Мощность лазерной указки с длиной волны. Лазерная указка

Лазерная безопасность знаний

1. Что такое лазер?
Лазерное устройство, которое излучает свет (электромагнитное излучение) в процессе оптического усиления на основе вынужденного излучения фотонов. Термин "лазер" возник как аббревиатура усиление света вынужденным излучением. Испускается лазерное излучение отличается высокой степенью пространственной и временной когерентности, недостижимой с помощью других технологий.

2. Лазерная указка Структурная схема


3. Что такое лазерная приложения?
Лазеры получили широкое применение в повседневной жизни. Лазеры является наиболее применимым в презентации для указывая объекты, согласования на строительство и проект, медицинское лечение для косметических и хирургических процедур. Нижняя указатель мощности лазера идеально подходит для презентаций и астрономии звездопада. Более высокая мощность лазерного указателя до 100 mW было бы прекрасно для сжигания эксперимент. Высокой мощности класса IV лазер используется для эксперимента, научные исследования, военные и т.д. таргетинг

4. Что такое длина волны?
Наши глаза чувствительны к свету, который находится в очень маленькой области электромагнитного спектра с надписью "видимый свет". Этот видимый свет соответствует диапазон длин волн 400 - 700 нанометров (nm) и цветовую гаnmу фиолетового до красного. Человеческий глаз не способен "видеть" излучение с длинами волн за пределами видимого спектра. Видимого цвета из кратчайших в длину волны длинной являются: фиолетовый, синий, зеленый, желтый, оранжевый и красный. Ультрафиолетовое излучение имеет более короткую длину волны, чем видимый свет фиолетовый. Инфракрасное излучение имеет длину волны, чем видимый красный свет. Белый свет представляет собой смесь из цветов видимого спектра. Черный является полное отсутствие света.

Спектральные цвета и длины волны

Этот график показывает цвета видимого спектра света и связанных с длинами волн в нанометрах. Диапазоны традиционно дается как:
ультрафиолетовом свете, 100 nm, 400 nm;
видимый свет, 400 nm-750nm;
инфракрасный свет, 750 nm-1 nm.

5. Что такое лазерная поперечной моде?


Поперечная электромагнитная режиме (TEM) структура лазерного луча описывает распределение мощности по сечению пучка. Большинство приложений лазерной потребует фундаментальных режима луча (TEM00) с гауссовым распределением мощности по сечению пучка, как показано на рисунке справа. Это фундаментальные результаты в режиме наименьшего диаметра пучка и расходимость пучка и может быть сосредоточено до наименьшего возможного размера пятна.
Прочие доходы приложений с повышенной мощностью доступны в первом режиме порядке (TEM01 *), или даже мод высшего порядка. Мощность лазера имеющих режим структуры над фундаментальным обычно называют multitra nsverse режиме (MTM). Режим структуры производства лазерных может быть изменен, просто изменив зеркала.

6. Различные классификации лазеров

Класс I

По своей сути безопасны, нет возможности повреждения глаз. Это может быть либо из-за низкой выходной мощности (в случае повреждения глаз невозможно даже после нескольких часов воздействия), или из-за шкафа предотвращения доступа пользователей к лазерным лучом при нормальной эксплуатации, такие как проигрыватели компакт-дисков или лазерных принтеров.

Класс II

Рефлекс моргания человеческого глаза (отвращение ответ) позволит предотвратить повреждение глаз, если человек намеренно смотрит в пучке в течение длительного периода. Выходная мощность может быть до 1 mW. Этот класс включает в себя только лазеры, которые излучают видимый свет. Большинство лазерных указателей и коnmерческие сканеры лазерные в этой категории.

Класс IIIa

Лазеры этого класса в основном опасные в сочетании с оптическими инструментами, которые изменяют диаметр луча или плотности мощности, хотя даже без оптического инструмента повышения прямого контакта с глазом в течение двух минут может привести к серьезному повреждению сетчатки. Выходная мощность не превышает 5 mW. Плотность мощности излучения не превышает 2,5 mW / кв.см, если устройство не маркирован с "осторожностью" предупредительный знак, в противном случае "опасности" предупредительной этикетке не требуется. Многие достопримечательности лазерные для огнестрельного оружия и лазерных указателей в этой категории.

Класс IIIb

Лазеры в этом классе может привести к повреждению, если луч попадает в глаз напрямую. Как правило, это относится к лазерам питается от 5-500 mW. Лазеры в этой категории может привести к необратимому повреждению глаз с экспозиции 1/100-й секунду или меньше в зависимости от силы лазера. Диффузного отражения, как правило, не опасны, но зеркальных отражений может быть таким же опасным, как прямые воздействия. Защитные очки рекомендуется при прямом просмотре луч лазера класса IIIb может произойти. Лазеры на высоком конце мощность этого класса могут также представлять опасность возникновения пожара и может слегка обжечь кожу.

Класс IV

Лазеры в этом классе имеют выходную мощность более 500 mW в пучке и может вызвать тяжелые, необратимые повреждения глаз или кожи без увеличены оптики глаза или приборов. Диффузного отражения лазерного луча могут быть опасными для кожи или глаз в течение Номинальный зону опасности. Многие промышленные, научные, военные и медицинские лазеры в этой категории.

7. Что такое лазерная безопасность знаний?
Даже первый лазер был признан как потенциально опасные. Теодор Мейман характеризуется первый лазер как имеющий власть одного "Gillette", как это могло гореть через одну лезвие бритвы Gillette. Сегодня принято считать, что даже маломощные лазеры с помощью всего нескольких милливатт мощности могут быть опасными для человека зрение, когда луч такого лазера попадает на глаза непосредственно или после отражения от блестящей поверхности. На длинах волн, роговица и хрусталик может сосредоточиться хорошо, согласованности и малой расходимостью лазерного света означает, что она может быть направлена на глаз в очень маленькое пятно на сетчатке глаза, что приводит к локализованным жжения и повреждению в течение секунд или даже меньше времени. Лазеры обычно обозначен ряд класса безопасности, которая определяет, насколько опасны лазера:

. Класс I/1 по своей сути безопасны, как правило, потому что свет, содержащийся в корпусе, например, проигрыватели компакт-дисков.
. Класс II/2 является безопасной при нормальной эксплуатации; рефлекс моргания из глаз позволит предотвратить повреждение. Обычно до 1 mW, для указателей например лазера.
. Класс IIIa/3A лазеры, как правило, до 5 mW и привлекать небольшой риск повреждения глаз за время рефлекс моргания. Вглядываясь в таком пучке в течение нескольких секунд может привести к повреждению пятна на сетчатке.
. Класс IIIb/3B может привести к немедленному повреждению глаз при воздействии.
. Класс IV/4 лазеры могут обжечь кожу, а в некоторых случаях даже рассеянного света может вызвать раздражение глаз и / или повреждения кожи. Многие промышленные и научные лазеров в этом классе. Указанные полномочия для видимого света, непрерывно лазеров. Для импульсных лазеров и невидимых волн, другие ограничения мощности применяются.

Люди, работающие с классом 3В и 4 класса лазеров могут защитить свои глаза защитные очки, которые предназначены для поглощают свет определенной длины волны.

Некоторые инфракрасный лазеры с длиной волны за пределами около 1,4 микрометров часто упоминается как "безопасный для глаз». Это потому, что внутренняя молекулярных колебаний молекул воды очень сильно поглощают свет в этой части спектра, и, таким образом лазерный луч на этих длинах волн ослабляется настолько, как она проходит через роговицу глаза, что нет света остаются должно быть сосредоточено на объективе на сетчатку. Ярлык "безопасный для глаз" может ввести в заблуждение, однако, как это относится только к относительно малой мощности непрерывных пучков волн, любой большой мощности или модуляцией добротности лазера на этих длинах волн может сжечь роговицу, вызывая серьезные повреждения глаз.

8. Опасности лазерного излучения
Лазерные указки получили широкое применение от его первого появления. Лазеры в основном применимы в качестве инструмента для представления в преподавание, астрономии звездопада, и встреч. Тем не менее, эти лазеры постепенно принадлежащих лазерных поклонников и энтузиастов в том числе детей в связи с низкой стоимостью и бесчисленное множество поставщиков, и использоваться таким образом, не предусмотренных производителями. В результате, это серьезно Важно понимать опасности лазерных указок перед реальной обладание лазерной указкой.

Лазерная опасности
Лазерное излучение преимущественно вызывает повреждение путем термического воздействия. Даже умеренно питания лазера может привести к травмам глаз. Лазеров высокой мощности также может обжечь кожу. Некоторые лазеры настолько мощным, что даже диффузного отражения от поверхности может быть опасным для глаз.

Хотя существует потенциальная опасность для сетчатки, не все лазеры видимого пучка, вероятно, привести к необратимому повреждению сетчатки. Воздействия смотреть на луч лазерной указки, скорее всего, причиной остаточного изображения, флэш-слепоты и бликов. Временная боль в сетчатке восстановится через несколько минут.

Малым углом расходимости лазерного света и механизма фокусировки на глаза означают, что лазерный свет может быть сконцентрирован в очень маленькое пятно на сетчатке. Если лазер достаточно мощный, постоянный ущерб может происходить в течение доли секунды, буквально быстрее, чем мгновение ока. Достаточно мощный в видимой до ближней ИК лазерным излучением (400-1400nm) будет проникать глазного яблока и может привести к нагреву сетчатки, в то время как воздействие лазерного излучения с длиной волны менее 400 nm и больше, чем 1400nm в основном поглощаются роговицей и хрусталиком, приводит к развитию катаракты или ожогов.

Инфракрасные лазеры являются особенно опасными, так как защитные тела "рефлекс моргания" ответ срабатывает только видимый свет. Например, некоторые люди подвергаются воздействию высоких Nd мощность: YAG лазера с невидимым 1064 излучению, не может чувствовать боль или заметите непосредственного ущерба их зрение. Поп-музыка или звук щелчка, вытекающих из глазного яблока может быть единственным признаком того, что повреждение сетчатки произошло то есть сетчатка нагревали до 100 ° C в результате локализованного взрывного вскипания сопровождается немедленного создания постоянного слепое пятно.

Ответственные владельцы лазерных должны полностью понимать опасности лазерного излучения, и признать FAA правила, связанные с использованием лазерной указки. Защитные очки, как правило, требуется, когда непосредственное наблюдение мощный луч может произойти.

9. Как защитить себя от лазерной опасности?
Это весьма важно для принятия эффективных методов предотвращения ущерба от класса 3В или класса IIIb. Лазерные защитные очки являются главным аксессуаром для защиты глаз на рынке в настоящее время. Различные выбор лазерных датчиков, очки должны быть выбраны для конкретного типа, чтобы заблокировать соответствующую длину волны. Например, поглощающий 532 очков обычно имеет оранжевый очков.

Непосредственно глядя на лазерные указки строго запрещено в любых условиях. Не забывайте надевать защитные очки перед использованием лазерной указки.

Советы по безопасности лазерной указкой:

● Поставьте лазер в недоступном для несовершеннолетних. Не допускать несовершеннолетних (до 18 лет) на приобретение и использование лазерной указкой ни при каких надзора. Только взрослые могут использовать лазерные указки после того, как они поняли знаний безопасности и риска лазерных продуктов.

● Будьте особенно осторожны, если вы используете высокой мощности лазерного излучения. Вы никогда не должны пытаться указать свой лазерный указатель на любого человека и животных, пилот самолета и движущихся транспортных средств, или вы будете заключены в тюрьму в тюрьме за неправильное использование лазерных устройств.

● Хранить вдали от мощных лазеров. Пожалуйста, всегда держать себя вдали от мощных лазера, такие как сжигание лазера. Они существенно отличаются от формальных лазеров для презентации. Никогда не пытайтесь купить лазер без никакой выявить класса и мощности.

10. Как мощные лазерные указки будет?

Различные приложения должны лазеров с различной выходной мощностью. Лазеры, которые производят непрерывный пучок или серия коротких импульсов можно сравнить на основе их средней мощности. Лазеры, которые производят импульсы могут быть охарактеризованы на основе пиковая мощность каждого импульса. Пиковая мощность импульсного лазера на много порядков больше, чем его средняя мощность. Средняя выходная мощность всегда меньше, чем потребляемая мощность.

Непрерывным или средней мощности, необходимой для некоторых применений:
Мощность использование
1-5 mW лазерного указателя
5 mW компакт-дисков
5-10 mW DVD-плеер или DVD-дисков
100 mW высокоскоростной CD-RW горелки
250 mW потребительских 16x DVD-R горелки
400 mW горения через футляре диска в том числе в течение 4 секунд
1 W Зеленый лазер в текущем Голографический Универсальный развития прототип диска
1-20 W Выходная большинства коnmерчески доступных твердотельных лазеров, используемых для микро-обработки
30-100 W Типичные запечатанных СО2 хирургических лазеров
100-3000 W Типичные запечатанных CO2 лазеров, используемых в промышленных лазерной резки
5 KW Выходная мощность достигается за счет 1 см бар лазерный диод
100 KW Заявленная мощность СО2-лазера, разрабатываемый Northrop Grumman для военных (оружие) приложений

11. Что лазерных обслуживания?

Правильное обслуживание вашего лазерного прекрасно продлить срок его службы. Нам просто нужно следовать следующим советам:

Что нужно:
1. Салфетка из микрофибры
Пожалуйста, убедитесь, что ткань из микроволокна специально разработана для очистки линз. Вы можете найти это в вашем местном камеры или очки магазине.
2. Q-наконечником или зуб выбор
Вам нужно будет сложить ткань над одним из них, чтобы быть в состоянии достичь линзы правильно.
3. Объектив очистки растворов (необязательно)
Используйте для очистки линз решение, только если объектив не очищается салфетка из микрофибры в одиночку. Пожалуйста, убедитесь, что чистящий раствор разработан специально для очистки объектива.
* Внимание: не используйте воду.

Процедура:
1. Мойте руки с мылом и водой. Убедитесь в том, чтобы высушить их должным образом.
2. Сложите ткань из микроволокна на зубочистку или ручку часть Q-Tip. Убедитесь, что вы не трогайте часть ткани, которая будет очистка линз. Вы, наверное, не сможет сложить ткань вдвое, так что вы должны быть очень осторожны, чтобы не нажимать слишком сильно на объектив.
3. Аккуратно переместите ткань в отверстие, пока она вступает в контакт с объективом. Натрите его из стороны в сторону, но не нажимайте слишком сильно. Плавно поворачивайте ткань в вращательным движением вперед и назад. Повторите эту процедуру, пока объектив вашей лазерной чист.
4. Превратите ваш лазерный блок, чтобы увидеть, если объектив чист.

Тем не менее грязным? Попробуйте использовать раствор для очистки объектива.
Применяют по 1 капле только часть ткани, которая будет очистка линз, следовать той же процедуре, что и выше. Вы хотите, чтобы закончить с помощью сухой части ткань для протирки объектива сухой, это должно занять один проход стороны в сторону или нежно вращаться.

В узконаправленный луч, как правило используется двояковыпуклая линза -коллиматор . Однако при качественной фокусировке луча (которую можно произвести самостоятельно подкручивая прижимную гайку линзы), указку можно использовать для проведения опытов с лазерным лучом (например, для изучения интерференции). Мощность наиболее распространенных лазерных указок 0,1-50 мВт , в продаже имеются и более мощные до 2000 мВт . В большинстве из них лазерный диод не закрыт, поэтому разбирать их надо крайне осторожно. Со временем открытый лазерный диод «выгорает», из-за чего его мощность падает. Со временем подобная указка практически перестанет светить, вне зависимости от уровня заряда батарейки . Зелёные лазерные указки имеют сложное строение и больше напоминают по устройству настоящие лазеры.

Лазерная указка

Типы лазерных указок

Ранние модели лазерных указок использовали гелий-неоновые (HeNe) газовые лазеры и излучали в диапазоне 633 нм. Они имели мощность не более 1 мВт и были очень дорогими. Сейчас лазерные указки, как правило, используют менее дорогие красные диоды с длиной волны 650-670 нм. Указки чуть подороже используют оранжево-красные диоды с λ=635 нм, которые делают их более яркими для глаз, так как человеческий глаз видит свет с λ=635 нм лучше, чем свет с λ=670 нм. Производятся и лазерные указки других цветов; например, зеленая указка с λ=532 нм - хорошая альтернатива красной с λ=635 нм, поскольку человеческий глаз приблизительно в 6 раз чувствительнее к зелёному свету по сравнению с красным. В последнее время набирают популярность жёлто-оранжевые указки с λ=593,5 нм и синие лазерные указки с λ=473 нм.

Красные лазерные указки

Самый распространенный тип лазерных указок. В этих указках используется лазерные диоды с коллиматором. Мощность варьируется приблизительно от одного милливатта до ватта. Маломощные указки в форм-факторе брелока питаются от маленьких батареек-«таблеток» и на сегодняшний день (апрель 2012 г.) стоят порядка 1$. Мощные красные указки - одни из самых дешевых по соотношению цена/мощность. Так, фокусируемая лазерная указка мощностью 200мВт, способная зажигать хорошо поглощающие излучение материалы (спички, изоленту, тёмную пластмассу и т. д.), стоит порядка 20-30$. Длина волны - примерно 650 нм.

Более редкие красные лазерные указки используют Твердотельный лазер c диодной накачкой (diode-pumped solid-state , DPSS) и работают на длине волны 671 нм.

Зеленые лазерные указки

Устройство зеленой лазерной указки типа DPSS, длина волны 532nm.

Луч лазерной указки 100мВт, направленный в ночное небо.

Зеленые лазерные указки начали продаваться в 2000 году. Самый распространенный тип твердотельных с диодной накачкой (DPSS) лазеров. Лазерные диоды зелёного цвета не производятся, поэтому используется другая схема. Устройство намного сложнее, чем у обычных красных указок, и зелёный свет получают довольно громоздким способом.

Сначала мощным (обычно >100 мВт) инфракрасным лазерным диодом с λ=808 нм накачивается кристалл ортованадата иттрия с неодимовым легированием (Nd:YVO 4), где излучение преобразуется в 1064 нм. Потом, проходя через кристалл титанила-фосфата калия (KTiOPO 4 , сокр. KTP), частота излучения удваивается (1064 нм → 532нм) и получается видимый зелёный свет. КПД схемы около 20 %, большая часть приходится на комбинацию 808 и 1064 нм ИК . На мощных указках >50 мВт нужно устанавливать инфракрасный фильтр (IR-фильтр ), чтобы убрать остатки ИК-излучения и избежать повреждения зрения. Также стоит отметить высокую энергозатратность зелёных лазеров - в большинстве используются две AA/AAA/CR123 батареи.

473 нм (бирюзовый цвет)

Данные лазерные указки появились в 2006 году и имеют схожий с зелёными лазерными указками принцип работы. 473 нм свет обычно получают путем удвоения частоты 946 нм лазерного излучения. Для получения 946 нм используется кристалл алюмо-иттриевого граната с добавками неодима (Nd:YAG).

445 нм (синий цвет)

В этих лазерных указках свет излучается мощным синим лазерным диодом. Большинство подобных указок относится к 4-му классу лазерной опасности и представляет очень серьёзную опасность для глаз и кожи. Своё активное распространение начали в связи с выпуском компанией Casio проекторов , использующих вместо привычных ламп мощные лазерные диоды.

Фиолетовые лазерные указки

Свет в фиолетовых указках генерируется лазерным диодом, излучающим луч с длиной волны 405 нм. Длина волны 405 нм находится на границе диапазона, воспринимаемого человеческим зрением и поэтому лазерное излучение таких указок кажется тусклым. Однако, свет указки вызывает флюоресценцию некоторых предметов, на которые он направлен, яркость которой для глаза выше, чем яркость самого лазера.

Фиолетовые лазерные указки появились сразу после появления Blu-ray -приводов, в связи с началом массового производства лазерных диодов на 405 нм.

Жёлтые лазерные указки

В жёлтых лазерных указках используется DPSS лазер, излучающий одновременно две линии: 1064 нм и 1342 нм. Это излучение попадает в нелинейный кристалл, который поглощает фотоны этих двух линий и излучает фотоны 593,5 нм (суммарная энергия 1064 и 1342 нм фотонов равна энергии фотона 593,5 нм). КПД таких жёлтых лазеров составляет около 1 %.

Использование лазерных указок

Безопасность

Лазерное излучение опасно при попадании в глаза.

Обычные лазерные указки имеют мощность 1-5 мВт и относятся к классу опасности 2 - 3А и могут представлять опасность, если направлять луч в человеческий глаз достаточно продолжительное время или через оптические приборы. Лазерные указки мощностью 50-300 мВт относятся к классу 3B и способны причинить сильные повреждения сетчатке глаза даже при кратковременном попадании прямого лазерного луча, а также зеркально или диффузно отражённого.

В лучшем случае лазерные указки оказывают только раздражающее воздействие. Но последствия будут опасными, если луч попадает в чей-то глаз или направлен в водителя или пилота и может отвлечь их или даже ослепить. Если это приведёт к аварии, то повлечёт за собой уголовную ответственность.

Всё более многочисленные «лазерные инциденты» вызывают в России, Канаде, США и Великобритании требования ограничить или запретить лазерные указки. Уже сейчас в Новом Южном Уэльсе предусмотрен штраф за обладание лазерной указкой, а за «лазерное нападение» - срок лишения свободы до 14 лет.

Также важно учесть, что у большинства дешёвых китайских лазеров, работающие по принципу накачки (то есть зелёные, жёлтые и оранжевые) отсутствует ИК-фильтр ради соображения экономии, и такие лазеры фактически представляют большую опасность для органов зрения, чем заявлено производителями.

Примечания

Ссылки

  • Laser Pointer Safety website Включает данные о безопасности

Вы все любите лазеры. Я то знаю, я от них тащусь больше вашего. А если кто не любит – то он просто не видел танец сверкающих пылинок или как ослепи- тельный крошечный огонек прогрызает фанеру

А началось все со статьи из Юного техника за 91-й год о создании лазера на красителях – тогда повторить конструкцию для простого школьника было просто нереально… Сейчас к счастью с лазерами ситуация проще – их можно доставать из сломанной техники, их можно покупать готовые, их можно собирать из деталей… О наиболее приближенных к реальности лазерах и пойдет сегодня речь, а также о способах их применения. Но в первую очередь о безопасности и опасности.

Почему лазеры опасны
Проблема в том, что параллельный луч лазера фокусируется глазом в точку на сетчатке. И если для зажигания бумаги надо 200 градусов, для повреждения сетчатки достаточно всего 50, чтобы кровь свернулась. Вы можете точкой попасть в кровеносный сосуд и закупорить его, можете попасть в слепое пятно, где нервы со всего глаза идут в мозг, можете выжечь линию «пикселей»… А потом поврежденная сетчатка может начать отслаиваться, и это уже путь к полной и необратимой потере зрения. И самое неприятное –вы не заметите по началу никаких повреждений: болевых рецепторов там нет, мозг достраивает предметы в поврежденных областях (так сказать ремапинг битых пикселей), и лишь когда поврежденная область становится достаточно большой вы можете заметить, что предметы пропадают при попадании в неё. Никаких черных областей в поле зрения вы не увидите – просто кое-где не будет ничего, но это ничего и не заметно. Увидеть повреждения на первых стадиях может только офтальмолог.

Опасность лазеров считается исходя из того, может ли он нанести повреждения до того как глаз рефлекторно моргнет – и считается не слишком опасной мощность в 5мВт для видимого излучения. Потому инфракрасные лазеры крайне опасны (ну и отчасти фиолетовые – их просто очень плохо видно) – вы можете получить повреждения, и так и не увидеть, что вам прямо в глаз светит лазер.

Потому, повторюсь, лучше избегать лазеров мощнее 5мВт и любых инфракрасных лазеров.

Также, никогда и ни при каких условиях не смотрите «в выход» лазера. Если вам кажется что «что-то не работает» или «как-то слабовато» - смотрите через вебкамеру/мыльницу (только не через зеркалку!). Это также позволит увидеть ИК излучение.

Есть конечно защитные очки, но тут много тонкостей. Например на сайте DX есть очки против зеленого лазера, но они пропускают ИК излучение- и наоборот увеличивают опасность. Так что будьте осторожны.

PS. Ну и я конечно отличился один раз – нечаянно себе бороду лазером подпалил;-)

650нм – красный
Это пожалуй наиболее распространенный на просторах интернета тип лазера, а все потому, что в каждом DVD-RW есть такой, мощностью 150-250мВт (чем больше скорость записи – тем выше). На 650нм чувствительность глаза не очень, потому хоть точка и ослепительно яркая на 100-200мВт, луч днем лишь едва видно (ночью видно конечно лучше). Начиная с 20-50мВт такой лазер начинает «жечь» - но только в том случае, если можно менять его фокус, чтобы сфокусировать пятно в крошечную точечку. На 200 мВт жгет очень резво, но опять же нужен фокус. Шарики, картон, серая бумага…

Покупать их можно готовые (например такой на первом фото красный). Там же продаются мелкие лазерчики «оптом» - настоящие малютки, хотя у них все по взрослому – система питания, настраиваемый фокус - то что нужно для роботов, автоматики.

И главное – такие лазеры можно аккуратно доставать из DVD-RW (но помните, что там еще инфракрасный диод есть, с ним нужно крайне аккуратно, об этом ниже). (Кстати, в сервис-центрах бывает негарантийные DVD-RW кучами лежат - я себе унес 20 штук, больше не донести было). Лазерные диоды очень быстро дохнут от перегрева, от превышения максимального светового потока – мгновенно. Превышение номинального тока вдвое (при условии не превышения светового потока) сокращает срок службы в 100-1000 раз (так что аккуратнее с «разгоном»).

Питание: есть 3 основных схемы: примитивнейшая, с резистором, со стабилизатором тока (на LM317, 1117), и самый высший пилотаж – с использованием обратной связи через фотодиод.

В нормальных заводских лазерных указках применяется обычно 3-я схема – она дает максимальную стабильность выходной мощности и максимальный срок службы диода.

Вторая схема – проста в реализации, и обеспечивает хорошую стабильность, особенно если оставлять небольшой запас по мощности (~10-30%). Именно её я бы и рекомендовал делать – линейный стабилизатор – одна из наиболее популярных деталей, и в любом, даже самом мелком радиомагазине есть аналоги LM317 или 1117.

Самая простая схема с резистором описанная в предыдущей статье – лишь чуть-чуть проще, но с ней убить диод элементарно. Дело в том, что в таком случае ток/мощность через лазерный диод будет сильно зависеть от температуры. Если например при 20C у вас получился ток 50мА и диод не сгорает, а потом во время работы диод нагреется до 80С, ток возрастет (такие они коварные, эти полупроводники), и достигнув допустим 120мА диод начинает светить уже только черным светом. Т.е. такую схему все-таки можно использовать, если оставить по меньшей мере трех-четырехкратный запас по мощности.

И на последок, отлаживать схему стоит с обычным красным светодиодом, а припаивать лазерный диод в самом конце. Охлаждение обязательно! Диод «на проводочках» сгорит моментально! Также не протирайте и не трогайте руками оптику лазеров (по крайней мере >5мВт) - любое повреждение будет «выгорать», так что продуваем грушей если нужно и все.

А вот как выглядит лазерный диод вблизи в работе. По вмятинам видно, как близок я был к провалу, доставая его из пластикового крепления. Это фото также не далось мне легко



532нм – зеленый
Устроены они сложно – это так называемые DPSS лазеры: Первый лазер, инфракрасный на 808nm, светит в кристалл Nd:YVO4 – получается лазерное излучение на 1064нм. Оно попадает на кристалл «удвоителя частоты» - т.н. KTP, и получаем 532нм. Кристаллы все эти вырастить непросто, потому долгое время DPSS лазеры были чертовски дороги. Но благодаря ударному труду китайских товарищей, теперь они стали всполне доступны - от 7$ штука. В любом случае, механически это сложные устройства, боятся падений, резких перепадов температур. Будьте бережными.

Основной плюс зеленых лазеров – 532нм очень близко к максимальной чувствительности глаза, и как точка, так и сам луч очень хорошо видны. Я бы сказал, 5мВт зеленый лазер светит ярче, чем 200мВт красный (на первой фото как раз 5мВт зеленый, 200мВт красный и 200мВт фиолетовый). Потому, я бы не рекомендовал покупать зеленый лазер мощнее чем 5мВт: первый зеленый я купил на 150мВт и это настоящая жесть – с ним ничего нельзя сделать без очков, даже отраженный свет слепит, и оставляет неприятные ощущения.

Также у зеленых лазеров есть и большая опасность: 808 и особенно 1064нм инфракрасное излучение выходит из лазера, и в большинстве случаев его больше чем зеленого. В некоторых лазерах есть инфракрасный фильтр, но в большинстве зеленых лазеров до 100$ его нет. Т.е. «поражающая» способность лазера для глаза намного больше, чем кажется - и это еще одна причина не покупать зеленый лазер мощнее чем 5 мВт.

Жечь зелеными лазерами конечно можно, но нужны мощности опять же от 50мВт + если вблизи побочный инфракрасный луч будет «помогать», то с расстоянием он быстро станет «не в фокусе». А учитывая как он слепит – ничего веселого не выйдет.

405нм – фиолетовый
Это уже скорее ближний ультрафиолет. Большинство диодов – излучают 405нм напрямую. Проблема с ними в том, что глаз имеет чувствительность на 405нм около 0.01%, т.е. пятнышко 200мВт лазера кажется дохленьким, а на самом деле оно чертовски опасное и ослепительно-яркое – сетчатку повреждает на все 200мВт. Другая проблема – глаз человека привык фокусироваться «под зеленый» свет, и 405нм пятно всегда будет не в фокусе – не очень приятное ощущение. Но есть и хорошая сторона – многие предметы флуоресцируют, например бумага – ярким голубым светом, только это и спасает эти лазеры от забвения массовой публики. Но опять же, с ними не так весело. Хоть 200мВт жгут будь здоров, из-за сложности фокусировки лазера в точку это сложнее чем с красными. Также, к 405нм чувствительны фоторезисты, и кто с ними работает, может придумать зачем это может понадобиться;-)
780нм – инфракрасный
Такие лазеры в CD-RW и как второй диод в DVD-RW. Проблема в том, что глаз человека луч не видит, и потому такие лазеры очень опасны. Можно сжечь себе сетчатку и не заметить этого. Единственный способ работать с ними – использовать камеру без инфракрасного фильтра (в веб камерах её легко достать например) – тогда и луч, и пятно будет видно. ИК лазеры применять пожалуй можно только в самодельных лазерных «станочках», баловаться с ними я бы крайне не рекомендовал.

Также ИК лазеры есть в лазерных принтерах вместе со схемой развертки - 4-х или 6-и гранное вращающееся зеркало + оптика.

10мкм – инфракрасный, CO2
Это наиболее популярный в промышленности тип лазера. Основные его достоинства – низкая цена(трубки от 100-200$), высокая мощность (100W - рутина), высокий КПД. Ими режут металл, фанеру. Гравируют и проч. Если самому хочется сделать лазерный станок – то в Китае(alibaba.com) можно купить готовые трубки нужной мощности и собрать к ним только систему охлаждения и питания. Впрочем, особые умельцы делают и трубки дома, хоть это очень сложно (проблема в зеркалах и оптике – стекло 10мкм излучение не пропускает – тут подходит только оптика из кремния, германия и некоторых солей).
Применения лазеров
В основном – используют на презентациях, играют с кошками/собаками (5мвт, зеленый/красный), астрономы указывают на созвездия (зеленый 5мВт и выше). Самодельные станки – работают от 200мВт по тонким черным поверхностям. CO2 лазерами режут почти все, что угодно. Вот только печатную плату резать трудно – медь очень хорошо отражает излучение длиннее 350нм (потому на производстве, если очень хочется – применяют дорогущие 355nm DPSS лазеры). Ну и стандартное развлечение на YouTube – лопание шариков, нарезка бумаги и картона – любые лазеры от 20-50мВт при условии возможности фокусировки в точку.

Из более серьёзного - целеуказатели для оружия(зеленый), можно дома делать голограммы (полупроводниковых лазеров для этого более чем достаточно), можно из пластика, чувствительного к УФ печатать 3Д-объекты, можно экспонировать фоторезист без шаблона, можно посветить на уголковый отражатель на луне, и через 3 секунды увидеть ответ, можно построить лазерную линию связи на 10Мбит… Простор для творчества неограничен

Так что, если вы еще думаете, какой-бы купить лазер – берите 5мВт зеленый :-) (ну и 200мВт красный , если хочется жечь)

Вопросы/мнения/комментарии – в студию!

Теги:

  • лазер
  • dvd-rw
  • dealextreme
Добавить метки

Длительность действия лазерного излучения

Длительность определяется конструкцией лазера. Можно выделить следующие типичные режимы распределения излучения во времени:

Непрерывный режим;

Импульсный режим, длительность импульса определяется при этом длительностью вспышки лампы накачки, типичная длительность Дфл~10-3с;

Режим модуляции добротности резонатора (длительность импульса излучения определяется превышением накачки над порогом генерации и скоростью и скоростью включения добротности, типичная длительность лежит в интервале 10-9 - 10-8 с, это так называемый наносекундный диапазон длительностей излучения);

Режим синхронизации и продольных мод в резонаторе (длительность импульса излучения Дфл~10-11с - пикосекундный диапазон длительностей излучения);

Различные режимы принудительного укорочения импульсов излучения (Дфл ~10-12с).

Плотность мощности излучения

Лазерное излучение может быть сконцентрировано в узконаправленном луче с большой плотностью мощности.

Плотность Ps мощности излучения определяется отношением мощности излучения, проходящего через сечение лазерного пучка, к площади сечения и имеет размерность Вт см-2.

Соответственно плотность Ws энергии излучения определяется отношением энергии, проходящей через сечение лазерного пучка, к площади сечении и имеет размерность Дж см-2

Плотность мощности в луче лазера достигает больших величин вследствие сложения энергии огромного множества когерентных излучений отдельных атомов, приходящих в выбранную точку пространства в одинаковой фазе.

Когерентное излучение лазера с помощью оптической системы линз можно сфокусировать на малую, сравнимую с длиной волны площадку на поверхности объекта.

Плотность мощности лазерного излучения на этой площадке достигает огромной величины. В центре площадки плотность мощности:

где Р - выходная мощность лазерного излучения;

D - диаметр объектива оптической системы;

л - длина волны;

f - фокусное расстояние оптической системы.

Излучение лазера с огромной плотностью мощности, воздействуя на различные материалы, разрушает и даже испаряет их в области падающего сфокусированного излучения. Одновременно в области падения лазерного излучения на поверхность материала на нем создается световое давление в сотни тысяч мегапаскалей.

В итоге отметим, что фокусируя излучение ОКГ до пятна, диаметр которого приблизительно равен длине волны излучения, можно получить световое давление в 106МПа, а так же огромные плотности мощности излучения, достигающие величин 1014-1016Вт.см-2, при этом возникают температуры до нескольких миллионов кельвин.

Блок схема оптического квантового резонатора

Лазер состоит из трех основных частей: активная среда, устройство накачки и оптический резонатор. Иногда добавляют и устройство термостабилизации.

Рисунок 3 - Блок-схема лазера

1) Активная среда.

Для резонансного поглощения и усиления за счет вынужденного излучения необходимо, чтобы волна проходила сквозь материал, атомы или системы атомов которого "настроены" на нужную частоту. Иначе говоря, разность энергетических уровней E2 - E1 для атомов материала должна быть равна частоте электромагнитной волны, умноженной на постоянную Планка: E2 - E1 = hn. Далее, для того чтобы вынужденное излучение преобладало над поглощением, атомов на верхнем энергетическом уровне должно быть больше, чем на нижнем. Обычно этого не бывает. Более того, всякая система атомов, на достаточно длительное время предоставленная самой себе, приходит в равновесие со своим окружением при низкой температуре, т.е. достигает состояния наинизшей энергии. При повышенных температурах часть атомов системы возбуждается тепловым движением. При бесконечно высокой температуре все квантовые состояния были бы одинаково заполнены. Но поскольку температура всегда конечна, преобладающая доля атомов находится в низшем состоянии, и чем выше состояния, тем менее они заполнены. Если при абсолютной температуре T в низшем состоянии находится n0 атомов, то число атомов в возбужденном состоянии, энергия которого на величину E превышает энергию низшего состояния, дается распределением Больцмана: n=n0e-E/kT, где k - постоянная Больцмана. Поскольку атомов, находящихся в низших состояниях, в условиях равновесия всегда больше, чем в высших, в таких условиях всегда преобладает поглощение, а не усиление за счет вынужденного излучения. Избыток атомов в определенном возбужденном состоянии можно создавать и поддерживать, только искусственно переводя их в это состояние, причем быстрее, чем они возвращаются к тепловому равновесию. Система, в которой имеется избыток возбужденных атомов, стремится к тепловому равновесию, и ее необходимо поддерживать в неравновесном состоянии, создавая в ней такие атомы.

2) Резонатор.

Оптический резонатор представляет собой систему специально согласованных двух зеркал, подобранных таким образом, чтобы возникающее в резонаторе за счет спонтанных переходов слабое вынужденное излучение многократно усиливалось, проходя через активную среду, помещенную между зеркалами. Вследствие многократных отражений излучения между зеркалами происходит как бы удлинение активной среды в направлении оси резонатора, что определяет высокую направленность лазерного излучения. В более сложных лазерах применяются четыре и более зеркал, образующих резонатор. Качество изготовления и установки этих зеркал является для качества полученной лазерной системы. Также, в лазерной системе могут монтироваться дополнительные устройства дли получения различных эффектов, такие как поворачивающиеся зеркала, модуляторы, фильтры и поглотители. Их применение позволяет менять параметры излучения лазера, например, длину волны, длительность импульсов и т. д.

Резонатор -- основной определяющий фактор рабочей длины волны, а также остальных свойств лазера. Существуют сотни или даже тысячи различных рабочих тел, на основе которых можно построить лазер. Рабочее тело подвергается «накачке», чтобы получить эффект инверсии электронных населённостей, что вызывает вынужденное излучение фотонов и эффект оптического усиления. В лазерах используются следующие рабочие тела.

Жидкость, например в лазерах на красителях состоит из органического растворителя, например метанола, этанола или этиленгликоля, в которых растворены химические красители, например кумарин или родамин. Конфигурация молекул красителя определяет рабочую длину волны.

Газы, например, углекислый газ, аргон, криптон или смеси, такие как в гелий-неоновых лазерах. Такие лазеры чаще всего накачиваются электрическими разрядами.

Твёрдые тела, такие как кристаллы и стекло. Сплошной материал обычно легируется (активируется) добавкой небольшого количества ионов хрома, неодима, эрбия или титана. Типичные используемые кристаллы: алюминиевый гранат (YAG), литиево-иттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло. Самые распространённые варианты: Nd:YAG, титан-сапфир, хром-сапфир (известный также как рубин), легированный хромом стронций-литий-алюминиевый фторид (Cr:LiSAF), Er:YLF и Nd:glass (неодимовое стекло). Твердотельные лазеры обычно накачиваются импульсной лампой или другим лазером.

Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, накачиваются электрическим током, что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.

3) Устройство накачки.

Источник накачки подаёт энергию в систему. Это может быть электрический разрядник, импульсная лампа, дуговая лампа, другой лазер, химическая реакция или даже взрывчатое вещество. Тип используемого устройства накачки напрямую зависит от используемого рабочего тела, а также определяет способ подвода энергии к системе. Например, гелий-неоновые лазеры используют электрические разряды в гелий-неоновой газовой смеси, а лазеры на основе алюмо-иттриевого граната с неодимовым легированием (Nd:YAG лазеры) -- сфокусированный свет ксеноновой импульсной лампы, эксимерные лазеры -- энергию химических реакций.

Лазеры

Урок объяснения нового материала, 2 ч. 11-й класс

Материал рассчитан на два урока, домашнее занятие и 3-й урок, на котором заслушивают подготовленные сообщения о применении лазеров. Структура и содержание урока должны служить не только расширению кругозора на основе полученных знаний по квантовой оптике, но и развивать умение думать, сопоставлять, обобщать, анализировать.

Ход урока

I. Название темы сегодняшнего урока записано по-английски. А что это означает по-русски? (Ответ. Лазер – английская аббревиатура названия.) Подберите к слову «лазерный» подходящие существительные. (Ответ. Шоу, оружие, принтер, указка, диск...) Ответы показывают, что вы знакомы с применением удивительного изобретения ХХ в. – лазера. Подтверждением его важности является присуждение в 1964 г. Нобелевской премии Н.Г.Басову, А.М.Прохорову и Ч.Таунсу «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера – лазера».

Перед вами лабораторный лазер и лазерные указки. Интересно, что же особенного в этих источниках света, как они устроены, ведь столь высокая оценка изобретения лазера, наверное, заслуженная?

II. В основе квантового усиления электромагнитных волн (ЭМВ) лежат два процесса: возбуждение индуцированного излучения и накапливание возбуждения.

Излучение вообще связано с переходом атомов (молекул) из возбуждённого состояния с энергией E m в стабильное состояние с более низкой энергией E n . Частота излучения при этом . В обычных источниках света число переходов E m E n равно числу переходов E n E m , излучение происходит в широком диапазоне частот, фазы волн, излучаемых отдельными атомами, произвольны. Такое излучение называется самопроизвольным , или спонтанным .

Если же искусственно создать перенаселённость верхних энергетических уровней E m , то, по догадке В.А.Фабриканта, внешнее излучение частотой mn , проходящее через такую активную среду, может быть усилено за счёт «спровоцированных» им переходов в среде E m E n . Такое вынужденное , или индуцированное , излучение отличается от спонтанного: направление распространения, поляризация, частота и фаза волн, излучаемых отдельными атомами, полностью тождественны внешней волне.

Создать стабильную перенаселённость уровней в двухуровневой системе долго не удавалось, т.к. переходы на нижний уровень происходили слишком быстро, через 10 –8 с. Более стабильной оказалась трёхуровневая система, когда электроны переходили сначала с верхнего уровня на средний (подуровень), причём этот переход не сопровождался излучением, задерживались на нём до 10 –3 с, а потом уже с излучением «сваливались» на нижний уровень. В рубиновых лазерах подуровень создаётся за счёт введения примесей хрома в кристалл оксида алюминия (рубина). Бывают и четырёхуровневые системы.

Уровень m _____________
________________Подуровень

Уровень n _____________

В квантовых генераторах между зеркалами, образующими так называемый резонатор Фабри–Перо , помещают активную среду. Проходя несколько раз от одного зеркала до другого, волна усиливается и частично выходит через полупрозрачное зеркало наружу. Как вы думаете, длина резонатора – путь между зеркалами – может быть любой? Оказывается, нет, должно выполняться условие резонанса: на длине резонатора должно укладываться целое число длин волн распространяющейся в резонаторе волны: 2L = n , где L – расстояние между зеркалами, – длина волны, n – целое число.

Это условие является важнейшим для генерации волны, оно и обеспечивает монохроматичность излучения. В лазере (квантовом генераторе) не могут возникать волны произвольной частоты. Генерируются волны лишь с дискретным набором частот:

Лазер, по существу, представляет собой автоколебательную систему, в которой возуждаются незатухающие колебания на одной из собственных частот резонатора.

III. Проверим, как вы поняли рассказанное, какие мысли, вопросы возникли у вас.

– Почему лазеры называют квантовыми источниками , ведь и в обычных источниках излучение возникает тоже вследствие переходов электронов с верхних энергетических уровней на нижние? (Ответ . Лазер – искусственный источник излучения, основными свойствами которого, отличающими его от естественных источников, являются монохроматичность и когерентность излучения.)

– Какие характеристики первичной волны, падающей на активную среду, изменяются в лазере? (Ответ . Интенсивность.)

– Назовите процесс, обратный процессу индуцированного излучения. (Ответ . Процесс возбуждения, которому соответствуют переходы электронов с нижних уровней энергии на верхние.)

– Назовите элементы лазера как автоколебательной системы. (Ответ . Резонаторы, активная среда.)

– Что в конструкции лазера определяет монохроматичность излучаемой волны? (Ответ . Расстояние между зеркалами.)

– В чём физика индуцированного излучения? (Ответ . Явление резонанса.)

IV. По полученной литературе за 3 минуты подготовьте сообщения в группах о работе рубинового, полупроводникового, газового, химического лазеров. При изложении придерживайтесь плана: способ получения трёхуровневых систем, способ возбуждения, особенности устройства и область применения. На листе ватмана начертите упрощённую схему.

V. Вы заслушали сообщения. Проверьте степень усвоения, ответив на вопросы:

– Что общего в работе разных типов лазеров? (Ответ . Разные виды энергии переходят в энергию оптического излучения.)

– Назовите режимы работы лазера. Чем обусловлен режим работы? (Ответ . Импульсный, непрерывный; обусловлен способом возбуждения и видом активной среды.)

– Назовите диапазоны волн, излучаемых квантовыми генераторами. Чем они обусловлены? (Ответ . Радиодиапазон – мазеры; рентгеновский, оптический, в том числе инфракрасный, – лазеры.)

– Есть ли предел усиления излучения? (Ответ . Да. Иначе сама система себя разрушит. Но использование многоканальных установок значительно расширяет этот предел.)

VI. На листе появляется запись: «Не смотри в лазер оставшимся глазом».

Смотреть прямо в лазер, даже слабомощный, не стоит – интенсивность света на сетчатке может оказаться в 10 4 раз выше, чем максимальная интенсивность солнечного луча. Если луч случайно «мазнул» по глазам, сфокусированным на каком-то другом предмете, то можно ослепнуть лишь на время, без необратимых повреждений глаза. Но искать границу между этими крайностями не стоит!

VII. Экспериментальное исследование особенностей излучения лазеров

1. Монохроматичность – электромагнитное излучение имеет одну, определённую и строго постоянную, частоту. Это обусловлено тем, что усиливаются только волны, удовлетворяющие условию резонанса. Однако соотношение неопределённостей E t h приводит к тому, что энергия возбуждённого состояния на уровне m может иметь значения между E m E и E m + E , поэтому и частоты, излучаемые лазером, будут отличаться на , причём .

где d = 1 мм – расстояние между штрихами, +3 и –3 – углы, под которыми наблюдаются максимумы +3-го и –3-го порядков, L = 1 м. Сделав преобразования, находим:

где h +3 и h –3 – высоты расположения соответствующих максимумов. Измерив h –3 = 10 см и h +3 = 14 см и подставив все числовые значения, получаем: = 730 нм. – Ред .]


Школьники готовятся к измерению длины волны лазерного излучения с помощью штангенциркуля

Для проверки проведём измерения со стандартной дифракционной решёткой с N = 600 штр./мм. Направив луч на неё перпендикулярно, получим:

Cогласно измерениям, L = 1 м, k = ±1, h +1 = 43,5 см = 0,435 м, h –1 = 45 см = 0,45 м. Тогда:


Измерение длины волны лазерного излучения с помощью обычной дифракционной решётки

2. Когерентность – согласованность во времени и пространстве нескольких колебательных или волновых процессов, что позволяет получить при их сложении чёткую интерференционную картину.

Времення когерентность отвечает за формирование интерференционной картины при делении луча на два. Чем шире спектр излучения, тем оно менее когерентно: Таким образом, монохроматичность связана с когерентностью.

Если направить луч лазера на экран или чёрную копировальную бумагу, то мы увидим, что он представляет собой не ровное пятно, как луч электрического фонаря, а узор из отдельных как бы пляшущих зёрен. Эта структура так и называется – зернистой , или гранулированной , или спеклом . Она создаётся параллельным пучком пространственно когерентного света, который диффузно рассеивается на тонкой структуре листа бумаги и объясняется интерференцией света, рассеиваемого отдельными шероховатостями, размеры которых сравнимы с длиной волны света. Пространственная когерентность означает, что фазы световых волн, излучаемых любой частью лазера, совпадают, что и обеспечивает устойчивость интерференционной картины.

Чёткость интерференционной картины определяется размерами области пространственной когерентности. В этом можно убедиться опытным путём, наблюдая интерференцию лучей, прошедших через два маленьких отверстия, как в опыте Юнга. Для этого мы наложили друг на друга две иголки с маленькими ушками и получили при освещении лазерной указкой чёткую интерференционную картину, что является доказательством пространственной когерентности лазерного луча.

3. Малая расходимость пучка. Благодаря слабой расходимости лазерный пучок виден, как точка на препятствии, даже удалённом на большое расстояние. Убедимся в этом на опыте. Лазерный луч, отразившись в зеркале, попадал на экран.

При L = 10 м (длина кабинета) и диаметре луча ( = 740 нм) при выходе из указки D = 3 мм диаметр луча при падении на зеркало составил D 1 = 6 мм и при падении на экран D 2 = 8 мм. Получилась расходимость луча примерно 2 мм на расстоянии 10 м.

Действительно, теоретически угол расходимости a определяется только диаметром пучка D и длиной волны :

На длине 10 м размер пучка должен увеличиться до 10 м 0,25 10 –3 = 2,5 10 –3 м = 2,5 мм. Луч карманного фонарика расходится значительно больше.

4. Мощность излучения. Лазеры являются самым мощным источником излучения: их мощность достигает 10 14 Вт/см 2 , в то время как мощность излучения Солнца 7 10 3 Вт/см 2 . Спектральная мощность излучения (приходящаяся на узкий интервал длин волн = 10 –6 см) составляет 0,2 Вт/см 2 у Солнца и у лазерной указки.

Измерим на нашей установке мощность излучения лазерной указки и сравним её с мощностью излучения электрической лампы.

Ток, потребляемый лампой, составляет 0,15 А при напряжении 3,6 В. Мощность лампы P 1 = 0,15 А 3,6 В = 0,54 Вт. Фототок, полученный при облучении фотоэлемента этой лампой, расположенной на расстоянии L = 10 см, составил 25 мкА.

Мощность светового потока лампы с учётом светоотдачи лампы (5%) и диаметра фотоэлемента (3 см) составляет всего:

Фототок от лазерной указки, расположенной на таком же расстоянии L = 10 см, составил 300 мкА.

Если светоотдача лазерной указки равна 0,6, то отношение фототоков:

следовательно, мощность излучения лазерной указки

VIII. Сегодня на уроке вы узнали (говорят ученики ): чем и почему лазерное излучение отличается от излучения других источников; как образуется это излучение. Осталось разобраться, как эти свойства используются в технических устройствах: медиатехнике, медицинских аппаратах, голографических средствах записи и воспроизведения изображений, оружии, термоядерных реакторах. Каждая группа дома готовит один вопрос и решает задачу.