерции справедливо соотношение:

F цб = ma n .

Учитывая (1.18) и (1.19), получаем:

(3.2) и F цб = mω 2 r (3.3).

3. СИЛА КОРИОЛИСА F K . При совмещении двух видов движения: вращательного и поступательного – появляется еще одна сила, называемая силой Кориолиса (или кориолисовой силой) по имени французского механика Густава Гаспара Кориолиса (1792-1843), который дал расчет этой силы.

Появление кориолисовой силы можно обнаружить на примере опыта, изображенного на рис. 3.3. Ни нем изображен диск, вращающийся в горизонтальной

Рис. 3.3 вид сверху

плоскости. Прочертим на диске радиальную прямую ОА и запустим в направлении от О к А шарик со скоростью υ. Если диск не вращается, шарик будет катиться вдоль прочерченной нами прямой. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться вдоль изображенной пунктиром кривой ОВ, причем его скорость υ будет изменять свое направление (см. рис.3.3 (б)). Следовательно, по отношению ко вращающейся системе отсчета (а в данном случае это диск) шарик ведет себя так, как если бы на него действовала некая сила, перпендикулярная скорости υ. Это и есть сила Кориолиса F K . Именно она заставляет шарик отклоняться от прямолинейной траектории ОА. Формула, которая описывает эту силу определяется опять же вторым законом Ньютона, только на этот раз в качестве ускорения выступает так называемое кориолисово ускорениеа К : ,F K =2mυω (3.5).

Итак, как уже было сказано, чтобы сила Кориолиса проявила себя, необходимо совместить 2 вида движения. И здесь возможны два варианта: 1). Тело движется относительно вращающейся системы отсчета. Именно этот случай изображен на рис.3.3. 2). Вращающееся тело совершает поступательное движение В качестве примера можно рассматривать так называемые «крученые» мячи – прием, используемый в футболе – когда удар по мячу осуществляется так, что он во время полета вращается.

Силы инерции и основной закон механики

Берников Василий Русланович,

инженер.

Предисловие

Внутренние силы в ряде случаев являются причиной появления внешних сил, приложенных к системе , , , . Силы инерции всегда являются внешними по отношению к любой движущейся системе материальных тел , , , . Силы инерции действуют также как и силы взаимодействия, они вполне реальны, могут совершать работу, сообщать ускорение , , , . При большом количестве теоретических предпосылок в механике о возможности использования сил инерции в качестве поступательной при создании конструкций не приводили к положительному результату. Можно отметить только некоторые широко известные конструкции с небольшой эффективностью использования сил инерции: инерцоид Толчина , вихревой жидкостный движитель Фролова , движитель Торнсона . Медленное развитие инерционных движителей объясняется отсутствием фундаментального теоретического обоснования наблюдаемого эффекта. На основании обычных классических представлений физической механики в данной работе создана теоретическая база использования сил инерции в качестве поступательной.

§1. Основной закон механики и его следствия.

Рассмотрим законы преобразования сил и ускорений в различных системах отсчёта. Выберем произвольно неподвижную инерциальную систему отсчёта и условимся движение относительно неё считать абсолютным. В такой системе отсчёта основным уравнением движения материальной точки является уравнение, выражающее второй закон Ньютона.

mw абс = F , (1.1)

где F – сила взаимодействия тел.

Тело, покоящееся в движущейся системе отсчёта, увлекается последней в её движении относительно неподвижной системы отсчёта. Такое движение называется переносным. Движение тела относительно системы отсчёта называется относительным. Абсолютное движение тела складывается из его относительного и переносного движений. В неинерциальных системах отсчёта (системы отсчёта, движущиеся с ускорением) закон преобразования ускорений для поступательного движения имеет следующий вид

w абс = w отн + w пер. (1.2)

Учитывая (1.1) для сил запишем уравнение относительного движения для материальной точки в движущейся с поступательным ускорением системе отсчёта

mw отн = F - mw пер, (1.3)

где mw пер - это поступательная сила инерции, возникающая не из-за взаимодействия тел, а из-за ускоренного движения системы отсчёта. Движение тел под действием сил инерции аналогично движению во внешних силовых полях [ 2,с.359] . Импульс центра масс системы [ 3, с.198] может быть изменён путём изменения внутреннего вращательного импульса или внутреннего поступательного импульса. Силы инерции всегда являются внешними [ 2,с.359] по отношению к любой движущейся системе материальных тел.

Допустим теперь, что система отсчёта движется совершенно произвольно относительно неподвижной системы отсчёта. Это движение можно разделить на два: поступательное движение со скоростью v о, равной скорости движения начала координат, и вращательное движение вокруг мгновенной оси, проходящей через это начало. Угловую скорость этого вращения обозначим w , а расстояние от начала координат движущейся системы отсчёта до движущейся точки в ней через r . Кроме того, движущаяся точка имеет относительно движущейся системы отсчёта скорость v отн. Тогда для абсолютного ускорения [ 2,с.362] известно соотношение

w абс = w отн - 2[ v отн w ] + (d v о /dt) - w 2 r ^ + [ (dw / dt)r ] ,. (1.4)

где r ^ - компонента радиуса-вектора r , перпендикулярная к мгновенной оси вращения. Перенесём относительное ускорение в левую часть, а абсолютное в правую часть и всё умножим на массу тела, получим основное уравнение сил относительного движения [ 2,с.364] материальной точки в произвольно движущейся системе отсчёта

mw отн = mw абс + 2m[ v отн w ] - m(d v о /dt) + mw 2 r ^ – m[ (dw / dt)r ] . (1.5)

Или соответственно

mw отн = F + F к + F п + F ц + F ф, (1.6)

где: F – сила взаимодействия тел; F к – кориолисова сила инерции; F п – поступательная сила инерции; F ц – центробежная сила инерции; F ф – фазовая сила инерции.

Направление силы взаимодействия тел F совпадает с направлением ускорения тела. Кориолисова сила инерции F к направлена согласно векторному произведению радиальной и угловой скорости, то есть перпендикулярно обоим векторам. Поступательная сила инерции F п направлена противоположно ускорению тела. Центробежная сила инерции F ц направлена по радиусу от центра вращения тела. Фазовая сила инерции F ф направлена противоположно векторному произведению углового ускорения и радиуса от центра вращения перпендикулярно этим векторам.

Таким образом, достаточно знать величину и направление действия сил инерции и взаимодействия, чтобы определить траекторию движения тела относительно любой системы отсчёта.

Кроме сил инерции и взаимодействия тел существуют силы переменной массы, являющиеся следствием действия сил инерции. Рассмотрим второй закон Ньютона в дифференциальной форме [ 2, с.77]

dP /dt = ∑F , (1.7)

где: P – импульс системы тел; ∑F – сумма внешних сил.

Известно, что импульс системы тел в общем случае зависит от времени и, соответственно, равен

P (t) = m(t)v (t), (1.8)

где: m(t) – масса системы тел; v (t) – скорость системы тел.

Так как скорость - это производная по времени координат системы, то

v (t) = dr (t)/dt, (1.9)

где r – радиус-вектор.

В дальнейшем будем подразумевать зависимость от времени: массы, скорости и радиуса-вектора. Подставим (1.9) и (1.8) в (1.7) получим

d(m (dr /dt))/dt = ∑F . (1.10)

Внесём массу m под знак дифференциала [ 1,с.295] , тогда

d [ (d(mr )/dt) – r (dm/dt) ] /dt = ∑F .

Производная разности равна разности производных

d [ (d(mr )/dt) ] dt – d [ r (dm/dt) ] /dt =∑F .

Проведём подробное дифференцирование каждого слагаемого по правилам дифференцирования произведений

m(d 2 r /dt 2) + (dm/dt)(dr /dt) + (dm/dt)(dr /dt) +

+ r (d 2 m/dt 2) – r (d 2 m/dt 2) - (dm/dt)(dr /dt) = ∑F . (1.11)

Приведём подобные члены и запишем уравнение (1.11) в следующем виде

m(d 2 r /dt 2) = ∑F - (dm/dt)(dr /dt). (1.12)

В правой части уравнения (1.12) сумма всех внешних сил. Последнее слагаемое называется силой переменной массы, то есть

F пм = - (dm/dt)(dr /dt). (1.13)

Таким образом, к внешним силам добавляется ещё одна внешняя сила - сила переменной массы. Выражение в первой скобке правой части уравнения (1.13) - это скорость изменения массы, а выражение во второй скобке - это скорость отделения (присоединения) частиц. Таким образом, эта сила действует при изменении массы (реактивная сила) [ 2, с.120] системы тел с отделением (присоединением) частиц с соответствующей скоростью относительно этой системы тел. Уравнение (1.12) - это уравнение Мещерского [ 2, с.120] , знак минус указывает на то, что уравнение выведено в предположении действия внутренних сил (отделение частиц). Так как уравнение (1.12) выведено в предположении изменения импульса системы тел под воздействием внутренних сил, порождающих внешние, точным математическим методом, поэтому при его выводе в выражении (1.11) появились ещё две силы , которые не участвуют в изменении импульса системы тел, так как они при приведении подобных членов сокращаются. Перепишем уравнение (1.11), учитывая уравнение (1.13), не сокращая подобные члены, следующим образом

m(d 2 r /dt 2) + r (d 2 m/dt 2) +(dm/dt)(dr /dt) = ∑F + F пм + r (d 2 m/dt 2) +(dm/dt)(dr /dt). (1.14)

Обозначим предпоследний член выражения (1.14) через F m , а последний через F д, тогда

m(d 2 r /dt 2) + r (d 2 m/dt 2) + (dm/dt)(dr /dt) = ∑F + F пм + F m + F д. (1.15)

Так как сила F m не участвует в изменении импульса, то её можно записать отдельным уравнением

F m = r (d 2 m/dt 2). (1.16)

Рассмотрим физический смысл уравнения (1.16), для этого перепишем его в следующем виде

r = F m /(d 2 m/dt 2). (1.17)

Отношение силы к ускоренному росту массы в определённом объёме является величиной постоянной или пространство, занимаемое определённым количеством вида вещества, характеризуется минимальным объёмом. Сила F m статическая и выполняет функцию давления.

Сила F д также не участвует в изменении импульса системы тел, поэтому запишем её отдельным уравнением и рассмотрим её физический смысл

F д = (dm/dt)(dr /dt). (1.18)

Сила F д - это сила давления, оказываемая веществом, находящимся в жидком или газообразном состоянии на окружающее пространство. Характеризуется количеством, массой и скоростью частиц, обеспечивающих давление в определённом направлении. Следует отметить, что сила давления F д совпадает с силой переменной массы F пм и их разграничение произведено только для определения характера действия в различных условиях. Таким образом, уравнение (1.15) полностью описывает состояние вещества. То есть, рассматривая уравнение (1.15), можно заключить, что вещество характеризуется массой как мерой инертности, минимальным пространством, которое может занимать данное количество вещества без изменения его свойств и давлением, оказываемым веществом в жидком и газообразном состоянии на окружающее пространство.

§2. Характеристика действия сил инерции и переменной массы.

Поступательное ускоренное движение тела происходит под действием силы по второму закону Ньютона. То есть изменение величины скорости тела происходит при наличии ускорения и силы, вызвавшей это ускорение.

Использование центробежной силы инерции для поступательного движения возможно только при увеличении линейной скорости источников этих сил , так как при ускоренном движении системы силы инерции источников в направлении увеличения скорости системы уменьшаются вплоть до полного исчезновения. Кроме того, поле сил инерции должно быть неоднородным и иметь максимальное значение в части системы по направлению поступательного движения.

Рассмотрим движение тела (рис.2.1) массой m по окружности радиусом R.

Рис. 2.1.

Центробежная сила F ц, с которой тело давит на окружность, определяется формулой

F ц = m ω 2 R . (2.1)

Используя известное соотношение ω = v /R, где v линейная скорость тела перпендикулярная радиусу R, запишем формулу (2.1) в следующем виде

F ц = m v 2 / R . (2.2)

Центробежная сила действует в направлении радиуса R . Теперь мгновенно разорвём окружность, по которой движется тело. Опыт показывает, что тело полетит по касательной в направлении линейной скорости v , а не в направлении действия центробежной силы. То есть при отсутствии опоры, центробежная сила мгновенно исчезает.

Пусть тело массой m движется по элементу полуокружности (рис.2.2) радиусом R, причём полуокружность движется с ускорением w П перпендикулярно диаметру.

Рис. 2.2.

При равномерном движении тела (линейная скорость не меняется по величине), и ускоренном полуокружности, опора в виде полуокружности мгновенно исчезает и центробежная сила будет равна нулю. Если тело движется с положительным линейным ускорением, то оно будет догонять полуокружность и, центробежная сила будет действовать. Найдём линейное ускорение w тела, при котором центробежная сила действует, то есть давит на полуокружность. Для этого время, затраченное телом на путь по касательной до пересечения со штриховой линией параллельной диаметру и проведённой через точку В (рис.2.2), должно быть меньше или равно времени, которое затратит полуокружность в направлении перпендикулярном диаметру. Пусть начальные скорости тела и полуокружности равны нулю и затраченное время одинаково, тогда путь S АС, пройденный телом

S АС = w t 2 /2, (2.3)

а путь, пройденный полуокружностью S АВ будет

S АВ = w П t 2 /2. (2.4)

Разделим уравнение (2.3) на (2.4) получим

S АС / S АВ = w / w П.

Тогда ускорение тела w с учётом очевидного соотношения S АС / S АВ = 1/ cosΨ

w = w П /cosΨ, (2.5)

где 0 £ Ψ £ π/2.

Таким образом, проекция ускорения тела в элементе окружности на данное направление (рис.2.2) должна быть всегда больше или равна ускорению системы н том же направлении для поддержания в действии центробежной силы. То есть центробежная сила выступает в качестве поступательной движущей силы только при наличии положительного ускорения, изменяющей величину линейной скорости тела в системе

Аналогично получается соотношение для второй четверти полуокружности (рис.2.3).

Рис. 2.3.

Только путь, проходимый телом по касательной будет начинаться из точки на движущейся с ускорением полуокружности до пересечения со штриховой линией параллельной диаметру и, проходящей через точку А начального положения полуокружности. Угол в этом случае определяется интервалом π/2 ³ Ψ ³ 0.

Для системы, тело в которой движется равномерно или с замедлением по окружности, центробежная сила не вызовет поступательного ускоренного движения системы, так как линейное ускорение тела будет равно нулю или тело будет отставать от ускоренного движения системы.

Если тело вращается с угловой скоростью ω и одновременно приближается к центру окружности со скоростью v , тогда возникает кориолисова сила

F к = 2m [v ω ]. (2.6)

Типичный элемент траектория показана на рис.2.4.

Рис. 2.4.

Все формулы (2.3),(2.4),(2.5) и выводы для поддержания в действии центробежной силы циркулирующей среды будут верны и для кориолисовой силы, так как при ускоренном движении системы тело, движущееся с положительным линейным ускорением, будет успевать за ускорением системы и, соответственно, двигаться по криволинейной траектории, а не по касательной прямой, когда кориолисова сила отсутствует. Кривую надо разделить на две половины. В первой половине кривой (рис.4) угол меняется от начальной точки до нижней в интервале -π/2 £ Ψ £ π/2, а во второй половине от нижней точки до центра окружности π/2 ³ Ψ ³ 0. Аналогично, при вращении тела и одновременном удалении (рис.2.5) его от центра, кориолисова сила действует как поступательная при положительном ускорении величины линейной скорости тела.

Рис. 2.5.

Интервал углов в первой половине от центра окружности до нижней точки 0 £ Ψ £ π/2, а во второй половине от нижней точки до конечной π/2 ³ Ψ ³ -π/2.

Рассмотрим поступательную силу инерции F п (рис.2.6), которая определяется по формуле

F п = -m w, (2.7)

где w – ускорение тела.

Рис. 2.6.

При положительном ускорении тела она действует против движения, а при отрицательном ускорении (замедлении) она действует по направлению движения тела. При воздействии элемента ускорения или замедления (рис.2.6) на систему, с которой связаны элементы, ускорение тела элемента по модулю, очевидно, должно быть больше модуля ускорения системы, вызванной поступательной силой инерции тела. То есть поступательная сила инерции выступает в качестве движущей при наличии положительного или отрицательного ускорения.

Фазовая сила инерции F ф (сила инерции, вызванная неравномерностью вращения) определяется формулой

F ф = -m [(dω /dt)R ]. (2.8)

Пусть радиус R перпендикулярен вектору угловой скорости ω , тогда в скалярном виде формула (2.8) приобретает вид

F ф = -m (dω/dt)R. (2.9)

При положительном угловом ускорении тела (рис.1.7) она действует против движения, а при отрицательном угловом ускорении (замедлении) она действует по направлению движения тела.

Рис. 2.7.

Используя известное соотношение ω = v /R, где v линейная скорость тела перпендикулярная радиусу R, запишем формулу (2.9) в следующем виде

F ф = -m (dv/dt). (2.10)

Так как dv/dt =w , где w – линейное ускорение тела, то уравнение (2.10) приобретает вид

F ф = -m w (2.11)

Таким образом, формула (2.11) аналогична формуле (2.7) для поступательной силы инерции, только ускорение w надо разложить на параллельную α II и перпендикулярную α ┴ составляющие (рис.2.8) по отношению к диаметру элемента полуокружности.


Рис. 2.8.

Очевидно, перпендикулярная составляющая ускорения w ┴ создаёт вращающий момент, так как в верхней части полуокружности она направлена влево, а в нижней части вправо. Параллельная составляющая ускорения w II создаёт поступательную силу инерции F фII , так как она направлена в верхней и нижней части полуокружности в одну сторону, совпадающую с направлением w II .

F фII = -m w II . (2.12)

Используя соотношение w II = w cosΨ, получим

F фII = -m w cosΨ, (2.13)

где угол Ψ находится в интервале -π/2 £ Ψ £ π/2.

Таким образом, получена формула (2.13) расчёта элемента фазовой силы инерции для поступательного движения. То есть фазовая сила инерции выступает в качестве движущей при наличии положительного или отрицательного линейного ускорения.

Итак, выделено четыре элемента поступательной силы инерции: центробежный, кориолисовый, поступательный, фазовый. Соединяя отдельные элементы определённым образом, можно соэдавать системы поступательной движущей силы инерции .

Рассмотрим силу переменной массы, определяемой формулой

F пм = - (dm/dt)(dr /dt). (2.14)

Так как скорость отсоединения (присоединения) частиц относительно системы тел равна

u =dr /dt, (2.15)

тогда уравнение (2.14) запишем так

F пм = -u (dm/dt). (2.16)

В уравнении (2.16) сила переменной массы ─ это значение силы, производимое отделяющейся частицей во время изменения её скорости от нуля до u или значение, производимое присоединяющейся частицей во время изменения её скорости от u до нуля. Таким образом, сила переменной массы действует в момент ускорения или замедления частиц, то есть она является поступательной силой инерции, но рассчитываемой по другим параметрам. С учётом выше написанного возникает необходимость уточнения вывода формулы Циолковского . Уравнение (1.12) перепишем в скалярном виде и положим ∑F = 0, тогда

m(d 2 r/dt 2) = - (dm/dt)(dr/dt). (2.17)

Так как ускорение системы

d 2 r/dt 2 = dv/dt,

где v – скорость системы, тогда уравнение (2.17) с учётом уравнения (2.15) будет

m(dv/dt) = - (dm/dt)u. (2.18)

Умножим уравнение (2.17) на dt получим

mdv = -udm, (2.19)

то есть, зная максимальную скорость u = u O отделения частиц, которую считаем постоянной, можно по соотношению начальной m O и конечной масс m определить конечную скорость системы v

v = -u O ∫ dm /m = u O ln(m O /m). (2.20)

m O /m = е v/uo . (2.21)

Уравнение (2.21) - это уравнение Циолковского.

§3. Контур циркулирующей среды центробежной силы инерции.

Рассмотрим циркуляцию среды по тору (рис. 3.1) со средним радиусом R, двигающейся с угловой скоростью ωотносительно центраО. Модульцентробежной силы, действующий на точечный элемент потока массой ∆m,будет равен

F= ∆m ω 2 R.

В любом сечении кольца для одинаковых элементов центробежная сила будет по величине одинакова и направлена по радиусу от центра, растягивая кольцо. От направления вращения центробежная сила не зависит.

Рис. 3.1.

Теперь произведём расчёт суммарной центробежной силы , действующей перпендикулярно диаметру верхней полуокружности (рис.3.2). Очевидно, что в направлении из середины диаметра перпендикулярная проекция силы будет максимальна, плавно спадая к краям полуокружности, из-за симметричности кривой относительно средней линии. Кроме того, равнодействующая проекций центробежных сил, действующих параллельно диаметру, будет равна нулю, так как они равны и противоположно направлены.

Рис. 3.2.

Запишем элементарную функцию центробежной силы, действующей на точечный отрезок массой m и длиной ℓ:

F=m ω 2 R. (3.1)

Масса точечного элемента равна плотности потока, умноженной на его объём

m=ρV. (3.2)

Длина половины тора по средней линии

где π – число пи.

Объём половины тора

V = π 2 Rr 2 = πR π r 2 = ℓ π r 2 ,

где r – радиус трубки тора.

Для элементарного объёма запишем

V = ℓ π r 2 .

Известно, что для окружности

ℓ= RΨ,

V = π r 2 RΨ. (3.3)

Подставим выражение (3.3) в (3.2) получим:

m=ρ π r 2 RΨ. (3.4)

Теперь подставим (3.4) в (3.1), тогда

F= ρ π r 2 ω 2 R 2 Ψ.

Центробежная сила, действующая в перпендикулярном направлении (рис.2)

F ┴ = ∆ Fcos((π/2)- Ψ).

Известно, чтоcos((π/2)- Ψ)=sin Ψ, тогда

F ┴ = ∆ F sin Ψ.

Подставим значение для F получим

F ┴ = ρ π r 2 ω 2 R 2 sin ΨΨ.

Найдём суммарную центробежную силу, действующую в перпендикулярном направлении в интервале от 0 до Ψ

F ┴ = ∫ ρ π r 2 ω 2 R 2 sin ΨdΨ.

Проинтегрируем это выражение, тогда получим

F ┴ = - ρ π r 2 ω 2 R 2 cosΨ│. (3.5)

Положим, что ускорение w циркулирующей среды в десять раз больше ускорения системы w с, то есть

В этом случае, согласно формуле (2.5) получим

Вычислим угол действия сил инерции в радианах

Ψ ≈ 0,467 π,

что соответствует углу в 84 градуса.

Таким образом, угловой интервал действия сил инерции составляет

0 £ Ψ £ 84° в левой половине контура и симметрично 96°£ Ψ £ 180° в правой половине контура. То есть интервал отсутствия действующих сил инерции во всём контуре составляет около 6,7% (реально, ускорение циркулирующей среды значительно больше ускорения системы, поэтому интервал отсутствия действующих сил инерции будет менее 1% и его можно не учитывать). Для определения суммарной центробежной силы, в этих интервалах углов, достаточно подставить первый интервал в формулу (3.5) и, вследствие симметрии, умножить на 2 получим

F ┴ = - 2ρ π r 2 ω 2 R 2 cosΨ│. (3.6)

После несложных вычислений получаем

F ┴ = 1,8 ρ π r 2 ω 2 R 2 .

Известно, что угловая скорость

F ┴ = 1,8 ρ π r 2 v 2 .

Так как циркулирующая среда должна двигаться с ускорением, чтобы действовала сила инерции, поэтому выразим линейную скорость через ускорение, полагая начальную скорость равной нулю

F ┴ = 1,8 ρ π r 2 (w t) 2 . (3.8)

Среднее значение за время действия положительного ускорения, которое считаем постоянным, будет

F ┴СР = ((1,8ρ π r 2 w 2)/t) ∫t 2 dt.

После вычислений получаем

F ┴СР = 0,6ρ π r 2 w 2 t 2 . (3.9).

Таким образом, был выделен контур циркулирующей среды, из которых можно составить замкнутую цепь и просуммировать их центробежные силы.

Составим замкнутую цепь из четырёх контуров разных сечений (рис.3.3): два верхних контура радиусом R. сечением S и два нижних контура радиусом R 1 сечением S 1 , пренебрегая краевыми эффектами при переходе циркулирующей среды с одного сечения на другое. Пусть S < S 1 и радиус

R 1 < R. Плотность циркулирующей среды одинакова. Тогда согласно уравнению неразрывности отношение скоростей потока в разных сечениях обратно пропорционально их сечениям, то есть

v/v 1 = S 1 /S = r 1 2 /r 2 , (3.10)

где r 1 и r радиусы потока циркулирующей среды соответствующего сечения.

Кроме того, запишем очевидное отношение для скоростей и ускорений

v/v 1 = w / w 1 . (3.11)

Найдём ускорение среды нижнего контура, используя для вычислений уравнение (3.10) и (3.11)

w 1 = w r 2 / r 1 2 . (3.12)

Теперь, согласно уравнению (3.9), определим центробежную силу для нижнего контура, учитывая уравнение (3.12) и после вычислений получим

F ┴СР1 = 0,6 ρ π r 1 2 w 1 2 = 0,6ρ π r 2 w 2 t 2 (r 2 / r 1 2) = F ┴СР (r 2 / r 1 2) (3.13)

При сравнении выражения для центробежной силы верхнего контура (3.9) и нижнего контура (3.13) вытекает, что они отличаются на величину (r 2 / r 1 2).

То есть при r < r 1 центробежная сила верхнего контура больше, чем нижнего.

Рис. 3.3.

Равнодействующая центробежных сил, действующая на два контура в верхней полуплоскости (граница верхней и нижней полуплоскости показана тонкой линией) противоположно направлена равнодействующей центробежных сил, действующей на два контура в нижней полуплоскости. Очевидно, что суммарная F Ц центробежная сила будет действовать в направлении,как показано на рисунке 3.3, примем это направление за положительное. Вычислим суммарную F Ц центробежную силу

F Ц = 2 F ┴СР - 2F ┴СР1 = 1,2ρ π r 2 w 2 t 2 (1- (r 2 / r 1 2)) (3.14)

Как видим, суммарная центробежная сила зависит от плотности потока, сечений противоположных контуров и ускорения потока. От радиуса контуров суммарная центробежная сила не зависит. Для системы, циркулирующая среда в которой движется равномерно или с замедлением по окружности, центробежная сила не вызовет поступательного ускоренного движения системы.

Таким образом, был выделен базисный контур циркулирующей среды, показана возможность использования контуров циркулирующей среды разных сечений для суммирования центробежной силы в определённом направлении и изменения общего импульса замкнутой системы тел под действием внешних сил инерции, вызванных внутренними силами.

Пусть r = 0,025м; r 1 = 0,05м; ρ = 1000 кг/м 3 ; w = 5м/с 2 , t = 1с, тогда за время действия положительного ускорения среднее значение суммарной центробежной силы F Ц.≈ 44Н.

§4. Контур циркулирующей среды кориолисовой силы инерции.

Известно, что кориолисова сила инерции возникает при вращении тела массой m по окружности и одновременном радиальном перемещении его, причём она перпендикулярна угловой скорости ω и скорости радиального перемещения v . Направление кориолисовой силы F совпадает с направлением векторного произведения в формуле F = 2m[v w ].

Рис. 4.1.

На рис.4.1 показано направление кориолисовой силы при вращении тела по окружности против часовой стрелки и радиальном перемещении его к центру окружности за первый полупериод,. а на рис.4.2 показано направление кориолисовой силы при вращении тела по окружности также против часовой стрелке и радиальном перемещение его от центра окружности за второй полупериод.

Рис. 4.2.

Совместим левую часть движения тела на рис.4.1 и правую часть на рис.4.2. тогда получим на рис. 4.3 вариант траектории движения тела за период.

Рис. 4.3.

Рассмотрим движение циркулирующей среды (жидкости) по трубам изогнутым соответственно траектории. Кориолисовы силы левой и правой кривой действуют в секторе 180 градусов в радиальном направлении при движении от точки В к точке О влево и вправо соответственно относительно оси Х. Составляющие кориолисовой силы левой и правой кривой F| | параллельные прямой АС компенсируют друг друга, так как одинаковы, противоположно направлены и симметричны относительно оси Х. Симметричные составляющие кориолисовой силы левой и правой кривой F^ перпендикулярные прямой АС складываются, так как направлены в одну сторону.

Вычислим величину кориолисовой силы, действующей по оси Х на левой половине траектории. Так как составление уравнения траектории представляет сложную задачу, то решение по нахождению кориолисовой силы ищем приближённым методом. Пусть v - это скорость жидкости постоянная по всей траектории. Радиальную скорость v р и линейную скорость вращения v л, согласно теореме параллелограмма скоростей, выразим (рис.3) через скорость v и угол α

v р = v cosα, v л = v sinα.

Траектория движения (рис.4.3) построена с учётом того, что в точке В радиальная скорость v р равна нулю, а линейная v л равна v. В центре окружности О, радиусом Rо, радиальная скорость v р равна v, а линейная v л равна нулю, причём касательная траектории в центре окружности перпендикулярна касательной траектории в начале (точка В). Радиус монотонно уменьшается от Rо до нуля. Угол α меняется от 90° в точке В до 0° в центре окружности. Тогда, из графических построений, выбираем длину траектории 1/4 длины окружности радиусом R 0 . Теперь можно вычислить массу жидкости, используя формулу объёма тора. То есть масса циркулирующей среды будет равна 1/4 массы тора со средним радиусом R 0 и внутренним радиусом трубы r

m = ρπ 2 r 2 R 0 /2, (4.1)

где ρ – плотность жидкости.

Модуль проекции кориолисовой силы в каждой точке траектории на ось Х находим по формуле

F^ = 2m v р ср ω ср cos b , (4.2)

где v р ср – среднее значение радиальной скорости; ω ср – среднее значение угловой скорости; b – угол между кориолисовой силой F и осью Х (-90° £ b £ 90° ).

Для технических расчётов можно не учитывать интервал отсутствия действия сил инерции, так как ускорение циркулирующей среды значительно больше ускорения системы. То есть выбираем интервал углов между кориолисовой силой F и осью Х (-90° £ b £ 90° ). Угол α меняется от 90° в точке В до 0° в центре окружности, тогда среднее значение радиальной скорости

v р ср = 1 / (0 - π/2) ∫ v cos α dα = 2 v / π. (4.3)

Среднее значение угловой скорости будет равно

ω ср = (1/ ((v π /2Rо) - v Rо))) ∫ ω dω = (v /2Rо) ((π /2.) +1). (4.4)

Нижний предел угловой скорости интеграла в формуле (4.4) определяем в начальной точке В. Он, очевидно, равен v /Rо. Верхнее значение интеграла определяем как предел отношения

ℓim (v л /R) = ℓim (v sinα /R), (4.5)

v л ® 0 α ® 0

R ® 0 R ® 0

где R – текущий радиус.

Воспользуемся известным методом [ 7, с.410] отыскания пределов для функций нескольких переменных: функция vsinα /R в точке (R= 0, α = 0) на любой прямой R = kα , проходящей через начало координат имеет предел. В данном случае предел не существует, но существует предел для определённой прямой. Найдём коэффициент к в уравнении прямой, проходящей через начало координат.

При α = 0 ® R= 0, при α = π /2 ® R= Rо (рис.3), отсюда к = 2Rо/π , тогда формула (5) преобразуется к виду, включающем первый замечательный предел

ℓim (v π sinα /2Rо α) = (v π/2Rо) ℓim sinα/α = v π/2Rо. (4.6)

α ® 0 α ® 0

Теперь подставим полученное значение из формул (4.1), (4.3) и (4.4) в (4.2) получим

F^ = ρ π r 2 v 2 ((π /2.) +1) cos b .

Найдём сумму проекций кориолисовой силы в интервале (-90° £ b £ 90° ) для левой кривой.

90°

F^ = ρ π r 2 v 2 ((π /2.) +1) ∫ cos b db = 2 ρ π r 2 v 2 ((π /2.) +1).

90°

Окончательно сумма проекций кориолисовой силы для левой и правой кривой

∑F^ = 4ρ r 2 v 2 ((π /2.) +1). (4.7)

Согласно соотношению (3.7), уравнение (4.7) перепишем в виде

∑F^ = 4ρ r 2 (w t) 2 ((π /2.) +1). (4.8)

Вычислим среднее значение кориолисовой силы по времени, считая ускорение постоянным

Fк = ∑F^ ср = 4ρ r 2 w 2 ((π /2.) +1) / t) ∫t 2 dt.

После вычислений получаем

Fк ≈ 1,3ρ r 2 w 2 ((π /2.) +1)t 2 . (4.9)

Пусть r = 0,02м; w = 5м/с 2 ; ρ = 1000кг/м 3 ; t = 1c, тогда суммарная средняя кориолисова сила инерции за время действия положительного ускорения циркулирующей среды будет Fк ≈ 33Н.

В центре окружности в траектории имеется перегиб (рис.4.3), который можно интерпретировать, для упрощения расчётов, как полуокружность с малым радиусом. Для наглядности разделим траекторию на две половины и вставим в нижнюю часть полуокружность, а в верхнюю часть прямую, как показано на рис.4.4 и направим циркулирующую среду по трубе радиусом r, изогнутой по форме траектории.

Рис. 4.4.

В формуле (3.5) положим угол Ψ = 180° , тогда суммарная центробежная сила Fц, действующая в перпендикулярном направлении для контура циркулирующей среды

Fц = 2 ρπ r 2 v 2 . (4.10)

Таким образом, центробежная сила не зависит от радиуса R, а зависит только от угла интегрирования (см. формулу (3.5)) при постоянной плотности потока ρ, радиуса r и скорости циркулирующей среды v в каждой точке траектории. Так как радиус R может быть любым, то можно заключить, что для любой выпуклой кривой с краями перпендикулярными прямой АОБ (рис.3.2) центробежная сила будет определяться выражением (4.10). Следует отметить, как следствие, что каждый край выпуклой кривой может быть перпендикулярен своей прямой, которые параллельны и не лежат на одной линии.

Сумма проекций центробежных сил (рис.4), действующих против направления оси Х, возникающих в полуокружности и двух половинках выпуклой кривой (прямая не вносит вклад в центробежную силу) над ломаной линией и проекций, действующих по оси Х, возникающих в двух выпуклых кривых под ломаной линией компенсируются, так как они одинаковы и направлены в противоположные стороны. Таким образом. центробежная сила не вносит вклад в поступательное движение.

§5. Твёрдотельные вращательные системы. Центробежные силы инерции.

1. Вектор собственной угловой скорости стержней перпендикулярен вектору угловой скорости центра масс стержня и радиусу общей оси вращения стержней.

Энергия поступательного движения может переходить в энергию вращательного движения и наоборот . Рассмотрим пару противоположных стержней длиной ℓ с точечными грузами одинаковой массы на концах, равномерно вращающихся вокруг собственного центра масс и вокруг общего центра О радиусом R с угловой скоростью ω (рис. 5.1): полуоборот стержня за один оборот вокруг общей оси. Пусть R ³ ℓ/2. Для полного описания процесса достаточно рассмотреть вращение в интервале углов 0 £ α £ π/2. Расставим силы, действующие параллельно оси Х, проходящей через общий центр О и положение стержней под углом α = 45 градусов, в плоскости оси Х и общей оси вращения, как показано на рисунке 5.1.


Рис. 5.1.

Угол α связан с частотой ω и временем t соотношением

α = ωt/2, (5.1.1)

так как полуоборот стержня происходит за один оборот вокруг общей оси. Очевидно, что центробежные силы инерции удалённых грузов от центра будут больше, чем ближних. Проекции центробежных сил инерции на ось Х будут

Fц1 = mω 2 (R - (ℓ/2) cos α) sin 2α (5.1.2)

Fц2 = mω 2 (R + (ℓ/2) cos α) sin 2α (5.1.3)

Fц3 = - mω 2 (R + (ℓ/2) sin α) sin 2α (5.1.4)

Fц4 = - mω 2 (R - (ℓ/2) sin α) sin 2α (5.1.5)

Запишем разностную центробежную силу инерции, действующую на удалённые грузы. Разностная центробежная сила инерции на второй груз

Fц2-1 = mω 2 ℓ cosα sin2α. (5.1.6)

Разностная центробежная сила инерции на третий груз

Fц3-4 = - mω 2 ℓ sinα sin2α. (5.1.7)

Среднее значение разностных центробежных сил инерции за полуоборот будет

Fср ц2-1 = (1/(π/2))∫mω 2 ℓ cosα sin2αdα = 4mω 2 ℓ/3 π » 0,4mω 2 ℓ, (5.1.8)

Fср ц3-4 = (1/(π/2))∫mω 2 ℓ sinα sin2αdα = -4mω 2 ℓ/3 π » -0,4mω 2 ℓ. (5.1.9)

Получили две противоположные и равные по модулю центробежные силы инерции, которые являются внешними. Поэтому их можно представить в виде двух одинаковых бесконечно удалённых тел (не входящих в систему), одновременно взаимодействующих с системой: к первому телу второй груз подтягивает систему, а от второго тела третий груз отталкивает систему.

Среднее значение силы принудительного воздействия на систему за полуоборот по оси Х равно сумме сил подтягивания Fср ц2-1 и отталкивания Fср ц3-4 от внешних тел

Fп = | Fср ц2-1 | + | Fср ц3-4 | = 0,8 mω 2 ℓ. (5.1.10)

Для устранения вращающего момента системы из двух стержней в вертикальной плоскости (рис.5.2) необходимо применить ещё пару противоположных стержней, вращающихся синхронно в одной плоскости в противоположную сторону.

Рис. 5.2.

Для устранения вращающего момента системы по общей оси с центром О применяем такую же пару из четырёх стержней, но вращающихся в противоположную сторону относительно общей оси (рис.5.3).

Рис. 5.3.

Окончательно, для системы из четырёх пар вращающихся стержней (рис.5.3) сила тяги будет

Fт = 4Fп = 3,2mω 2 ℓ . (5.1.11)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; ℓ = 0,5м, тогда Fт ≈ 632Н.

2. Вектор собственной угловой скорости стержней перпендикулярен вектору угловой скорости центра масс стержня и параллелен радиусу общей оси вращения стержней.

Рассмотрим пару противоположных перпендикулярных друг другу стержней длиной ℓ с точечными грузами одинаковой массы на концах, равномерно вращающихся вокруг собственного центра масс и вокруг общего центра О радиусом R с угловой скоростью ω (рис. 5.4): полуоборот стержня за один оборот вокруг общей оси.


Рис. 5.4.

Для вычисления выбираем только m1 и m2, так как для m3 и m4 решение аналогичное. Определим угловые скорости грузов относительно общего центра О. Модули проекций линейной скорости грузов относительно собственного центра масс параллельно плоскости вращения относительно общего центра О будут (рис.5.5)

v1 = v2 = (ωℓ/4) sin (Ψ/2), (5.2.1)

где Ψ = ωt.

Выделим по модулю проекции касательной этих скоростей перпендикулярных радиусам r1 и r2 соответственно относительно центра О получим

v1R = v2R = (ω ℓ/4) sin ( Ψ/2) cos b , (5.2.2)

cos b = R /r1 = R /r2 =R/ Ö (R 2 +(ℓ 2 /4) cos 2 ( Ψ/2)), (5.2.3)

R – расстояние от центра О до центра масс грузов, r1, r2 – расстояние от грузов до центра О, причём r1 = r2.


Рис. 5.5.

Модули линейной скорости грузов относительно общего центра О без учёта их линейной скорости относительно собственного центра масс будут

vR1 = ω r1, (5.2.4)

vR2 = ω r2. (5.2.5)

Найдём суммарную угловую скорость каждого груза относительно общей оси вращения, учитывая, что линейные скорости противоположно направлены у первого груза и одинаково у второго, тогда

ω 1 = (vR1 - v1R)/r1 = ω [ 1– (ℓR sin (Ψ/2))/4(R 2 +(ℓ 2 /4)cos 2 (Ψ/2)) ] , (5.2.6)

ω 2 = (vR2 + v2R)/r2 = ω [ 1+ (ℓR ] . (5.2.7)

Соответственно центробежные силы составят

F 1 = mω 1 2 r1

F 2 = mω 2 2 r2

Или подробно

F 1 = mω 2 [ (1– (ℓR sin(Ψ/2))/4(R 2 +(ℓ 2 /4)cos 2 (Ψ/2)) ] 2 Ö (R 2 +(ℓ 2 /4)cos 2 (Ψ/2)), (5.2.8)

F 2 = mω 2 [ (1+ (ℓR sin(Ψ/2))/4(R 2 +(ℓ 2 /4)cos 2 (Ψ/2)) ] 2 Ö (R 2 +(ℓ 2 /4)cos 2 (Ψ/2)). (5.2.9)

Рассмотрим вариант, когда ℓ= 4R. В этом случае, при Ψ=180° угловая частота первого груза ω 1 = 0 и она не меняет направление, у второго груза ω 2 = 2ω (рис.5.6).

Рис. 5.6.

Перейдём к определению центробежных сил в направлении оси Х при ℓ= 4R

F 1 = mω 2 R [ (1+ 4cos 2 (Ψ/2)– sin(Ψ/2))/(1+4cos 2 (Ψ/2)) ] 2 Ö (1 + 4cos 2 (Ψ/2)), (5.2.10)

F 2 = mω 2 R [ (1+ 4cos 2 (Ψ/2)+ sin(Ψ/2))/(1+4cos 2 (Ψ/2)) ] 2 Ö (1 + 4cos 2 (Ψ/2)). (5.2.11)

Следует отметить, что с ростом угла Ψ от 0 до 180 ° в точке Ψ = b = 60 ° проекция центробежной силы F 2 меняет знак с отрицательного на положительный.

Сначала, сложим средние значения проекции на ось Х центробежной силы первого груза и среднее значение проекции второго в интервале угла

0 £ Ψ£ 60 ° , учитывая знаки, так как они противоположно направлены

F СР 1-2 = (1/(π /3))∫ (F 1 sin(b + Ψ) - F 2 sin(b - Ψ))dΨ ≈ 0,6mω 2 R, (5.2.12)

где b = arccos (1/ Ö (1 +4 cos 2 (Ψ/2))) определяется из формулы (5.2.3).

Центробежная сила F СР 1-2 в формуле (5.2.12) положительна, то есть направлена по оси Х. Теперь сложим одинаково направленные среднее значение проекции на ось Х центробежной силы первого груза и среднее значение проекции второго в интервале угла 60 ° £ Ψ£ 180 °

F СР 1+2 = (1/(π-(π/3)))∫(F 1 sin(Ψ + b )+ F 2 sin(Ψ- b ))dΨ ≈ 1,8mω 2 R, (5.2.13)

Среднее значение в интервале 0 ° £ Ψ£ 180 ° , очевидно, будет

F СР = (F СР 1-2 + 2F СР 1+2)/3 ≈ 1,4 mω 2 R. (5.2.14)

Для m3 и m4 среднее значение проекции на ось Х центробежной силы будет таким же, но действующей в противоположную сторону.

F Т = 4 F СР = 5,6mω 2 R. (5.2.15)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; ℓ= 4R , где R = 0,1м, тогда F Т ≈ 220Н.

3. Вектор собственной угловой скорости стержней параллелен и одинаково направлен с вектором угловой скорости центра масс стержня, вращающегося относительно общей оси.

Рассмотрим пару противоположных, лежащих водной плоскости, стержней длиной ℓ с точечными грузами одинаковой массы на концах, равномерно вращающихся вокруг собственного центра масс и вокруг общего центра О радиусом R с угловой скоростью ω (рис. 5.7): полуоборот стержня за один оборот вокруг общей оси.

Рис. 5.7.

Аналогично предыдущему случаю для вычисления выбираем только m1 и m2, так как для m3 и m4 решение аналогичное. Приблизительную оценку действующих сил инерции произведём при ℓ = 2R с использованием средних значений угловой скорости относительно центра О, а также средних значений расстояния от грузов до центра О. Очевидно, угловая скорость первого груза в начале будет 1,5ω второго груза 0,5ω , а через полуоборот у обоих ω. Расстояние от первого груза до центра О в начале 2R от второго груза 0, а через полуоборот от каждого R Ö 2.

Рис. 5.8.

Причём в интервале 0 ° £ Ψ£ 36 ° (рис. 5.8) центробежные силы складываются в направлении оси Х, в интервале 36 ° £ Ψ£ 72 ° (рис. 5.8, рис. 5.9) из силы первого тела вычитается сила второго и их разность действует по оси Х, в интервале 72 ° £ Ψ£ 90 ° (рис. 5.9) силы складываются и действуют противоположно оси Х.

Рис. 5.9.

Определим средние значения угловой скорости и радиусов грузов за полуоборот.

Средняя угловая скорость первого груза

ω СР 1 = (ω + 0,5ω + ω)/2 = 1,25ω. (5.3.1)

Средняя угловая скорость второго груза

ω СР 2 = (ω - 0,5ω + ω)/2 = 0,75ω. (5.3.2)

Средний радиус первого груза

R СР 1 = (2R + R Ö 2)/2 = R (2 + Ö 2)/2. (5.3.3)

Средний радиус второго груза

R СР 2 =(0 + R Ö 2)/2 = (R Ö 2)/2. (5.3.4)

Проекция центробежной силы, действующей на первый груз в направлении оси Х, будет

F 1 = mω 2 СР 1 R СР 1 cos(Ψ /2)sin2Ψ » 2,67mω 2 R cos(Ψ /2)sin2Ψ. (5.3.5)

Проекция центробежной силы, действующей на второй груз в направлении оси Х, будет

F 2 = mω 2 СР 2 R СР 2 sin(Ψ /2)sin2Ψ » 0,4mω 2 R sin(Ψ /2)sin2Ψ. (5.3.6)

° £ Ψ£ 36 ° составит

0,2 π

F СР 1 + 2 = (1/0,2 π) ∫ (F 1 + F 2)dΨ » 1,47mω 2 R. (5.3.7)

Среднее значение разности проекций центробежных сил первого и второго грузов в интервале 36 ° £ Ψ£ 72 ° составит

0,4 π

F СР 1 - 2 = (1/0,2 π) ∫(F 1 - F 2) dΨ » 1,95mω 2 R. (5.3.8)

0,2 π

Среднее значение суммы проекций центробежных сил первого и второго грузов в интервале 72 ° £ Ψ£ 90 ° составит

0,5 π

F СР- (1 + 2) = - (1/0,1 π) ∫(F 1 + F 2)dΨ » -3,72mω 2 R. (5.3.9)

0,4 π

Среднее значение суммы проекций центробежных сил первого и второго грузов в интервале 0 ° £ Ψ£ 90 ° составит

F СР = (2F СР 1 + 2 + 2F СР 1 – 2 + F СР- (1 + 2))/5 » 0,62mω 2 R. (5.3.10)

Аналогично вычисляется сумма проекций центробежных сил для третьего и четвёртого грузов.

Для устранения вращающего момента необходимо применить ещё одну пару стержней, но вращающихся в противоположную сторону относительно собственного центра масс и относительно общей оси вращения, тогда окончательно сила тяги будет

F Т = 4F СР = 2,48mω 2 R. (5 .3.11)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; R = 0,25м, тогда F Т ≈ 245Н.

§6. Фазовая сила инерции.

Для реализации фазовой силы инерции в качестве поступательной используем двухкривошипный шарнирный четырёхзвенник, чтобы преобразовать равномерное вращение двигателя в неравномерное вращение грузов по определённому режиму с оптимизацией характера движения грузов для эффективного использования сил инерции, а соответствующим выбором взаимного расположения грузов, компенсировать обратный импульс

Шарнирный четырёхзвенник будет двухкривошипным, если межцентровое расстояние АГ (Рис.6.1) будет меньше длины любого подвижного звена, а сумма межцентрового расстояния и длины наибольшего из подвижных звеньев будет меньше суммы длин двух других звеньев.

Рис. 6.1.

Звено ВГ (рычаг), на котором закреплён груз массой m, является ведомым кривошипом на неподвижном валу Г, а звено АБ ведущим. Звено А – это вал двигателя. Звено БВ является шатуном. Соотношение длин шатуна и ведущего кривошипа выбирается таким, чтобы при достижении грузом крайней точки Д был прямой угол между шатуном и ведущим кривошипом, что обеспечивает максимальный КПД. Тогда при равномерном вращении вала двигателя А с ведущим кривошипом АБ с угловой скоростью w шатун БВ передает движение ведомому кривошипу ВГ, замедляя его. Таким образом, груз замедляется от точки Е до точки Д по верхней полуокружности. В этом случае сила инерции действует по направлению движения груза. Рассмотрим движение груза в противоположной полуокружности (Рис. 6.2), где шатун, выпрямляясь, ускоряет груз.

Рис. 6.2.

В этом случае сила инерции действует против направления движения груза, совпадая с направлением силы инерции в первой полуокружности. Объединённая схема движителя показана на рисунке 6.3.

Рис. 6.3.

Ведущие кривошипы АБ и А¢ Б¢ жёстко соединены по прямой на валу двигателя, а ведомые кривошипы (рычаги) независимо друг от друга вращаются на неподвижном валу. Продольные составляющие сил инерции в направлении от точки Е до точки Д верхнего груза и нижнего складываются, обеспечивая поступательное движение. Обратный импульс отсутствует, так как грузы вращаются в одном направлении и, в среднем, симметрично противоположно расположены.

Проведём оценку действующей фазовой силы инерции.

Пусть АБ = БВ = r, ГВ = R.

Предположим, что в крайнем правом положении угол Ψ между радиусом R и средней линией ДЕ равен 0° (Рис.6.4) и

r + r – АГ = R, (6 .1)

а также в крайнем левом положении при Ψ =180° (Рис.6.5) угол

Ð АБВ = 90° . (6 .2)

Тогда, исходя из этих условий, легко определить, что предположения выполняются при следующих значениях

r = 2R/(2+Ö 2), (6 .3)

АГ = (3 - 2Ö 2)R. (6 .4)

Теперь определим угловые скорости в крайнем правом и левом положениях. Очевидно, в правом положении угловые скорости АГ и ГВ совпадают и равны w .

Рис. 6.4.

В левом положении угловая скорость w ГВ будет, очевидно, равна

w ГВ = (180° /225° )w . (6 .5)

Приращение угловой скорости ∆w за время ∆t = 225° /w = 5π/4w составит

∆w = w ГВ - w = - 0,2w . (6 .6)

Пусть угловое ускорение будет равнозамедленное, тогда

dω/dt = ∆w /∆t = - 0,16w 2 / π. (6 .7)

Воспользуемся формулой фазовой силы инерции (2.8) в скалярном виде

F ф = -m [(dω/dt)R] = 0,16mw 2 R/ π. (6.8)

Рис. 6.5.

Проекция фазовой силы инерции в направлении ЕД будет

F фЕД = 0,16mw 2 RsinΨ/π. (6.9)

Среднее значение проекции фазовой силы инерции за полупериод

F СР = 0,16mω 2 R/ π 2) ∫ sinΨdΨ = 0,32mω 2 R/ π 2 . (6.10)

Для двух грузов (рис.6.3) сила удваивается. Для устранения вращающего момента необходимо применить ещё одну пару грузов, но вращающихся в противоположную сторону. Окончательно, сила тяги для четырёх грузов составит

F Т = 4F СР = 1,28mω 2 R/ π 2 . (6.11)

Пусть m = 0,1кг; ω =2 πf, где f = 10об/с; R = 0,5м, тогда F Т = 25,6Н.

§7. Гироскоп. Кориолисова и центробежная сила инерции.

Рассмотрим колебательное движение груза массойm по полуокружности (рис.7.1) радиусом R с линейной скоростью v.Центробежная сила инерцииFц, действующая на груз массой mбудет равна m v 2 /R, направлена по радиусу от центра О. Проекция центробежной силы на ось Х будет равна

F ц׀׀ = (m v 2 /R) sin α. (7.1)

Груз должен двигаться с ускорением w по окружности, чтобы центробежная сила была действующей для поступательного движения системы, а так как v = wt, тогда

F ц׀׀ = (m w 2 t 2 /R) sin α, (7.2)

где t – время.

Рис. 7.1.

Из-за инертности груза на краях полуокружности появляется обратный импульс, который препятствует поступательному движению системы в направлении оси Х.

Известно, что при воздействии силы, изменяющей направление оси гироскопа, он прецессирует под воздействием кориолисовой силы, причём это движение безинерционно. То есть при мгновенном приложении силы, изменяющей направление оси вращения, гироскоп мгновенно начинает прецессировать и так же мгновенно останавливается при исчезновении этой силы . Вместо груза применяем гироскоп, вращающийся с угловой скоростьюω. Теперь приложим силу F перпендикулярно к оси вращения гироскопа (рис.7.2) и будем воздействовать на ось так, чтобы держатель с гироскопом совершал безинерционное колебательное движение (прецессировал) в определённом секторе (в оптимальном случае с конечным значением α = 180°). Мгновенная остановка прецессии держателя с гироскопом и возобновление её в обратную сторону происходит, когда направление силы F меняется на противоположное. Таким образом, происходит колебательное безинерционное движение держателя с гироскопом, что исключает обратный импульс, препятствующий поступательному движению по оси Х.

Рис. 7.2.

Угловая скорость прецессии

dα /dt = M / I Z ω, (7.3)

где: М – момент силы; I Z – момент инерции гироскопа; ω – угловая скорость гироскопа.

Момент силы (подразумевается, что ℓ перпендикулярно F)

М = ℓ F, (7.4)

где: ℓ – расстояние от точки приложения силы F до центра инерции гироскопа; F – сила, приложенная к оси гироскопа.

Подставим (7.4) в (7.3) получим

dα /dt = ℓ F / I Z ω, (7.5)

В правой части формулы (7.5) составляющие ℓ , I Z , ω считаем постоянными, а сила F, в зависимости от времени t, пусть меняется по кусочно-линейному закону (рис.7.3).

Рис. 7.3.

Известно, что линейная скорость связана с угловой скоростью следующим соотношением

v = R (dα /dt). (7.6)

Дифференцируя по времени формулу (7.6) получим ускорение

w = R (d 2 α /dt 2). (7.7)

Подставим формулу (7.5) в формулу (7.7) получим

w = (R ℓ / I Z ω ) (dF/dt) . (7.8)

Таким образом, ускорение зависит от скорости изменения силы F, что делает центробежную силу действующей для поступательного движения системы.

Следует отметить, что при большой угловой скорости ω и dα /dt << ω , возникающий гироскопический момент уравновешивает момент силы F, поэтому движения в направлении воздействия этой силы не происходит .

Для компенсации перпендикулярной проекции центробежной силы Fц ┴ применяем второй такой же гироскоп, совершающий колебательное движение синхронно в противофазе с первым гироскопом (рис.7.4). Проекция центробежной силы Fц ┴ у второго гироскопа будет направлена встречно проекции у первого. Очевидно, что перпендикулярные составляющие Fц ┴ скомпенсируются, а параллельные Fц׀׀ сложатся.


Рис. 7.4.

Если сектор колебаний гироскопов будет не более полуокружности, то не будет возникать противоположная центробежная сила, уменьшающая центробежную силу в направлении оси Х.

Для устранения вращающего момента устройства, возникающего из-за принудительного вращения оси гироскопов, необходимо установить ещё одну пару таких же гироскопов, оси которых вращаются в противоположную сторону. Секторы колебательного движения держателей с гироскопами в паре, оси гироскопов которых вращаются в одну сторону, должны быть симметрично направлены в одну сторону с секторами держателей с гироскопами, оси гироскопов которых вращаются в другую сторону (рис.7.5).


Рис. 7.5.

Вычислим среднее значение проекции Fц׀׀ центробежной силы для одного гироскопа (рис.7.2) на держателе, колеблющегося в секторе полуокружности от 0 до π и обозначим это значение через Fп

Fп = (1/ π) ∫ (m w 2 t 2 / R) sin α dα = 2m w 2 t 2 / Rπ. (7.9)

Для четырёх гироскопов на держателях среднее значение поступательной силы Fп за каждый полупериод будет:

Fп = 8m w 2 t 2 / Rπ. (7.10)

Пусть масса держателя намного меньше массы гироскопа, а масса гироскопа m = 1кг. Ускорение w = 5м/с 2 , причём ускорение гироскопа на порядок больше ускорения системы, тогда можно не учитывать небольшой интервал отсутствия действия центробежной силы в центре. Время нарастания скорости t = 1с. Радиус (длина) держателя R = 0,5м. Тогда по формуле (7.10) поступательная сила будет Fп = 8∙ 1∙ 5 2 ∙1 2 /0,5 π ≈ 127Н.

Литература

1. Выгодский М. Я. Справочник по высшей математике, 14-е изд., – М.: ООО «Большая медведица», АПП «Джангар», 2001, 864с.

2. Сивухин Д. В. Общий курс физики. Т.1. Механика. 5-е изд., стереот. – М.: ФИЗМАТЛИТ., 2010, 560с.

3. Шипов Г.И. Теория физического вакуума. Теория эксперименты и технологии. 2-е изд., – М.:Наука, 1996, 456с.

4.Ольховский И.И. Курс теоретической механики для физиков: Учебное пособие. 4-е изд., стер. – СПб.: Издательство «Лань», 2009, 576с.

5.Справочник по физике для инженеров и студентов вузов / Б.М.Яворский, А.А.Детлаф, А.К.Лебедев. – 8-е изд.,перераб. и испр. – М.: ООО «Издательство Оникс», «Издательство «Мир и Образование», 2008, 1056с.

6.Хайкин С.Э. Физические основы механики, 2-е изд., испр. и доп. Учебное пособие. Главная редакция физико-математической литературы. М.: Наука, 1971, 752с.

7.Зорич В.А. Математический анализ. Часть 1. Изд. 2-е, испр. и доп. М.: ФАЗИС, 1997, 554с.

8.Александров Н.В. и Яшкин А.Я. Курс общей физики. Механика. Учеб. пособие для студентов заочников физ.-мат. фак. пед. ин-тов. М., «Просвещение», 1978, 416с.

9. Геронимус Я. Л. Теоретическая механика (очерки об основных положениях): Главная редакция физико-математической литературы изд-ва «Наука», 1973г., 512с.

10.Курс теоретической механики: учебник / А.А.Яблонский, В.М.Никифорова. – 15-е изд., стер. – М.: КНОРУС, 2010, 608с.

11.Турышев М.В., О движении замкнутых систем, или при каких условиях не выполняется закон сохранения импульса, «Естественные и технические науки», №3(29), 2007, ISSN 1684-2626.

12. Айзерман М.А. Классическая механика: Учебное пособие. – 2-е изд., перераб. – М.: Наука. Главная редакция физико-математической литературы, 1980, 368с.

13. Яворский В.М., Пинский А.А. Основы физики: Учебн. В 2 т. Т.1. Механика, Молекулярная физика. Электродинамика / Под ред. Ю.И.Дика. – 5-е изд., стереот. – М.: ФИЗМАТЛИТ. 2003. – 576с.

14. Киттель Ч., Найт В., Рудерман М. Механика: Учебное руководство: Пер. с англ./Под ред. А.И.Шальникова и А.С.Ахматова. – 3-е изд., испр. – М.: Наука. Главная редакция физико-математической литературы. 1983. – (Берклеевский курс физики, Том 1). – 448с.

15.Толчин В. Н., Инерцоид, Силы инерции как источник поступательного движения. Пермь. Пермское книжное издательство, 1977, 99с.

16.Фролов А.В. Вихревой движитель, «Новая энергетика», №3 (18), 2004, ISSN 1684-7288.

17.Берников В.Р. Некоторые следствия из основного закона механики, «Журнал научных публикаций аспирантов и докторантов», №5 (71), 2012, ISSN 1991-3087.

18.Берников В.Р. Силы инерции и ускорение, «Научная перспектива», №4, 2012, ISSN 2077-3153.

19.Берников В.Р. Силы инерции и их применение, «Журнал научных публикаций аспирантов и докторантов», №11 (65), 2011, ISSN 1991-3087.

Они используются в литературе, хотя и не получили пока повсеместного распространения. В дальнейшем мы будем придерживаться данной терминологии, как позволяющей сделать изложение более сжатым и ясным.

Эйлерова сила инерции в общем случае складывается из нескольких составляющих различного происхождения, которым также присвоены специальные наименования («переносная», «кориолисова» и др.). Более детально об этом говорится в соответствующем разделе ниже.

В других языках используемые названия сил инерции более явно указывают на их особые свойства: в немецком нем. Scheinkräfte («мнимая», «кажущаяся», «видимая», «ложная», «фиктивная» сила), в английском англ. pseudo force («псевдосила») или англ. fictitious force («фиктивная сила»). Реже в английском используются названия «сила д’Аламбера » (англ. d’Alembert force ) и «инерционная сила» (англ. inertial force ). В литературе, издаваемой на русском языке, по отношению к эйлеровой и даламберовой силам также используют аналогичные характеристики, называя эти силы «фиктивными» , «кажущимися» , «воображаемыми» или «псевдосилами»

Одновременно с этим в литературе иногда подчёркивают реальность сил инерции , противопоставляя значение данного термина значению термина фиктивность . При этом, однако, различные авторы вкладывают в эти слова различный смысл, и силы инерции оказываются реальными или фиктивными не в силу отличий в понимании их основных свойств, а в зависимости от избранных определений. Такое употребление терминологии некоторые авторы считают неудачным и рекомендуют просто избегать его в учебном процессе .

Хотя дискуссия по поводу терминологии ещё не закончена, имеющиеся разногласия не влияют на математическую формулировку уравнений движения с участием сил инерции и не приводят к возникновению каких-либо недоразумений при использовании уравнений на практике.

Силы в классической механике

Действительно, физическая величина, называемая силой, вводится в рассмотрение вторым законом Ньютона, при этом сам закон формулируется только для инерциальных систем отсчёта . Соответственно, понятие силы оказывается определённым только для таких систем отсчёта .

Уравнение второго закона Ньютона, связывающее ускорение a → {\displaystyle {\vec {a}}} и m {\displaystyle m} массу материальной точки с действующей на неё силой F → {\displaystyle {\vec {F}}} , записывается в виде

a → = F → m . {\displaystyle {\vec {a}}={\frac {\vec {F}}{m}}.}

Из уравнения непосредственно следует, что причиной ускорения тел являются только силы, и наоборот: действие на тело не скомпенсированных сил обязательно вызывает его ускорение.

Третий закон Ньютона дополняет и развивает сказанное о силах во втором законе.

Никакие другие силы в классической механике в рассмотрение не вводятся и не используются . Возможность существования сил, возникших самостоятельно, без взаимодействующих тел, механикой не допускается .

Хотя в наименованиях эйлеровых и даламберовых сил инерции содержится слово сила , эти физические величины силами в смысле, принятом в механике, не являются .

Ньютоновы силы инерции

Некоторые авторы используют термин «сила инерции» для обозначения силы-противодействия из третьего закона Ньютона . Понятие было введено Ньютоном в его «Математических началах натуральной философии» : «Врождённая сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает своё состояние покоя или равномерного прямолинейного движения. От инерции материи происходит, что всякое тело лишь с трудом выводится из своего покоя или движения. Поэтому врожденная сила могла бы быть весьма вразумительно названа силою инерции. Эта сила проявляется телом единственно лишь, когда другая сила, к нему приложенная, производит изменение в его состоянии. Проявление этой силы может быть рассматриваемо двояко - и как сопротивление, и как напор.», а собственно термин «сила инерции» был, по словам Эйлера , впервые употреблён в этом значении Кеплером ( , со ссылкой на Е. Л. Николаи).

Для обозначения этой силы-противодействия некоторые авторы предлагают использовать термин «ньютонова сила инерции» во избежание путаницы с фиктивными силами, применяемыми при вычислениях в неинерциальных системах отсчёта и при использовании принципа д’Аламбера.

Отголоском ньютоновского выбора слова «сопротивление» для описания инерции является также представление о некоей силе, якобы реализующей это свойство в форме сопротивления изменениям параметров движения. В связи с этим Максвелл заметил, что с таким же успехом можно было бы сказать, что кофе сопротивляется тому, чтобы стать сладким, так как сладким он становится не сам по себе, а лишь после добавления сахара .

Существование инерциальных систем отсчёта

Ньютон исходил из предположения, что инерциальные системы отсчёта существуют и среди этих систем существует наиболее предпочтительная (сам Ньютон связывал её с эфиром, заполняющим всё пространство). Дальнейшее развитие физики показало, что такой системы нет, но это привело к необходимости выйти за пределы классической физики.

Движение в инерциальной СО

Выполнив тривиальную математическую операцию в выражении третьего закона Ньютона (5) и перенеся член из правой части в левую, получаем безупречную математически запись:

F 1 → + F 2 → = 0 {\displaystyle {\vec {F_{1}}}+{\vec {F_{2}}}=0} (6)

С физической точки зрения, сложение векторов сил имеет своим результатом получение равнодействующей силы.

В таком случае, прочтённое с точки зрения второго закона Ньютона выражение (6) означает, с одной стороны, что равнодействующая сил равна нулю и, следовательно, система из этих двух тел не двигается ускоренно. С другой стороны, здесь не высказаны никакие запреты на ускоренное движение самих тел.

Дело в том, что понятие о равнодействующей возникает лишь в случае оценки совместного действия нескольких сил на одно и то же тело. В данном же случае, хотя силы равны по модулю и противоположны по направлению, но приложены к разным телам и потому, касательно каждого из рассматриваемых тел по отдельности, не уравновешивают друг друга, поскольку на каждое из взаимодействующих тел действует лишь одна из них. Равенство (6) не указывает на взаимную нейтрализацию их действия для каждого из тел, оно говорит о системе в целом.

Повсеместно используется запись уравнения, выражающего второй закон Ньютона в инерциальной системе отсчёта:

F r → = m a r → {\displaystyle {\vec {F_{r}}}=m{\vec {a_{r}}}} (7)

Если есть результирующая всех реальных сил, действующих на тело, то это выражение, представляющее собой каноническую запись Второго закона, является просто утверждением, что получаемое телом ускорение пропорционально этой силе и массе тела. Оба выражения, стоящие в каждой части этого равенства, относятся к одному и тому же телу.

Но выражение (7) может быть, подобно (6), переписано в виде:

F r → − m a r → = 0 {\displaystyle {\vec {F_{r}}}-m{\vec {a_{r}}}=0} (8)

Для постороннего наблюдателя, находящегося в инерциальной системе и анализирующего ускорение тела, на основании сказанного выше такая запись имеет физический смысл только в том случае, если члены в левой части равенства относятся к силам, возникающим одновременно, но относящимся к разным телам. И в (8) второй член слева представляет собой такую же по величине силу, но направленную в противоположную сторону и приложенную к другому телу, а именно силу , то есть

F i 1 → = − m a r → {\displaystyle {\vec {F_{i_{1}}}}=-m{\vec {a_{r}}}} (9)

В случае, когда оказывается целесообразным разделение взаимодействующих тел на ускоряемое и ускоряющее и, чтобы отличить действующие тогда на основании Третьего закона силы, те из них, которые действуют со стороны ускоряемого тела на ускоряющее, называют силами инерции F → i 1 {\displaystyle {\vec {F}}_{i_{1}}} или «ньютоновыми силами инерции» , что соответствует записи выражения (5) для Третьего закона в новых обозначениях:

F r → = − F i 1 → {\displaystyle {\vec {F_{r}}}=-{\vec {F_{i_{1}}}}} (10)

Существенно, что сила действия ускоряющего тела на ускоряемое и сила инерции имеют одно и то же происхождение и, если массы взаимодействующих тел близки друг другу настолько, что и получаемые ими ускорения сравнимы по величине, то введение особого наименования «сила инерции» является лишь следствием достигнутой договорённости. Оно так же условно, как и само деление сил на действие и противодействие.

Иначе обстоит дело, когда массы взаимодействующих тел несравнимы между собой (человек и твёрдый пол, отталкиваясь от которого, он идёт). В этом случае деление тел на ускоряющие и ускоряемые становится вполне отчётливым, а ускоряющее тело может рассматриваться как механическая связь , ускоряющая тело, но не ускоряемая сама по себе.

В инерциальной системе отсчёта сила инерции приложена не к ускоряемому телу, а к связи.

Эйлеровы силы инерции

Движение в неинерциальной СО

Дважды продифференцировав по времени обе части равенства r = R + r ′ {\displaystyle r=R+r{^{\prime }}} , получаем:

A r → = a R → + a r ′ → {\displaystyle {\vec {a_{r}}}={\vec {a_{R}}}+{\vec {a_{r^{\prime }}}}} (11), где:

a r → = r ¨ {\displaystyle {\vec {a_{r}}}={\ddot {r}}} есть ускорение тела в инерциальной СО, далее называемое абсолютным ускорением. a R → = R ¨ {\displaystyle {\vec {a_{R}}}={\ddot {R}}} есть ускорение неинерциальной СО в инерциальной СО, далее называемое переносным ускорением. a r ′ → = r ¨ ′ {\displaystyle {\vec {a_{r^{\prime }}}}={\ddot {r}}{^{\prime }}} есть ускорение тела в неинерциальной СО, далее называемое относительным ускорением.

Существенно, что это ускорение зависит не только от действующей на тело силы, но и от ускорения системы отсчёта, в которой это тело движется, и потому при произвольном выборе этой СО может иметь соответственно произвольное значение.

Умножим обе части уравнения (11) на массу тела m {\displaystyle m} и получим:

M a r → = m a R → + m a r ′ → {\displaystyle m{\vec {a_{r}}}=m{\vec {a_{R}}}+m{\vec {a_{r^{\prime }}}}} (12)

В соответствии со вторым законом Ньютона, сформулированным для инерциальных систем, член слева является результатом умножения массы на вектор, определяемый в инерциальной системе, и потому с ним можно связать реальную силу:

M a r → = F r → {\displaystyle m{\vec {a_{r}}}={\vec {F_{r}}}} . Это сила, действующая на тело в первой (инерциальной) СО, которая будет здесь названа «абсолютной силой». Она продолжает действовать на тело с неизменными направлением и величиной в любой системе координат.

Следующая сила, определяемая как:

M a R → = F R → {\displaystyle m{\vec {a_{R}}}={\vec {F_{R}}}} (13)

по принятым для наименования происходящих движений правилам должна быть названа «переносной».

Важно, что ускорение a R → {\displaystyle {\vec {a_{R}}}} в общем случае никакого отношения к изучаемому телу не имеет, поскольку вызвано теми силами, которые действуют лишь на тело, выбранное в качестве неинерциальной системы отсчёта. Но масса, входящая в выражение, есть масса изучаемого тела. Ввиду искусственности введения такой силы её нужно считать фиктивной силой.

Перенося выражения для абсолютной и переносной силы в левую часть равенства:

M a r → − m a R → = m a r ′ → {\displaystyle m{\vec {a_{r}}}-m{\vec {a_{R}}}=m{\vec {a_{r^{\prime }}}}} (14)

и применяя введённые обозначения, получаем:

F r → − F R → = m a r ′ → {\displaystyle {\vec {F_{r}}}-{\vec {F_{R}}}=m{\vec {a_{r^{\prime }}}}} (15)

Отсюда видно, что вследствие ускорения в новой системе отсчёта на тело действует не полная сила , но лишь её часть F ′ → {\displaystyle {\vec {F^{\prime }}}} , оставшаяся после вычитания из неё переносной силы F R → {\displaystyle {\vec {F_{R}}}} так, что:

F ′ → = m a r ′ → {\displaystyle {\vec {F^{\prime }}}=m{\vec {a_{r^{\prime }}}}} (16)

тогда из (15) получаем:

F r → − F R → = F ′ → {\displaystyle {\vec {F_{r}}}-{\vec {F_{R}}}={\vec {F^{\prime }}}} (17)

по принятым для наименования происходящих движений эта сила должна быть названа «относительной». Именно эта сила вызывает движение тела в неинерциальной системе координат.

Полученный результат в разнице между «абсолютной» и «относительной» силами объясняется тем, что в неинерциальной системе, кроме силы F → r {\displaystyle {\vec {F}}_{r}} , на тело дополнительно подействовала некая сила F → i 2 {\displaystyle {\vec {F}}_{i_{2}}} таким образом, что:

F r → + F i 2 → = F ′ → {\displaystyle {\vec {F_{r}}}+{\vec {F_{i_{2}}}}={\vec {F^{\prime }}}} (18)

Эта сила представляет собой силу инерции, применительно к движению тел в неинерциальных СО. Она никак не связана с действием реальных сил на тело.

Тогда из (17) и (18) получаем:

F i 2 → = − F R → {\displaystyle {\vec {F_{i_{2}}}}=-{\vec {F_{R}}}} (19)

То есть сила инерции в неинерциальной СО равна по величине и противоположна по направлению силе, вызывающей ускоренное движение этой системы. Она приложена к ускоряемому телу.

Сила эта не является по своему происхождению результатом действия окружающих тел и полей, и возникает исключительно за счёт ускоренного движения второй системы отсчёта относительно первой.

Все входящие в выражение (18) величины могут быть независимым друг от друга образом измерены, и поэтому поставленный здесь знак равенства означает не что иное, как признание возможности распространения ньютоновской аксиоматики при учёте таких «фиктивных сил» (сил инерции) и на движение в неинерциальных системах отсчёта, и потому требует экспериментального подтверждения. В рамках классической физики это действительно и подтверждается.

Различие между силами F i 1 → {\displaystyle {\vec {F_{i_{1}}}}} и состоит лишь в том, что вторая наблюдается при ускоренном движении тела в неинерциальной системе координат, а первая соответствует его неподвижности в этой системе. Поскольку неподвижность есть лишь предельный случай движения с малой скоростью, принципиальной разницы между этими фиктивными силами инерции нет.

Пример 2

Пусть вторая СО движется с постоянной скоростью или просто неподвижна в инерциальной СО. Тогда a R → = 0 {\displaystyle {\vec {a_{R}}}=0} и сила инерции отсутствует. Движущееся тело испытывает ускорение, вызываемое действующими на него реальными силами.

Пример 3

Пусть вторая СО движется с ускорением a R → = a r → {\displaystyle {\vec {a_{R}}}={\vec {a_{r}}}} , то есть эта СО фактически совмещена с движущимся телом. Тогда в этой, неинерциальной, СО тело неподвижно вследствие того, что действующая на него сила полностью скомпенсирована силой инерции:

F i 2 → = − F r → = F i 1 → {\displaystyle {\vec {F_{i_{2}}}}=-{\vec {F_{r}}}={\vec {F_{i_{1}}}}}

Пример 4

Пассажир едет в легковом автомобиле с постоянной скоростью. Пассажир - тело, автомобиль - его система отсчёта (пока инерциальная), то есть F r → = 0 {\displaystyle {\vec {F_{r}}}=0} .

Автомобиль начинает тормозить и превращается для пассажира во вторую рассмотренную выше неинерциальную систему, к которой навстречу её движению приложена сила торможения F R → {\displaystyle {\vec {F_{R}}}} . В этой неинерциальной системе отсчёта возникает сила инерции, приложенная к пассажиру и направленная противоположно по отношению к ускорению автомобиля (то есть по его скорости): F i 2 → {\displaystyle {\vec {F_{i_{2}}}}} . Сила инерции стремится вызвать в данной системе отсчёта движение тела пассажира по направлению к ветровому стеклу .

Однако движению пассажира препятствует ремень безопасности : под действием тела пассажира ремень растягивается и с соответствующей силой воздействует на пассажира. Эта реакция ремня уравновешивает силу инерции и пассажир в системе отсчёта, связанной с автомобилем, ускорения не испытывает, оставаясь неподвижным относительно автомобиля в процессе всего торможения.

С точки зрения наблюдателя, находящегося в произвольной инерциальной системе отсчёта (например, связанной с дорогой), пассажир теряет скорость в результате действия на него силы со стороны ремня. Благодаря этой силе возникает ускорение (отрицательное) пассажира, её работа вызывает уменьшение кинетической энергии пассажира. Ясно при этом, что никаких сил инерции в инерциальной системе отсчёта не возникает, и они для описания движения пассажира не привлекаются.

Примеры использования

В некоторых случаях при расчётах удобно использовать неинерциальную систему отсчёта, например:

  • движение подвижных деталей автомобиля удобно описывать в системе координат, связанных с автомобилем. В случае ускорения автомобиля эта система становится неинерциальной;
  • движение тела по круговой траектории иногда удобно описывать в системе координат, связанной с этим телом. Такая система координат неинерциальна из-за центростремительного ускорения .

В неинерциальных системах отсчёта стандартные формулировки законов Ньютона неприменимы. Так при ускорении автомобиля, в системе координат, связанной с корпусом автомобиля, незакреплённые предметы внутри получают ускорение в отсутствие какой-либо силы, прикладываемой непосредственно к ним; а при движении тела по орбите, в связанной с телом неинерциальной системе координат тело покоится, хотя на него действует ничем не сбалансированная сила гравитации, выступавшая в качестве центростремительной в той инерциальной системе координат, в которой наблюдалось вращение по орбите.

Для восстановления возможности применения в этих случаях привычных формулировок законов Ньютона и связанных с ними уравнений движения для каждого рассматриваемого тела оказывается удобно ввести фиктивную силу - силу инерции - пропорциональную массе этого тела и величине ускорения системы координат, и противонаправленную вектору этого ускорения.

С использованием этой фиктивной силы появляется возможность краткого описания реально наблюдаемых эффектов: «почему при разгоне автомобиля пассажира прижимает к спинке сиденья?» - «на тело пассажира действует сила инерции». В инерциальной системе координат, связанной с дорогой, сила инерции для объяснения происходящего не требуется: тело пассажира в ней ускоряется (вместе с автомобилем), и это ускорение производит сила, с которой сиденье действует на пассажира .

Сила инерции на поверхности Земли

Пусть F 1 → {\displaystyle {\vec {F_{1}}}} есть сумма всех сил, действующих на тело в неподвижной (первой) системе координат, которая вызывает его ускорение . Эта сумма находится путём измерения ускорения тела в этой системе, если известна его масса.

Аналогично, F 2 → {\displaystyle {\vec {F_{2}}}} есть сумма сил, измеренная в неинерциальной системе координат (второй), вызывающая ускорение a 2 → {\displaystyle {\vec {a_{2}}}} , в общем случае отличающаяся от a 1 → {\displaystyle {\vec {a_{1}}}} вследствие ускоренного движения второй СО относительно первой.

Тогда сила инерции в неинерциальной системе координат будет определяться разницей:

F i 2 → = F 2 → − F 1 → {\displaystyle {\vec {F_{i_{2}}}}={\vec {F_{2}}}-{\vec {F_{1}}}} (19)

F i 2 → = m (a 2 → − a 1 →) {\displaystyle {\vec {F_{i_{2}}}}=m({\vec {a_{2}}}-{\vec {a_{1}}})} (20)

В частности, если тело покоится в неинерциальной системе, то есть a 2 → = 0 {\displaystyle {\vec {a_{2}}}=0} , то

F i 2 → = − F 1 → {\displaystyle {\vec {F_{i_{2}}}}=-{\vec {F_{1}}}} (21) .

Движение тела по произвольной траектории в неинерциальной СО

Положение материального тела в условно неподвижной и инерциальной системе задаётся здесь вектором r → {\displaystyle {\vec {r}}} , а в неинерциальной системе - вектором r ′ → {\displaystyle {\vec {r^{\prime }}}} . Расстояние между началами координат определяется вектором R → {\displaystyle {\vec {R}}} . Угловая скорость вращения системы задаётся вектором ω → {\displaystyle {\vec {\omega }}} , направление которого устанавливается по оси вращения по правилу правого винта . Линейная скорость тела по отношению к вращающейся СО задаётся вектором v → {\displaystyle {\vec {v}}} .

В данном случае ускорение, в соответствии с (11), будет равно сумме :

A r → = d 2 R → d t 2 + d ω → d t × r ′ → + 2 ω → × v → + ω → × [ ω → × r ′ → ] , (22) {\displaystyle {\vec {a_{r}}}={\frac {d^{2}{\vec {R}}}{dt^{2}}}+{\frac {d{\vec {\omega }}}{dt}}\times {\vec {r"}}+{2{\vec {\omega }}\times {\vec {v}}}+{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {r"}}\right],\qquad (22)}

  • первый член - переносное ускорение второй системы относительно первой;
  • второй член - ускорение, возникающее из-за неравномерности вращения системы вокруг своей оси;

Работа сил инерции

В классической физике силы инерции встречаются в двух различных ситуациях в зависимости от системы отсчёта, в которой производится наблюдение . Это - сила, приложенная к связи при наблюдении в инерциальной СО, или сила, приложенная к рассматриваемому телу, при наблюдении в неинерциальной системе отсчёта. Обе эти силы могут совершать работу. Исключением является сила Кориолиса, которая работы не совершает, поскольку всегда направлена перпендикулярно вектору скорости. В то же время сила Кориолиса может изменить траекторию движения тела и, тем самым, способствовать совершению работы другими силами (такими, как сила трения). Примером этому может служить эффект Бэра .

Кроме того, в некоторых случаях бывает целесообразно разделить действующую силу Кориолиса на две составляющие, каждая из которых совершает работу. Суммарная работа, производимая этими составляющими, равна нулю, но такое представление может оказаться полезным при анализе процессов перераспределения энергии в рассматриваемой системе .

При теоретическом рассмотрении, когда искусственно сводят динамическую задачу движения к задаче статики, вводят третий вид сил, называемый силами Даламбера, которые работы не совершают ввиду неподвижности тел, на которые эти силы действуют.



Быть может, этот не совсем обычный вопрос вызовет недоумение у обывателя, плохо знакомого с основными постулатами классической механики. Выражения «инерция» и «по инерции» прочно закрепились в бытовом лексиконе, и, казалось бы, их суть понятна каждому. Но что это такое – инерция, и почему тела могут двигаться по инерции пояснить может далеко не каждый.

Давайте попробуем разобраться в этом вопросе с использованием основных постулатов механики и более-менее научных познаний об окружающем мире.

Сначала проведем виртуальные эксперименты, результаты которых может представить каждый.
Пусть перед нами на гладком горизонтальном полу покоится увесистый чугунный шар (например, большое пушечное ядро) и один из «экспериментаторов» пробует покатить его в любую сторону, упираясь ногами в пол и подталкивая руками.
Сначала нам придется приложить значительное усилие, чтобы сдвинуть шар с места, после чего он начнет уверенно катиться в выбранном вами направлении, и если мы перестанем его толкать, он так и будет катиться (силы трения и аэродинамического сопротивления для чистоты эксперимента оставим пока без виртуального внимания).

А теперь наоборот – попробуйте остановить этот шар, вцепившись в него руками и действуя ногами, как тормозом. Чувствуете сопротивление?.. Думаю, да.
При этом никто не будет отрицать, что чем массивнее шар, тем сложнее изменить его механическое состояние, т. е. сдвинуть с места или остановить.
Итак, вывод – сдвинуть с места неподвижный шар или остановить его при движении довольно непросто – необходимо приложить ощутимое усилие. С точки зрения механики в данном случае мы прикладываем усилие, чтобы преодолеть какую-то непонятную силу.

Посмотрим на наше ядро, покоящееся на полу, пристальнее. С точки зрения опять же классической механики к нему приложены лишь две силы – сила тяжести, притягивающая шар к центру нашей планеты, а также сила реакции пола, противодействующая силе тяжести, т. е. направленная противоположно ей.
Когда наш шар катится по гладкому полу с постоянной скоростью, него тоже действуют только две описанные выше силы – притяжения к Земле и реакция опорной поверхности. Обе эти силы друг друга уравновешивают, и шар находится в равновесном состоянии. А какая же сила препятствует попытке сдвинуть шар с места или остановить его во время прямолинейного и равномерного движения?
Думаю, что самые сообразительные уже догадались – конечно же, это и есть сила инерции.
Откуда же она взялась? Ведь, по сути, мы приложили к шару только одну силу, пытающуюся сдвинуть с места или остановить шар. Где пряталась до сих пор сила инерции и когда она «проснулась»?

Учебники по механике утверждают, что силы инерции, как таковой, в природе не существует. Понятие этой силы в научный обиход ввел француз Жан Лерон Даламбер (Д’Аламбер) в 1743 году, когда предложил использовать ее для уравновешивания тел, перемещающихся с ускорением. Метод назвали принципом Даламбера , и использовали его для преобразования задач динамики в задачи статики, тем самым упрощая их решение.
Но такое решение проблемы не объяснялось и даже вступало в противоречие другими постулатами механики, в частности, с законами, описанными несколько раньше великим англичанином – Исааком Ньютоном.

Когда в 1686 году И. Ньютон, опубликовал свой труд «Математические начала натуральной философии» и открыл человечеству глаза на основные законы механики, в том числе - закон, описывающий движение тел под действием какой-либо силы (F = ma ), он несколько расширил , как меры некоторого свойства материальных тел – инертности.
В соответствии с выводами гения всем окружающим нас материальным телам присуще некое свойство «лени» - они стремятся к вечному покою, пытаясь избавиться от ускоренного движения. Эту «лень» материальных тел Ньютон и назвал их инертностью.
Т. е инертность – это не сила, а некое свойство всех тел, образующих окружающий нас материальный мир, выражающееся в противодействии попыткам изменить их механическое состояние (придать какое-либо ускорение).
Впрочем, приписывать заслуги о пояснении природы инерции одному лишь Ньютону будет не совсем справедливо. Основополагающие выводы по этому вопросу были сделаны итальянцем Г. Галилеем и французом Р. Декартом, а И. Ньютон лишь обобщил их и использовал в описании законов механики.



В соответствии с размышлениями средневековых гениев, материальные тела (т. е. тела, обладающие массой) крайне неохотно позволяют изменить свое механическое состояние, соглашаясь на это лишь под действием внешней силы. При этом тот же Ньютон, описывая законы взаимодействия тел, утверждал, что силы в природе не появляются в одиночку – они, как результат взаимодействия двух тел, появляются только парами, причем обе силы такой пары равны по модулю и направлены вдоль одной прямой навстречу друг другу, т.е. попарно компенсируют друг друга.

Исходя из этого, в случае с чугунным шаром тоже должно быть две силы – усилие экспериментатора и противодействующая этому усилию сила, обусловленная упомянутым выше свойством инертности этого шара.
Но сила, по общим понятиям классической механики является результатом взаимодействия тел. И никакое свойство тела, в соответствии с этим постулатом, не может быть причиной появления какой-либо силы.

Противоречие с законами Ньютона привело к появлению в научной среде понятий инерциальной и неинерциальной систем отсчета .
Инерциальной стали называть систему отсчета, в которой все тела при отсутствии внешних воздействий находятся в состоянии покоя, а неинерциальной – все прочие системы отсчета, относительно которых тела перемещаются с ускорением. При этом в инерциальной системе отсчета описанные Ньютоном законы механики соблюдаются безусловно, а в неинерциальной не соблюдаются.
Однако все законы классической механики вполне можно применить и для неинерциальных систем отсчета, если наряду с реально действующими силами (нагрузками и реакциями) использовать силу инерции – виртуальную силу, обусловленную все тем же злополучным свойством инертности тел.

Таким образом удалось избавиться от противоречия, вытекающего из природы возникновения сил, описанной Ньютоном, и добиться условного равновесия тел при любом ускоренном движении, используя принцип Даламбера.
Сила инерции получила право на существование, и физики стали изучать ее более пристально, без опаски быть высмеянными коллегами.

Возникновение сил инерции напрямую связано с ускорением тела – в состоянии покоя (неподвижность или прямолинейное равномерное движение тела) эти силы не возникают и проявляются только в неинерциальных системах отсчета. При этом величина силы инерции равна по модулю и противоположно направлена силе, вызывающей ускорение тела, поэтому они взаимно уравновешивают друг друга.

В реальном мире на любое тело действуют силы инерции, т. е. понятие инерциальной системы отсчета является абстрактным. Но во многих практических ситуациях можно условно принять систему отсчета инерциальной, что позволяет упростить решение задач, связанных с механическим движением материальных тел.

Связь между инерцией и гравитацией

Еще Г. Галилей указал на некоторую связь между понятиями инерции и гравитации.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому при одинаковых условиях в «поле сил инерции» эти тела движутся совершенно одинаково. И таким же свойством обладают тела, находящиеся под действием сил поля тяготения.


По этой причине в некоторых условиях силы инерции ассоциируются с силами тяготения. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы.
Этот принцип положен в основу общей теории относительности.

Какими бывают силы инерции?

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

  • силы инерции при ускоренном поступательном движении системы отсчета (обусловлены поступательным ускорением);
  • силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета (обусловлены центробежным ускорением);
  • силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (обусловлены поступательным и центробежным ускорениями, а также ускорением Кориолиса);.

Кстати, термин «инерция» имеет латинское происхождение - слово «inertia » означает бездеятельность.



Из повседневного опыта мы можем подтвердить следующее умозаключение: скорость и направление движения тела могут меняться лишь во время его взаимодействия с другим телом. Это порождает явление инерции, о котором мы и поговорим в этой статье.

Что такое инерция? Пример жизненных наблюдений

Рассмотрим случаи, когда какое-нибудь тело на начальном этапе эксперимента уже пребывает в движении. Позже мы увидим, что уменьшение скорости и остановка тела не могут происходить самовольно, ведь причиной тому является действие на него другого тела.

Вы, наверное, не единожды наблюдали, как пассажиры, которые едут в транспорте, вдруг наклоняются вперед во время торможения или прижимаются на бок на крутом повороте. Почему? Объясним далее. Когда, к примеру, спортсмены пробегают определенную дистанцию, они пытаются развить максимальную скорость. Пробежав финишную черту, уже можно и не бежать, однако нельзя резко остановиться, а поэтому спортсмен пробегает еще несколько метров, то есть совершает движение по инерции.

Из вышеперечисленных примеров можно сделать вывод, что все тела имеют особенность сохранять скорость и направление движения, не будучи в состоянии при этом мгновенно их изменить впоследствии действия иного тела. Можно предположить, что при отсутствии внешнего действия тело сохранит и скорость, и направление движения как угодно долго. Итак, что такое инерция? Это явление сохранения скорости движения тела при отсутствии воздействия на него других тел.

Открытие инерции

Такое свойство тел открыл итальянский ученый Галилео Галилей. На основе своих экспериментов и рассуждений он утверждал: ежели тело не взаимодействует с иными телами, то оно либо пребывает в состоянии спокойствия, либо движется прямолинейно и равномерно. Его открытия вошли в науку как Закон инерции, однако более детально сформулировал его Рене Декарт, а уж Исаак Ньютон внедрил в свою систему законов.

Интересный факт: инерция, определение которой привел нам Галилей, рассматривалась еще в Древней Греции Аристотелем, но из-за недостаточного развития науки, точной формулировки приведено не было. гласит: существуют такие
системы отсчета, относительно которых тело, которое движется поступательно, сохраняет свою скорость постоянной, если на него не действуют иные тела. Формула инерции в едином и обобщенном виде отсутствует, но ниже мы приведем множество иных формул, раскрывающих ее особенности.

Инертность тел

Все мы знаем, что автомобиля, поезда, корабля или других тел увеличивается постепенно, когда они начинают двигаться. Все вы видели запуск ракет по телевизору или взлет самолетов в аэропорту - они увеличивают скорость не рывками, а постепенно. Наблюдения, а также повседневная практика говорят о том, что все тела имеют общую особенность: скорость движения тел в процессе их взаимодействия меняется постепенно, а поэтому для их изменения необходимо некоторое время. Эта особенность тел получила название инертности.

Все тела инертны, но не у всех инертность одинакова. Из двух взаимодействующих тел она будет выше у того, которое обретет меньшее ускорение. Так, к примеру, при выстреле ружье приобретает меньшее ускорение, чем патрон. При взаимном отталкивании взрослого конькобежца и ребенка взрослый получает меньшее ускорение, чем ребенок. Это свидетельствует о том, что инертность взрослого человека больше.

Для характеристики инертности тел ввели особенную величину - массу тела, ее принято обозначать буквой m . Дабы иметь возможность сравнивать массы различных тел, массу кого-нибудь из них необходимо учесть за единицу. Ее выбор может быть произвольным, однако она должна быть удобной для практического употребления. В системе СИ за единицу взяли массу специального эталона, изготовленного из твердого сплава платины и иридия. Она носит всем нам известное название - килограмм. Следует отметить, что инерция твердого тела бывает 2-х видов: поступательная и вращательная. В первом случае мерой инерции является масса, во втором - момент инерции, о котором мы поговорим позже.

Момент инерции

Так называют скалярную физическую величину. В системе СИ единицей измерения момента инерции является кг*м 2 . Обобщенная формула следующая:

Здесь m i - это масса точек тела, r i - это расстояние от точек тела до оси z в пространственной системе координат. В словесной интерпретации можно сказать так: момент инерции определяется суммой произведений элементарных масс, умноженных на квадрат расстояния до базового множества.

Есть и другая формула, характеризующая определение момента инерции:

Здесь dm - масса элемента, r - расстояние от элемента dm до оси z . Словесно можно сформулировать так: момент инерции системы материальных точек или тела относительно полюса (точки) - это алгебраическая сумма произведения масс материальных точек, составляющих тело, на квадрат расстояния их до полюса 0.

Стоит упомянуть, что существует 2 вида моментов инерции - осевые и центробежные. Есть также такое понятие, как главные моменты инерции (ГМИ) (относительно главных осей). Как правило, они всегда различны между собой. Ныне можно рассчитать моменты инерции для многих тел (цилиндра, диска, шара, конуса, сферы и проч.), однако не будем углубляться в уточнение всех формул.

Системы отсчета

В 1-ом законе Ньютона шла речь о равномерном прямолинейном движении, которое можно рассматривать только в определенной системе отсчета. Даже приближенный анализ механических явлений показывает, что закон инерции выполняется далеко не во всех системах отсчета.

Рассмотрим простой эксперимент: положим мяч на горизонтальный столик в вагоне и понаблюдаем за его движением. Если поезд будет находиться в состоянии спокойствия относительно Земли, то и мяч сохранит спокойствие до тех пор, пока мы не подействуем на него иным телом (например, рукой). Следовательно, в системе отсчета, что связана с Землей, закон инерции выполняется.

Представим, что поезд будет ехать относительно Земли равномерно и прямолинейно. Тогда в системе отсчета, что связана с поездом, мяч сохранит состояние спокойствия, а в той, что связана с Землей, - состояние равномерного и прямолинейного движения. Следовательно, закон инерции выполняется не только в системе отсчета, связанной с Землей, но и во всех других, движущихся относительно Земли равномерно и прямолинейно.

Теперь представим, что поезд быстро набирает скорость либо круто поворачивает (во всех случаях он движется с ускорением относительно Земли). Тогда, как и раньше, мяч сохраняет равномерное и которое он имел до начала ускорения поезда. Однако относительно поезда мяч сам по себе выходит из состояния спокойствия, хотя и нет тел, которые бы выводили его из него. Это значит, что в системе отсчета, связанной с ускорением движения поезда относительно Земли, закон инерции нарушается.

Итак, системы отсчета, в которых выполняется закон инерции, получили название инерциальных. А те, в которых не выполняется, - неинерциальных. Определить их просто: если тело движется равномерно и прямолинейно (в отдельных случаях - это спокойствие), то система инерциальная; если движение неравномерное - неинерциальная.

Сила инерции

Это довольно многозначное понятие, а поэтому попытаемся как можно более детально его рассмотреть. Приведем пример. Вы спокойно стоите в автобусе. Внезапно он начинает двигаться, а значит, набирает ускорение. Вы мимо воли отклонитесь назад. Но почему? Кто вас потянул? С точки зрения наблюдателя на Земле вы остаетесь на месте, при этом выполняется 1-ый закон Ньютона. С точки зрения наблюдателя в самом автобусе, вы начинаете двигаться назад, будто под какой-либо силой. На самом деле ваши ноги, которые связаны силами трения с полом автобуса, поехали вперед вместе с ним, а вам,
теряя равновесие, пришлось падать назад. Таким образом, для описания движения тела в неинерциальной системе отсчета необходимо вводить и учитывать дополнительные силы, что действуют со стороны связей тела с такой системой. Эти силы и есть силы инерции.

Необходимо учесть, что они фиктивны, ибо нет ни единого тела либо поля, под действием которого вы начали двигаться в автобусе. Законы Ньютона на силы инерции не распространяются, однако их использование наряду с "настоящими" силами позволяет описывать движение у произвольных неинерциальных систем отсчета при помощи различных инструментов. В этом состоит весь смысл ввода сил инерции.

Итак, теперь вы знаете, что такое инерция, момент инерции и инерциальные системы, силы инерции. Двигаемся далее.

Поступательное движение систем

Пусть на некое тело, находящееся в неинерциальной системе отсчета, движущееся с ускорением а 0 относительно инерциальной, действует сила F. Для такой неинерциальной системы уравнение-аналог второго закона Ньютона имеет вид:

Где а 0 - это ускорение тела с массой m , что вызвано действием силы F относительно неинерциальной системы отсчета; F ін - сила инерции. Сила F в правой части является «настоящей» в том понимании, что это результирующая взаимодействия тел, зависящая только от разности координат и скоростей взаимодействующих материальных точек, которые не меняются при переходе от одной системы отсчета к другой, движущейся поступательно. Поэтому не меняется и сила F. Она инвариантна относительно такого перехода. А вот F ін возникает не по причине а из-за ускоренного движения системы отсчета, из-за чего она меняется при переходе к другой ускоренной системе, поэтому не является инвариантной.

Центробежная сила инерции

Рассмотрим поведение тел в неинерциальной системе отсчета. XOY вращается относительно инерциальной системы, коей будем считать Землю, с постоянной угловой скоростью ω. Примером может послужить система на рисунке ниже.

Выше изображен диск, где закреплен радиально направленный стержень, а также надет синий шарик, "привязанный" к оси диска эластичной веревкой. Пока диск не вращается, веревка не деформируется. Однако при раскручивании диска шарик понемногу растягивает веревку до тех пор, пока сила упругости F ср не станет такой, что равна произведению массы шарика m на ее нормальное ускорение a п = -ω 2 R, то есть F ср = -mω 2 R , где R - это радиус круга, который описывает шарик при вращении вокруг системы.

Ежели угловая скорость ω диска останется постоянной, то и шарик прекратит движение относительно оси OX. В этом случае относительно системы отсчета XOY, которая связана с диском, шарик будет находиться в состоянии спокойствия. Это объяснится тем, что в этой системе, помимо силы F ср, на шарик действует сила инерции F cf , которая направлена вдоль радиуса от оси вращения диска. Сила, имеющая вид, как в формуле, представленной ниже, называется инерции. Возникать она может только во вращающихся системах отсчета.

Сила Кориолиса

Оказывается, когда тела двигаются относительно вращающихся систем отсчета, на них, помимо центробежной силы инерции, действует еще одна сила - Кориолиса. Она всегда перпендикулярна к вектору скорости тела V, а это означает, что она не выполняет никакой работы над этим телом. Подчеркнем, что сила Кориолиса проявляет себя лишь тогда, когда тело движется относительно неинерциальной системы отсчета, которая осуществляет вращение. Ее формула выглядит следующим образом:

Поскольку выражение (v*ω) является векторным произведением приведенных в скобках векторов, то можно прийти к выводу, что направление силы Кориолиса определяется правилом буравчика по отношению к ним. Ее модуль равен:

Здесь Ө - это угол между векторами v и ω .

В заключение

Инерция - это удивительное явление, которое ежедневно преследует каждого человека сотни раз, пусть мы и сами не замечаем этого. Думаем, что статья дала вам важные ответы на вопросы о том, что такое инерция, что такое сила и моменты инерции, кто открыл явление инерции. Уверены, вам было интересно.