Длина волны лазерного излучения. Принцип действия лазера: особенности лазерного излучения

1.1. Виды спектров.

На первый взгляд лазерный пучок кажется очень простым по своей структуре. Это практически одночастотное излучение, имеющее спектрально чистый цвет: He-Ne лазер имеет излучение красного цвета (633 нм), кадмиевый лазер излучает синий цвет (440 нм, аргоновый лазер излучает несколько линий в сине-зеленой области спектра (488 нм, 514 нм и др.), полупроводниковый лазер - красное излучение (650 нм) и т.д. На самом деле спектр излучения лазера имеет довольно сложную структуру и определяется двумя параметрами - спектром излучения рабочего вещества (для He-Ne лазера, например, это красная спектральная линия излучения неона, возбужденного электрическим разрядом) и резонансными явлениями в оптическом резонаторе лазера.

Для сравнения, на рисунках справа приведены спектры излучения солнца (A) и обычной лампочки накаливания (B) (верхний рис.), спектр ртутной лампы (рис. справа) и сильно увеличенный спектр генерации He-Ne лазера (рис. внизу).

Спектр лампы накаливания, как и солнечный спектр, относится к непрерывным спектрам, которые полностью заполняет видимый спектральный диапазон электромагнитного излучения (400-700 нм). Спектр ртутной лампы относится к линейчатым спектрам, который так же заполняет весь видимый диапазон, но состоит из отдельных спектральных компонент различной интенсивности. Кстати, до появления лазеров монохроматическое излучение получали, выделяя отдельные спектральные компоненты излучения ртутной лампы.

1.2. Спектр излучения в He-Ne лазере.

Спектр излучения лазера является монохроматическим, т. е. имеет очень узкую спектральную ширину, но, как видно из рисунка, он так же имеет сложную структуру .

Процесс формирования лазерного спектра рассмотрим на основе хорошо изученного He-Ne лазера. Исторически это был первый лазер непрерывного действия, работающий в видимом диапазоне спектра. Он был создан А. Джаваном в 1960 г.

На рис. справа показаны энергетические уровни возбужденной смеси гелия и неона . Возбужденный атом гелия или неона - это атом, у которого один или несколько электронов внешней оболочки при столкновениях с электронами и ионами газового разряда переходят на более высокие энергетические уровни и в дальнейшем могут перейти на более низкий энергетический уровень или вернуться обратно, на нейтральный уровень, с испусканием светового кванта - фотона.

Возбуждение атомов производится электрическим током, проходящим через газовую смесь. Для He-Ne лазера это слаботоковый, тлеющий разряд (типичные токи разряда - 20-50 мА). Картина энергетических уровней и механизм излучения достаточно сложны даже для такого "классического" лазера, которым является He-Ne лазер, поэтому мы ограничимся рассмотрением только основных деталей этого процесса. Атомы гелия, возбужденные до уровня 2S при столкновениях с атомами неона передают им накопленную энергию, возбуждая их до уровня 5S (поэтому гелия в газовой смеси больше, чем неона). С уровня 5S электроны могут перейти на ряд более низких энергетических уровней. Нас интересует только переход 5S - 3P (оба уровня в действительности расщеплены на ряд подуровней из-за квантовой природы механизмов возбуждения и излучения). Длина волны излучения фотонов при этом переходе - 633 нм.

Отметим еще один важный факт, принципиально важный для получения когерентного излучения. При правильно подобранных пропорции гелия и неона, давлении смеси газов в трубке и величине разрядного тока электроны накапливаются на уровне 5S и их количество превышает количество электронов, находящихся на нижнем уровне 3P. Это явление называется инверсной заселенностью уровня. Однако, это пока еще не лазерное излучение. Это одна из спектральных линий в спектре излучения неона. Ширина спектральной линии зависит от нескольких причин, главные из которых: - конечная ширина энергетических уровней (5S и 3P), участвующих в излучении и определяемая квантовым принципом неопределенности, связанным со временем пребывания атомов неона в возбужденном состоянии, - уширение линии связанное с постоянным движением возбужденных частиц в разряде под воздействием электрического поля (так называемый эффект Доплера). С учетом этих факторов ширина линии (специалисты называют ее контуром рабочего перехода) равна примерно двум десятитысячным ангстрема. Для таких узких линий в расчетах удобнее использовать ее ширину в частотной области. Воспользуемся формулой перехода:

dn 1 =dl c/l 2 (1)

где dn 1 - ширина спектральной линии в частотной области, Гц, dl - ширина спектральной линии (0,000002 нм), l - длина волны спектральной линии (633нм), c - скорость света. Подставив все значения (в одной системе измерения), получим ширину линии 1,5 ГГц. Конечно, такую узкую линию можно считать вполне монохроматической по сравнению со всем спектром излучения неона, но назвать это когерентным излучением еще нельзя. Для получения когерентного излучения в лазере используется оптический резонатор (интерферометр).

1.3. Оптический резонатор лазера.

Оптический резонатор представляет собой два зеркала, находящихся на оптической оси и обращенных отражающими поверхностями друг к другу, рис. справа. Зеркала могут быть плоскими или сферическими. Плоские зеркала очень трудно юстировать и генерация лазерного излучения может быть нестабильной. Резонатор со сферическими зеркалами (конфокальный резонатор) гораздо стабильнее, но пучок лазера может быть неоднородным по сечению из-за сложного, многомодового состава излучения. На практике чаще всего используют полуконфокальный резонатор с задним сферическим и передним плоским зеркалом. Такой резонатор относительно стабилен и дает однородный (одномодовый) пучок.

Главным свойством любого резонатора является образование в нем стоячих электромагнитных волн. В случае He-Ne лазера стоячие волны образуются для излучения спектральной линии неона с длиной волны 633 нм. Этому способствует максимальный коэффициент отражения зеркал, подобранный как раз для этой длины волны. В лазерных резонаторах используются диэлектрические зеркала с многослойным напылением, позволяющим получить коэффициент отражения 99% и выше. Как известно, условие образования стоячих волн заключается в том, что расстояние между зеркалами должно быть равно целому числу полуволн:

nl =2L (2)

где n - целое число или порядок интерференции, l - длина волны излучения внутри интерферометра, L - расстояние между зеркалами.

Из условия резонанса (2) можно получить расстояние между резонансными частотами dn 2:

dn 2 =c/2L (3)

Для полутораметрового резонатора газового лазера (He-Ne лазер ЛГН-220) эта величина составляет примерно 100 МГц. Только излучение с таким частотным периодом может многократно отражаться от зеркал резонатора и усиливаться по мере прохождения через инверсную среду - возбужденную электрическим разрядом смесь гелия и неона. Причем, что чрезвычайно важно, при прохождении этого излучения вдоль резонатора, его фазовая структура не изменяется, что приводит к когерентным свойствам усиленного излучения. Этому способствует инверсная заселенность уровня 5S, о которой говорилось выше. Электрон с верхнего уровня переходит на нижний синхронно с фотоном, инициирующим этот переход, поэтому фазовые параметры волн, соответствующих обоим фотонам одинаковы. Такая генерация когерентного излучения происходит по всему пути излучения внутри резонатора. Кроме того, резонансные явления приводят к гораздо большему сужению линии излучения, в результате чего наибольшее усиление получается в центре резонансного пика.
Через определенное число проходов интенсивность когерентного излучения становится настолько высокой, что превышает естественные потери в резонаторе (рассеяние в активной среде, потери на зеркалах, дифракционный потери и т.д.) и часть его выходит за пределы резонатора. Для этого выходное, плоское зеркало сделано с немного меньшим коэффициентом отражения (99,6-99,7%). В результате спектр генерации лазера имеет вид, показанный на третьем рис. сверху. Число спектральных компонент обычно не превышает десяти.

Просуммируем еще раз все факторы, определяющие частотные характеристики излучения лазера. Прежде всего, рабочий переход характеризуется естественной шириной контура. В реальных условиях за счет различных факторов контур уширяется. В пределах уширенной линии размещаются резонансные линии интерферометра, число которых определяется шириной контура перехода и расстоянием между соседними пиками. Наконец, в центре пиков располагаются чрезвычайно узкие спектральные линии излучения лазера, которые и определяют спектр выходного излучения лазера.

1.4. Когерентность лазерного излучения.

Уточним, какую длину когерентности обеспечивает излучение He-Ne лазера. Воспользуемся формулой, предложенной в работе :

по мере прохождения через инверсную среду - возбужденную электрическим разрядом смесь гелия и неона. Причем, что чрезвычайно важно, при прохождении этого излучения вдоль резонатора, его фазовая структура не изменяется, что приводит к когерентным свойствам усиленного излучения. Этому способствует инверсная заселенность уровня 5S, о которой говорилось выше. Электрон с верхнего уровня переходит на нижний синхронно с фотоном, инициирующим этот переход, поэтому фазовые параметры волн, соответствующих обоим фотонам одинаковы. Такая генерация когерентного излучения происходит по всему пути излучения внутри резонатора. Кроме того, резонансные явления приводят к гораздо большему сужению линии излучения, в результате чего наибольшее усиление получается в центре резонансного пика.

dt =dn -1 (4)

где dt - время когерентности, представляющее собой верхний предел временного интервала, на котором амплитуда и фаза монохроматической волны являются постоянными. Перейдем к привычной для нас длине когерентности l, с помощью которой легко оценивать глубину записываемой на голограмме сцены:

l=c/dn (5)

Подставляя данные в формулу (5), в т.ч., полную ширину спектра dn 1 = 1,5 ГГц, получим длину когерентности 20 см. Это довольно близко к реальной длине когерентности He-Ne лазера, имеющего неизбежных потери излучения в резонаторе. Измерения длины когерентности с помощью интерферометра Майкельсона дают величину 15-17 см (на уровне 50%-го уменьшения амплитуды интерференционной картины). Интересно оценить длину когерентности отдельной спектральной компоненты, выделенной резонатором лазера. Ширина резонансного пика интерферометра dn 3 (см. третий сверху рис.) определяется его добротностью и равна примерно 0,5 МГц. Но, как говорилось выше, резонансные явления приводят к еще большему сужению лазерной спектральной линии dn 4 , формирующейся вблизи центра резонансного пика интерферометра (третий сверху рис.). Теоретический расчет дает ширину линии восемь тысячных герца! Однако эта величина не имеет большого практического смысла, так как для длительного существования такой узкой спектральной компоненты необходимы значения механической стабильности резонатора, теплового дрейфа и других параметров, которые абсолютно невозможны в реальных условиях эксплуатации лазера. Поэтому мы ограничимся шириной резонансного пика интерферометра. Для ширины спектра 0,5 МГц длина когерентности, рассчитанная по формуле (5) равна 600 м. Это тоже очень неплохо. Остается только выделить одну спектральную компоненту, оценить ее мощность и удержать ее на одном месте. Если же она за время экспонирования голограммы "пройдется" по всему рабочему контуру (по причине, например, температурной нестабильности резонатора), мы опять получим те же 20 см когерентности.

1.5. Спектр генерации ионного лазера.

Расскажем коротко о спектре генерации другого газового лазера - аргонового. Этот лазер, как и криптоновый, относится к ионным лазерам, т.е. в процессе генерации когерентного излучения участвуют уже не атомы аргона, а их ионы, т. е. атомы, один или несколько электронов внешней оболочки которого оторваны под воздействием мощного дугового разряда, который проходит через активное вещество. Ток разряда достигает нескольких десятков ампер, электрическая мощность блока питания - несколько десятков киловатт. Необходимо обязательное интенсивное водяное охлаждение активного элемента, иначе произойдет его тепловое разрушение. Естественно, в таких жестких условиях картина возбуждения атомов аргона еще более сложная. Возникает генерация сразу нескольких лазерных спектральных линиях, ширина рабочего контура каждой из них существенно больше ширины контура линии He-Ne лазера и составляет несколько гигагерц. Соответственно, длина когерентности лазера уменьшается до нескольких сантиметров. Для записи голограмм большого формата необходима частотная селекция спектра генерации, о чем пойдет речь во второй части этой статьи.

1.6. Спектр генерации полупроводникового лазера.

Перейдем к рассмотрению спектра генерации полупроводникового лазера, представляющего большой интерес для процесса обучения голографии и для начинающих голографистов. Исторически первыми были разработаны инжекционные полупроводниковые лазеры на основе арсенида галия, рис. справа.

Так как его конструкция достаточно проста, рассмотрим принцип работы полупроводникового лазера на его примере. Активным веществом, в котором происходит генерация излучения, является монокристалл арсенида галия, имеющий форму параллепипеда со сторонами длиной несколько сотен микрон. Две боковые грани делаются параллельными и полируются с высокой степенью точности. За счет большого показателя преломления (n = 3,6), на границе кристалл-воздух получается достаточно большой коэффициент отражения (около 35%), что достаточно для получения генерации когерентного излучения без дополнительного напыления отражающих зеркал. Две другие грани кристалла скошены под некоторым углом; через них индуцированное излучение не выходит. Генерация когерентного излучения происходит в p-n переходе, который создается путем диффузии акцепторных примесей (Zn, Cd и др.) в область кристалла, легированную донорными примесями (Te, Se и др.). Толщина активной области в перпендикулярном к p-n переходу направлении составляет около 1 мкм. К сожалению, в такой конструкции полупроводникового лазера пороговая плотность тока накачки оказывается достаточно большой (около 100 тыс. ампер на 1 кв.см.). Поэтому этот лазер мгновенно разрушается при работе в непрерывном режиме при комнатной температуре и требует сильного охлаждения. Лазер стабильно работает при температуре жидкого азота (77 K) или гелия (4,2K).

Современные полупроводниковые лазеры делают на базе двойных гетеропереходов, рис. справа. В такой структуре пороговую плотность тока удалось уменьшить на два порядка, до 1000 А/см. кв. При такой плотности тока возможна стабильная работа полупроводникового лазера и при комнатной температуре. Первые образцы лазеров работали в инфракрасном диапазоне (850 нм). При дальнейшем совершенствовании технологии формирования полупроводниковых слоев, появились лазеры как с увеличенной длиной волны (1.3 - 1,6 мкм) для оптоволоконных линий связи, так и с генерацией излучения в видимой области (650 нм). Уже существуют лазеры, излучающие в синей области спектра. Большим преимуществом полупроводниковых лазеров является их высокий КПД (соотношение энергии излучения к электрической энергии накачки), которое доходит до 70%. Для газовых лазеров, как для атомарных, так и ионных, КПД не превышает 0,1%.

В связи со спецификой процесса генерации излучения в полупроводниковом лазере, ширина спектра излучения гораздо больше ширины спектра He-Ne лазера, рис. справа.

Ширина рабочего контура составляет около 4 нм. Число спектральных гармоник может достигать нескольких десятков. Это накладывает серьезное ограничение на длину когерентности лазера. Если воспользоваться формулами (1), (5), теоретическая длина когерентности составит всего 0,1 мм. Однако, как показали прямые измерения длины когерентности на интерферометре Майкельсона и запись отражающих голограмм, реальная длина когерентности полупроводниковых лазеров доходит до 4-5 см. Это говорит о том, что реальный спектр генерации полупроводникового лазера не так богат гармониками и имеет не такую большую ширину контура рабочего перехода, как предсказывает теория. Однако, справедливости ради, стоит заметить, что степень когерентности излучения полупроводниковых лазеров сильно меняется как от образца к образцу, так и от режима его работы (величина тока накачки, условия охлаждения и т.д.

Расширение спектрального диапазона лазера. Одной из главных задач специалистов, разрабатывающих лазерные устройства, является создание источников когерентного излучения, длину волны которых можно перестраивать во всем спектральном диапазоне от дальней инфракрасной области до ультрафиолета и еще более коротковолнового излучения.

Создание лазера на красителях оказалось исключительно важным событием с этой точки зрения, так как их излучение можно перестраивать в диапазоне длин волн, выходящем за пределы видимой области спектра. Однако имеются существенные разрывы в спектре лазерного излучения, т. е. области, в которых известные лазерные переходы редки, а перестройка их частоты возможна лишь в узких спектральных диапазонах.

Широкие полосы флуоресценции, на существовании которых основана работа перестраиваемого лазера на красителях, не обнаружены в дальней инфракрасной области спектра, а используемые в лазерах красители быстро разрушаются интенсивным излучением накачки при возбуждении красителя, когда надо получить генерацию в ультрафиолетовой области спектра.

Нелинейная оптика.

В поисках способов заполнить эти пробелы многие специалисты по лазерам использовали нелинейные эффекты в некоторых оптических материалах. В 1961 г. исследователи из Мичиганского университета сфокусировали свет рубинового лазера длина волны 694,3 нм в кристалл кварца и зарегистрировали в прошедшем кристалл излучении не только сам свет рубинового лазера, но и излучение с удвоенной частотой, т. е. на длине волны 347,2 нм. Хотя это излучение было много слабее, чем на длине волны 694,3 нм, тем не менее это коротковолновое излучение имело характерную для лазерного света монохроматичность и пространственную когерентность.

Процесс генерации такого коротковолнового излучения известен как удвоение частоты, или генерация второй гармоники. ГВГ, и представляет собой один пример из множества нелинейных оптических эффектов, которые использовались для расширения перестраиваемого, спектрального диапазона лазерного излучения. ГВГ часто применяют для преобразования инфракрасного излучения 1,06 мкм и другие линии неодимового лазера в излучение, попадающее в желто-зеленую область спектра например, 530 нм, в которой можно получить лишь небольшое число интенсивных лазерных линий.

Генерацию гармоник можно также использовать для того, чтобы получить излучение с частотой в три раза большей, чем у исходного лазерного излучения. Нелинейные характеристики рубидия и других щелочных металлов применяют, например, для утроения частоты неодимового лазера до значения, соответствующего длине волны 353 нм, т. е. попадающего в ультрафиолетовую область спектра.

Теоретически возможны процессы генерации гармоник, более высоких, чем третья, но эффективность такого преобразования крайне низка, поэтому с практической точки зрения они не представляют интереса. Возможность генерации когерентного излучения на новых частотах не ограничивается процессом генерации гармоник. Одним из таких процессов является процесс параметрического усиления, который заключается в следующем.

Пусть на нелинейную среду воздействуют три волны мощная световая волна с частотой 1 волна накачки и две слабые световые волны с более низкими частотами 2 и 3. При выполнении условия 1 23 и условия волнового синхронизма имеет место перекачка энергии мощной волны с частотой 1 в энергию волн с частотами 2 и 3. Если нелинейный кристалл поместить в оптический резонатор, то получим прибор, очень напоминающий лазер и носящий название параметрического генератора.

Такой процесс был бы полезен даже в том случае, если бы возможности его использования были ограничены получением разностей частот двух существующих. лазерных источников. Фактически же параметрический генератор является устройством, способным генерировать когерентное оптическое излучение, частоту которого можно перестраивать почти во всем видимом диапазоне. Причина эта заключается в том, что нет необходимости использовать дополнительные источники когерентного излучения на частотах 2 и 3. Колебания эти могут сами возникать в кристалле из шумовых фотонов тепловых шумов, которые всегда в нем присутствуют.

Эти шумовые фотоны имеют широкий спектр частот, расположенный преимущественно в инфракрасной области спектра. При определенной температуре кристалла и ориентации его по отношению к направлению волны накачки и к оси резонатора упомянутое выше условие волнового синхронизма выполняется для определенной пары частот 2 и 3. Для перестройки частоты излучения надо изменить температуру кристалла или его ориентацию.

Рабочей частотой может быть любая из двух частот 2 и 3 в зависимости от того, какой диапазон частот излучения прибора нужен. Быструю перестройку частоты в ограниченном спектральном диапазоне можно получить с помощью электрооптического изменения показателей преломления кристалла. Как и в случае лазера, имеется пороговый уровень мощности накачки, который для получения стационарных колебаний следует превысить. В большинстве параметрических генераторов в качестве источника накачки используют лазеры видимого диапазона, такие, как аргоновый лазер, или вторую гармонику неодимового лазера.

На выходе прибора получают перестраиваемое излучение инфракрасного диапазона. 2.

Конец работы -

Эта тема принадлежит разделу:

Лазер на красителях

Параметры излучения твердотельного лазера в значительной степени зависят от оптических качеств используемого кристалла. Неоднородности кристаллической структуры могут серьезно ограничивать.. В то же время жидкостные лазеры не столь громоздки, как газовые системы, и проще в эксплуатации.Из расчетных типов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Внимание! Меры предосторожности :

Не направляйте лазерное излучение в глаза! Прямое попадание в глаза лазерного излучения опасно для зрения!

С разрешения руководителя работ включите лазер и установите экран и решётку так, чтобы дифракционная картина была наиболее чёткой.

Изменяя расстояние L , посмотрите, как это влияет на положение максимумов. Опишите и зарисуйте то, что Вы наблюдали.

Установите дифракционную решётку на определённом расстоянии L от щели и измерьте расстояния l 1 и l 2 (см. рис. 9.3) для максимумов первого порядка. Вычислите длину волны излучения лазера. Оцените абсолютную и относительную погрешности измерения, запишите результат для длины волны лазера.

Задание 2. Определение длин волн некоторых цветов спектра

В этом задании источником света является лампа накаливания, дающая непрерывный спектр.

Измерения в задании 2 проводятся в соответствии с инструкцией на рабочем месте. Результаты измерений заносятся в табл. 9.1. Следует определить расстояния l 1 и l 2 для каждого цвета четыре раза: при двух значениях k и двух разных расстояниях L .

Таблица 9.1

№ п.п. Цвет k L , l 1 , l 2 , , sin a l,
Красный Зеленый Фиолетовый
Красный Зеленый Фиолетовый
Красный Зеленый Фиолетовый

Анализ и обработка результатов измерений

1. Опишите в отчёте наблюдаемый спектр, дайте объяснение тому, что максимумы имеют столь существенную ширину.

2. Заполните полностью табл. 9.1. Значение постоянной d получите на рабочем месте. Опишите в отчёте наблюдаемую Вами картину. Составьте таблицы обработки для каждого цвета и запишите конечный результат по общим правилам.

3. Сравните полученные Вами значения длин волн каждого цвета с приведёнными в табл.. П. …

Контрольные вопросы

1. Дайте определение: дифракции волн, принципа Гейгенса-Френеля, когерентности волн. Письменный ответ на этот вопрос необходимо включить в отчет.

2. Назовите составные части лабораторной установки и их назначение.

3. Какие величины измеряются в данной работе непосредственно? Какие вычисляются?

4. В чём заключается явление дифракции света? При каких условиях она наблюдается?

5. Что представляет собой дифракционная решётка и каковы её основные параметры?

6. Выведите формулу дифракционной решётки (9.3).

7. Дайте определение длины волны. Как она связана с частотой света?

8. В каком интервале длин волн лежит видимый свет?

9. Выведите и запишите расчётные формулы для определения длин волн видимого света с помощью дифракционной решетки.

10.Как зависит угол отклонения дифракционного максимума от длины волны и периода решётки?

11. В каком порядке от центрального максимума располагаются цвета дифракционных максимумов? Объясните наблюдаемый порядок цветов.

12.В чём отличие лазерного излучения от естественного света?

Работа № 10. ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА

Цель работы : исследовать прохождение света через поляроиды, проверить закон Малюса, оценить качество поляроидов, исследовать поляризацию света, прошедшего сквозь несколько стеклянных пластин.

Оборудование : оптическая скамья, источник света, поляризатор в оправе, анализатор, совмещённый с фотоэлементом, набор стеклянных пластин, источник питания, микроамперметр.

Краткая теория

Из теории Максвелла следует, что световая волна является поперечной . Поперечность световых волн (как и любых других электромагнитных волн) выражается в том, что колебания векторов и перпендикулярны направлению распространения волны (рис. 10.1). Плоская монохроматическая волна, распространяющаяся в вакууме вдоль оси x , описывается уравнениями:

; (10.1)
, (10.2)

где и – текущие значения напряжённостей электрического и магнитного полей; и – амплитуды колебаний, w – частота колебаний, – начальная фаза колебаний.

При взаимодействии света с веществом переменное электрической поле воздействует на отрицательно заряженные электроны атомов и молекул этого вещества, в то время как действие со стороны магнитного поля на заряженные частицы незначительно. Поэтому в процессах распространения света главную роль играет вектор , и дальнейшем мы будем говорить только о нём.



Большинство источников света состоит из огромного количества излучающих атомов, и поэтому в световом луче присутствует большое количество волн с различной пространственной ориентацией векторов . Кроме того, эта ориентация беспорядочно меняется за чрезвычайно малые промежутки времени (рис. 10.2, а). Подобное излучение называется неполяризованным, или естественным светом. Свет, в котором направления колебаний вектора каким-либо образом упорядочены, называется поляризованным , а процесс получения поляризованного света называется поляризацией . Если колебания вектора происходят в одной плоскости, то волна называется плоско-поляризованной или линейно-поляризованной (рис. 10.2, б). Частично поляризованным называется свет, в котором имеется преимущественное направление колебаний векторов (рис. 10.2, в).

Поляризация света наблюдается при прохождении света через анизотропные вещества. Основное свойство таких веществ заключается в том, что они могут пропускать только те световые волны, в которых векторы колеблются лишь в строго определённой плоскости, которую называют плоскостью колебаний . Плоскость, в которой локализовано магнитное поле, называется плоскостью поляризации . На рис. 10.1 плоскость колебаний вертикальна, а плоскость поляризации – горизонтальна.

Для получения и исследования поляризованного света чаще всего применяют поляроиды . Они изготавливаются из очень мелких кристаллов турмалина или геропатита (сернокислого йод-хинина), нанесённых на прозрачную плёнку или стекло. Однако есть и другие способы получения плоско-поляризованного света из естественного, например, при отражении от диэлектрика под определённым углом, зависящим от показателя преломления диэлектрика. Подробней этот способ будет рассмотрен ниже.

Проведём мысленно следующий опыт. Возьмем два поляроида и источник света (рис. 10.3). Первый поляроид называется поляризатором , т.к. он поляризует свет. Его плоскостью колебаний является плоскость ППс . После прохождения через поляризатор вектор будет колебаться только в этой плоскости. Вращая поляризатор вокруг направления светового пучка, мы не заметим никаких изменений в интенсивности прошедшего через него света. Подумайте почему? Анализ света на поляризацию делают с помощью второго поляроида, через который пропускают исследуемый свет. В этом случае второй поляроид называется анализатором , его плоскостью поляризации является плоскость ААс . Вращая анализатор, мы заметим, что интенсивность прошедшего сквозь него света будет максимальной, если плоскости ППс и ААс совпадают, и минимальной, если эти плоскости перпендикулярны. Если же эти плоскости составляют некоторый угол a (см. рис. 10.3), то интенсивность света за анализатором будет принимать промежуточное значение.

Найдем зависимость между углом a и интенсивностью I света, прошедшего сквозь оба поляроида. Обозначим амплитуду электрического вектора луча, прошедшего через поляризатор, буквой Е 0 . Плоскость колебаний анализатора ААс повёрнута относительно плоскости колебаний поляризатора ППс на угол a (см. рис. 10.4). Разложим вектор на составляющие: параллельную плоскости колебаний анализатора êê и перпендикулярную к ней ^ . Параллельная составляющая êê пройдёт через анализатор, а перпендикулярная ^ – нет.

Из рис. 10.4 следует, что амплитуда световой волны за анализатором

где S – площадь, по которой распределяется энергия; t – время. Поскольку энергия света – это совокупная энергия электрического и магнитного полей, то её величина пропорциональна квадратам напряжённостей этих полей:

Полученное равенство носит название закона Малюса : интенсивность света, прошедшего через анализатор, равна интенсивности света, прошедшего через поляризатор, умноженной на квадрат косинуса угла между плоскостями поляризации анализатора и поляризатора.

Заметим, что свет, прошедший через поляризатор, станет не только плоско поляризованным, но и уменьшит свою интенсивность в два раза. Если интенсивность естественного света считать одинаковой во всех направлениях, перпендикулярных вектору скорости , то интенсивность света за поляризатором

где I max и I min – наибольшая и наименьшая интенсивности света за анализатором, соответствующие напряжённостям Е max и Е min на рис. 10.2, в.

Явление поляризации можно также наблюдать при отражении или преломлении света на границе двух изотропных диэлектриков. При этом в отражённом луче будут преобладать колебания, перпендикулярные к плоскости падения (на рис. 10.5 они обозначены точками). Опытным путем было показано, что степень поляризации в отражённом луче зависит от величины угла падения, причём с возрастанием угла падения доля поляризованного света растёт, и при определённом его значении отражённый свет оказывается полностью поляризованным. Брюстер установил, что величина этого угла полной поляризации зависит от относительного показателя преломления и определяется соотношением:

tg a Бр = n 2 /n 1 . (10.9)

Соотношение носит название закона Брюстера, а угол a Б называют углом Брюстера. При дальнейшем увеличении угла падения степень поляризации света снова уменьшается. Таким образом, при угле падения, равном углу Брюстера, отражённый свет линейно поляризован в плоскости, перпендикулярной плоскости падения. Используя (10.9) и закон преломления, можно показать, что при падении под углом Брюстера отражённый и преломлённый лучи составляют 90°. Проверьте это!.

При падении света под углом Брюстера преломлённый луч также поляризуется. В преломлённом луче будут преобладать колебания, параллельные плоскости падения (на рис. 10.5 они обозначены стрелками). Поляризация преломлённых лучей при этом угле падения будет максимальной, но далеко не полной. Если же подвергнуть преломлённые лучи второму, третьему и т.д. преломлению, то степень поляризации возрастёт. Поэтому для поляризации света можно использовать 8–10 пластинок (так называемая стопа Столетова). Прошедший через них свет окажется практически полностью поляризованным. Таким образом, эта стопа может служить поляризатором или анализатором. В нашей установке наборы из 2–12 пластин используются в качестве поляризатора.

Описание установки


Для исследования поляризации используется укреплённая на оптической скамье установка, схема которой приведена на рис. 10.6.

Цифрами на схеме обозначены: 1– лампа , 2 – съёмный поляризатор , 3 – поворотный столик , 4 – набор стеклянных пластин , надеваемых на штыри поворотного столика, 5 – анализатор , 6 – фотоэлемент , 7 – измеритель интенсивности света (ИИС), преобразующий энергию света в электрический сигнал; его показания пропорциональны световому потоку, падающему на фотоэлемент. Поворотный столик 3может вращаться вокруг вертикальной оси, тем самым можно изменять угол падения света на стеклянную пластину 4. Для измерения этого угла падения имеется специальная шкала. Положение столика фиксируется винтом. Анализатор 5может вращаться вокруг горизонтальной оси, стрелкой на нём указано положение плоскости поляризации. У анализатора имеется шкала 8, по которой определяется положение его плоскости поляризации (ААс ). На съёмном поляризаторе 2 также имеется вертикальная стрелка, которая показывает положение его плоскости поляризации ППс. Фотоэлемент, совмещенный с анализатором, также может вращаться вокруг вертикальной оси. Тем самым можно проводить измерения интенсивности света, отражённого от набора пластин 4.

Выполнение работы

Задание 1. Проверка закона Малюса

1. Установите съёмный поляризатор 2 (набор пластин 4 уберите).

2. Включите лампу. Поверните фотоэлемент-анализатор 6 так, чтобы на него попадал свет от лампы. Добейтесь симметричного расположения элементов установки относительно луча света.

3. Установите положение плоскости ААс по шкале 8 на 0°. Запишите показания измерителя 7 в табл. 10.1. Это будет интенсивность света, прошедшего через поляризатор и анализатор в относительных единицах. Повторите измерения, изменяя угол между плоскостями поляризации поляризатора и анализатора от 0° до 360° через 10°, и также запишите их в табл. 10.1.

Таблица 10.1

Задание 2. Исследование поляризации преломлённого света

1. Установите съёмную пластину с двумя стеклами (N = 2).

2. Установите угол падения света на пластину 56° (это угол Брюстера для стекла с показателем преломления n = 1,5).

3. Установите фотоэлемент для регистрации интенсивности прошедшего через пластины света согласно рис. 10.7 (максимальное значение показаний ИИС подтверждает хорошее попадание света на фотоэлемент).

4. Обратите внимание, что преломлённый свет поляризован в плоскости падения, поэтому максимальное значение интенсивности будет при положении ААс 90° по шкале 8 (вопросы 12, 13, 14). Измерьте интенсивность прошедшего через пластины света при двух положениях ААс : при 90° и при 0°. Запишите результаты измерений в табл. 10.2.

5. Аналогичные измерения проведите для N = 4, 7, 12 пластин. Запишите результаты измерений в табл. 10.2.

Таблица 10.2


Похожая информация.


Реальное излучение содержит в себе не одну определенную частоту колебаний, а некоторый набор различных частот, называемый спектром или спектральным составом данного излучения. Излучение называется монохроматическим, если оно содержит очень узкий интервал частот (или длин волн ). В видимой области монохроматическое излучение вызывает световое ощущение определенного цвета; например, излучение, охватывающее интервал длин волн от 0,55 до 0,56 мкм, воспринимается как зеленый цвет. Чем уже интервал частот данного излучения, тем более монохроматическим оно является. Формула (1.2) относится к идеально монохроматическому излучению, содержащему одну частоту колебаний.

Раскаленные твердые и жидкие тела испускают непрерывный (или сплошной) спектр электромагнитных волн очень широкого интервала частот. Светящиеся разреженные газы испускают линейчатый спектр, состоящий из отдельных монохроматических излучений, называемых спектральными линиями; каждая спектральная линия характеризуется определенной частотой колебаний (или длиной волны), расположенной в середине охватываемого ею узкого интервала частот. Если источниками излучения являются не отдельные (изолированные, свободные) атомы, а молекулы газа, то спектр состоит из полос (полосатый спектр), каждая полоса охватывает более широкий непрерывный Интервал длин волн, чем спектральная линия.

Линейчатый (атомный) спектр каждого вещества является характерным для пего; благодаря этому возможен спектральный анализ, т. е. определение химического состава вещества по длинам волн спектральных линий испускаемого им излучения.

Допустим, что электромагнитная волна распространяется вдоль некоторой прямой, которую будем называть лучом. Можно интересоваться изменением вектора в определенной точке луча с течением

времени; возможно, что в. этой точке изменяется не только величина вектора как это следует из формулы (1.2), но и ориентировка вектора в пространстве. Далее можно зафиксировать величину и направление вектора в различных точках луча, но в определенный момент времени. Если окажется, что в различных точках вдоль луча все векторы лежат в одной плоскости, то излучение называется плоскополяризованным или линейно-поляризованным; такое излучение дает источник, который в процессе излучения сохраняет плоскость колебаний. Если же плоскость колебаний источника волны со временем изменяется, то вектор в волне не лежит в определенной плоскости и излучение не будет плоскополяризованным. В частности, можно получить волну, в которой вектор равномерно вращается вокруг луча. Если же вектор изменяет свою ориентировку вокруг луча совершенно беспорядочно, то излучение называется естественным. Такое излучение получается от светящихся твердых, жидких и газообразных тел, у которых плоскости, колебаний элементарных источников излечения - атомов и молекул - ориентированы в пространстве беспорядочно.

Таким образом, простейшим излучением является монохроматическая пласкополяризованная волна. Плоскость, в которой лежат вектор и вектор направления распространения волны, называется плоскостью колебаний плоскость, перпендикулярная плоскости колебаний (т. е. плоскость, в которой лежит вектор Н), называется плоскостью поляризации.

Скорость распространения электромагнитных волн в вакууме есть одна из важнейших констант физики и равна

В других средах она меньше к определяется по формуле (см. ч. III, § 29)

где соответственно диэлектрическая и магнитная проницаемости среды.

При переходе излучения из одной среды в другую частота колебаний в волне сохраняется, но длина волны К изменяется; обычно, если это не оговорено, К обозначает длину волны в вакууме.

Выше указывалось, что видимое излучение (которое мы называем светом) охватывает длины волн от 400 до при специальной тренировке глаз может воспринимать свет длиной волны от 320 до 900 нм. Более широкий интервал длин волн от 1 см до , охватывающий также ультрафиолетовую и инфракрасную области, называется оптическим излучением.

Нам часто задают вопрос -что означают эти буквы в описании радар-детекторов: Х, К, Ка, L, POP, VG-2?

X , K и Ka -это радиочастотные диапазоны, в которых работают милицейские радары.

L (laser)-означает возможность обнаружения лазерных радаров (лидаров)

POP -это не диапазон, это режим работы милицейского радара (а для радар-детектора -режим обнаружения).

VG-2 это система обнаружения радар-детекторов (а в радар-детекторах соответственно защита от такого обнаружения)

Рассмотрим это подоробней.

Диапазон X (10.475 to 10.575 ghz) -Самый старый радиочастотный диапазон используемый для контроля скорости. Водители старшего поколения помнят большие радары которые использовала милиция еще в СССР, похожие на большую серую трубу, из-за чего получили название "труба" или "фара". Сейчас таких почти не осталось. Лично я видел последний раз такую штуку на дорогах Украины в 2007 году. Имея любой, даже самый дешевый радар-детектор на вооружении вы легко успеете притормозить, т.к. скорость работы этих радаров невысока.

Диапазон K (24.0 to 24.25 ghz) -диапазон К самый распространенный диапазон в котором на данный момент работает большинство милицейских радаров. Этот диапазон был введен в 1976 году в США и до сих пор широко используется во ввсем мире для обнаружения скорости. Радары, работающие в диапазоне К отличаются меньшими размерами и весом по сравнению с радарами диапазона Х, а также более высокой скоростью работы. Этот диапазон используют радары "Визир", "Беркут", "Искра" и др. Все которые представлены в нашем магазине обнаруживают диапазон К.

Диапазон Ка (33.4 to 36.0 ghz) -более новый диапазон. Радары работающие в этом диапазоне более точные. Для радар-детекторов обнаружение этого диапазона сложнее. Все современные радар-детекторы обнаруживают излучение радаров в диапазоне Ka, однако ввиду того что работают такие милицейские радары очень быстро, не факт что Вам удастся снизить скорость в достаточной мере для того чтобы не быть пойманым. Будьте осторожны!

Лазерный диапазон . Радары (лидары) работающие в лазерном диапазоне это кошмар для нарушителя. Его используют камеры контроля скорости, например прибор TruCam. Лазерный измеритель скорости излучает луч в инфракрасном спектре. Отражаясь от фар автомобиля или номерного знака, лазерный луч возвращается обратно, и так как все это происходит со скоростью света, то шансов снизить скорость у вас просто нет. Если Ваш радар-детектор сообщил об обнаружении лазера то это означает что вас уже поймали:(Другое дело если ловили совсем не Вас и радар-детектор "поймал" отраженный сигнал, тогда еще может повезти.
Функцию обнаружения лазерных радаров имеют все радар-детекторы, представленные в нашем магазине. Но самый действенный (единственный надежный!) способ борьбы с лазерными пушками является так называемые "шифтеры"-приборы, обманывающие лазерный измеритель скорости. В нашем магазине представлен Beltronics SHIFTER ZR4-комплекс позволяющий обнаружить и защититься от лазерного обнаружения. Вот что по-настоящему позволит защититься от TruCam! Beltronics Shifter ZR4 может работать как самостоятельно, так и в комплекте с радар-детекторами Beltronics.

режим POP -это режим работы милицейского радара в котором он излучает очень короткое время (десятки миллисекунд). Этого бывает достаточно для определения скорости, но фиксации скорости не происходит и гаишнику в принципе нечего Вам предъявить. Но он предъявит, будьте уверены. Большинство радар-детекторов могут определять сигналы в этом режиме, у многих этот режим включается принудительно.В этом режиме ваш радар-детектор более чувствителен к помехам, поэтому используйте его за городом.

VG-2 -это режим защиты от обнаружения вашего радар-детектора. В некоторых странах Европы и в некоторых штатах США использование радар-детекторов запрещено. Поэтому полицейские имеют на вооружении так называемые детекторы радар-детекторов (Radar Detector Detector-RDD). Они улавливают специфическое излучение, которое производит радар-детектор во время работы. Таким образом полицейский на расстоянии может знать что у Вас в машине установлен радар-детектор. Все современные радар-детекторы защищены от обнаружения устройствами VG-2. Смех в том что VG-2 -система, изобретенная в начале 90-х и на данный момент практически не используется. Сейчас полицейские используют новые RDD системы Spectre (Stalcar). От этих RDD очень трудно защититься, практически ни один радар-детектор на рынке не способен защититься от системы Spectre, кроме радара Beltronics STI Driver-эта штука невидима на 100%.

После прочтения этой статьи может сложиться впечатление что в радар-детекторах нет никакого смысла-все равно не поможет. Это совсем не так. Во-первых, большинство радаров работают в диапазоне К и Ка, имея Вы будете предупреждены заранее и успеете скинуть скорость.

Лазерные пушки, стационарные лазерные камеры-это проблема. С другой стороны таких устройств крайне мало, они дороже обычного радара в разы и меньше распространены чем обычные радары диапазона К даже в США, что уж говорить об Украине. Такие радары нельзя использовать с рук, только с треноги или закрепленные стационарно.Для стопроцентной защиты от лазерных радаров вам потребуется шифтер-дорого но надежно.

Даже самый простой "антирадар" обнаруживает большинство радаров диапазона K заранее, на достаточном расстоянии чтобы Вы успели остановится. Мой любимые радары среднего ценового диапазона- Stinger -лучше защищены от помех и имет большую чувствительность. Ну и премиум класс- радар-детекторы Beltronics и в особенности STI Driver -вне конкуренции!

Удачи на дорогах!