Активность солнца в течение дня. Солнце он-лайн в режиме анимации

Одной из самых замечательных особенностей Солнца являются почти периодические, регулярные изменения различных проявлений солнечной активности, то есть всей совокупности наблюдаемых изменяющихся (быстро или медленно) явлений на Солнце. Это и солнечные пятна - области с сильным магнитным полем и вследствие этого с пониженной температурой, и солнечные вспышки - наиболее мощные и быстроразвивающиеся взрывные процессы, затрагивающие всю солнечную атмосферу над активной областью, и солнечные волокна - плазменные образования в магнитном поле солнечной атмосферы, имеющие вид вытянутых (до сотен тысяч километров) волоконообразных структур. Когда волокна выходят на видимый край (лимб) Солнца, можно видеть наиболее грандиозные по масштабам активные и спокойные образования - протуберанцы, отличающиеся богатым разнообразием форм и сложной структурой.

Нужно еще отметить корональные дыры - области в атмосфере Солнца с открытым в межпланетное пространство магнитным полем. Это своеобразные окна, из которых выбрасывается высокоскоростной поток солнечных заряженных частиц.

Солнечные пятна - наиболее известные явления на Солнце. Впервые в телескоп их наблюдал Г. Галилей в 1610 г. Мы не знаем, когда и как он научился ослаблять яркий солнечный свет, но прекрасные гравюры, изображающие солнечные пятна и опубликованные в 1613г. в его знаменитых письмах о солнечных пятнах, явились первыми систематическими рядами наблюдений.

С этого времени регистрация пятен то проводилась, то прекращалась, то возобновлялась вновь. В конце ХIX столетия два наблюдателя - Г. Шперер в

Германии и Е. Маундер в Англии указали на тот факт, что в течение 70- летнего периода вплоть до 1716г. пятен на солнечном диске, по-видимому, было очень мало. Уже в наше время Д. Эдди, заново проанализировав все данные, пришел к выводу, что действительно в этот период был спад солнечной активности, названный Маундеровским минимумом.

К 1843г. после 20-летних наблюдений любитель астрономии Г. Швабе из Германии собрал достаточно много данных для того, чтобы показать, что число пятен на диске Солнца циклически меняется, достигая минимума примерно через каждые одиннадцать лет. Р. Вольф из Цюриха собрал все какие только мог данные о пятнах, систематизировал их, организовал регулярные наблюдения и предложил оценивать степень активности Солнца специальным индексом, определяющим меру "запятненности" Солнца, учитывающим как число пятен, наблюдавшихся в данный день, так и число групп солнечных пятен на диске Солнца. Этот индекс относительного числа пятен, впоследствии названный "числами Вольфа", начинает свой ряд с 1749 года. Кривая среднегодовых чисел Вольфа совершенно отчетливо показывает периодические изменения числа солнечных пятен.

Индекс "числа Вольфа" хорошо выдержал испытание временем, но на современном этапе необходимо измерять солнечную активность количественными методами. Современные солнечные обсерватории ведут регулярные патрульные наблюдения за Солнцем, используя в качестве меры активности оценку площадей солнечных пятен в миллионных долях площади видимой солнечной полусферы(м.д.п.). Этот индекс в какой-то мере отражает величину магнитного потока, сосредоточенного в пятнах, через поверхность Солнца.

Группы солнечных пятен со всеми сопутствующими явлениями являются частями активных областей. Развитая активная область включает в себя факельную площадку с группой солнечных пятен по обе стороны линии раздела полярности магнитного поля, на которой часто располагается волокно. Всему этому сопутствует развитие корональной конденсации, плотность вещества в которой по крайней мере в несколько раз выше плотности окружающей среды.

Все эти явления объединены интенсивным магнитным полем, достигающим величины нескольких тысяч гаусс на уровне фотосферы.

Наиболее четко границы активной области определяются по хромосферной линии ионизованного кальция. Поэтому был введен ежедневный кальциевый индекс, который учитывает площади и мощности всех активных областей.

Самое сильное проявление солнечной активности, влияющее на Землю, - солнечные вспышки. Они развиваются в активных областях со сложным строением магнитного поля и затрагивают всю толщу солнечной атмосферы. Энергия большой солнечной вспышки достигает огромной величины, сравнимой с количеством солнечной энергии, получаемой нашей планетой в течение целого года. Это приблизительно в 100 раз больше всей тепловой энергии, которую можно было бы получить при сжигании всех разведанных запасов нефти, газа и угля. В то же время это энергия, испускаемая всем Солнцем за одну двадцатую долю секунды, с мощностью, не превышающей сотых долей процента от мощности полного излучения нашей звезды. Во вспышечно-активных областях основная последовательность вспышек большой и средней мощности происходит за ограниченный интервал времени (40-60 часов), в то время как малые вспышки и уярчения наблюдаются практически постоянно. Это приводит к подъему общего фона электромагнитного излучения Солнца. Поэтому для оценки солнечной активности, связанной со вспышками, стали применять специальные индексы, напрямую связанные с реальными потоками электромагнитного излучения. По величине потока радиоизлучения на волне 10.7 см (частота 2800 МГц) в 1963 г. введен индекс F10.7. Он измеряется в солнечных единицах потока (с.е.п.), причем 1 с.е.п. = 10-22 Вт/(м2·Гц). Индекс F10.7 хорошо соответствует изменениям суммарной площади солнечных пятен и количеству вспышек во всех активных областях. Для статистических исследований в основном используются среднемесячные значения.

С развитием спутниковых исследований Солнца появилась возможность прямых измерений потока рентгеновского излучения в отдельных диапазонах.

С 1976 года регулярно измеряется ежедневное фоновое значение потока мягкого рентгеновского излучения в диапазоне 1-8 A (12.5-1 кэВ).

Соответствующий индекс обозначается прописной латинской буквой (A, B, C, M, X), характеризующей порядок величины потока в диапазоне 1-8 A (10-8 Вт/м2, 10-7 и так далее) с последующим числом в пределах от 1 до 9.9, дающим само значение потока. Так, например, M2.5 означает уровень потока 2.5·10-5. В итоге получается следующая шкала оценок:

А(1-9) = (1-9)·10-8 Вт/м2

В(1-9) = (1-9)·10-7

С(1-9) = (1-9)·10-6

М(1-9) = (1-9)·10-5

Х(1-n) = (1-n)·10-4

Этот фон изменяется от величин А1 в минимуме солнечной активности до С5 в максимуме. Эта же система применяется для обозначения рентгеновского балла солнечной вспышки. Максимальный балл Х20 = 20·10-4 Вт/м2 зарегистрирован во вспышке 16 августа 1989 года.

В последнее время стало использоваться в виде индекса, характеризующего степень вспышечной активности Солнца, количество солнечных вспышек за месяц. Этот индекс может быть использован с 1964 года, когда была введена применяющаяся сейчас система определения балльности солнечной вспышки в оптическом диапазоне.

С развитием космических технологий, можно наблюдать за активностью нашей звезды уже в режиме онлайн

Здесь Вы сможете смотреть за нашей космической погодой онлайн, которая в основном зависит от активности нашей звезды. Данные поступают напрямую со спутника SDO и обновляются очень часто , поэтому Вы можете всегда узнать точное состояние активности нашего Солнца и космической погоды.

Данные представленные ниже получены инструментом AIA установленном на космическом аппарате Solar Dynamics Observatory (SDO) и предназначены для получения качественных изображений короны. Снимки охватывают как минимум 1,3 солнечных диаметров в нескольких длинах волн, с разрешением около 1 угловой секунде.

Основная цель инструмента AIA — значительно улучшить наше понимание физики Солнечной атмосферы, которая формирует космическую погоду. Инструмент AIA производит данные, необходимые для количественного изучения корональных магнитных полей и плазмы. Он обеспечивает новое понимание наблюдаемых процессов и, в конечном счете, развивает передовые инструменты прогнозирования, необходимые для всех нас

Ниже приведены снимки активности Солнца сегодня онлайн в режиме реального времени

Длина волны 193 ангстрем (охватывает корону), что соответствует температуре порядка 1,2 млн. градусов.

Состояние космической погоды в Солнечной системе зависит от нашего светила. Потоки ионизированной плазмы, жесткое излучение и вспышки, солнечный ветер, это главные параметры.

Длина волны 171 ангстрем (охватывает спокойную корону), что соответствует температуре порядка 0,6 млн. градусов.

Длина волны 94 ангстрем (горячая корона), что соответствует температуре порядка 6,3 млн. градусов.

Длина волны 304 ангстрем (охватывает переходный слой и хромосферу), что соответствует температуре порядка 50 000 градусов.

Длина волны 4500 ангстрем (фотосфера), что соответствует температуре порядка 5000 градусов.

Длина волны 1600 ангстрем (переходный слой и верхняя фотосфера), что соответствует температуре порядка 5000 градусов.

Онлайн график активности космической погоды

Содержит следующие параметры: график протонов (данные со спутника GOES-13), электронов, а также данные по магнитному полю вблизи Земли и магнитным бурям (нижняя часть изображения). Обновление каждые 5 минут.

Параметры Солнечного ветра и магнитного поля около Земли

На схеме внизу показаны данные по солнечному ветра и магнитному полю. Обновление раз в 15-20 минут. На них отлично видно скорость солнечного ветра и другие параметры в околоземном пространстве.

Состояние солнечной активности сегодня

(красный — экстремальный, жёлтый [-50 nT > Dst > -100 nT] — повышенный, зелёный [-20 nT > Dst > -50 nT] — средний, синий — низкий)

Чёрная стрелка указывает текущее значение солнечной активности на сегодня.

Нам кажется, что источник жизни на Земле - солнечное излучение - постоянен и неизменен. Непрерывное развитие жизни на нашей планете в течение последнего миллиарда лет как бы подтверждает это. Но физика Солнца, за минувшее десятилетие достигшая больших успехов, доказала, что излучение Солнца испытывает колебания, имеющие свои периоды, ритмы и циклы. На Солнце появляются пятна, факелы, протуберанцы. Число их возрастает в течение 4-5 лет до наивысшего предела в год солнечной активности.

Это и есть время максимума солнечной активности. В эти годы Солнце выбрасывает дополнительное количество заряженных электричеством частичек - корпускул, которые со скоростью более 1000 км/сек несутся в межпланетном простран-стве и врываются в атмосферу Земли. Особенно мощные потоки корпускул исходят при хромосферных вспышках - особом виде взрывов солнечной материи. Во время этих исключительно сильных вспышек Солнце выбрасывает так называемые космические лучи. Эти лучи состоят из осколков атомных ядер и приходят к нам из глубины Вселенной. В годы солнечной активности усиливается ультрафиолетовое, рентгеновское и радиоизлучение Солнца.

Периоды солнечной активности оказывают огромное влияние на изменение погоды и усиление природных катаклизмов, что прекрасно известно из истории. Опосредованно пики солнечной активности, а также вспышки на Солнце могут воздействовать на общественные процессы, вызывая голод, войны и революции. При этом утверждение о наличии прямой связи между максимумами активности и революциями не имеет под собой никакой научно подтвержденной теории. Однако, в любом случае, понятно, что прогноз солнечной активности в связи с погодой является важнейшей задачей климатологии. Повышенная солнечная активность отрицательно воздействует на здоровье людей и их физическое состояние, нарушает биологические ритмы.

Излучение Солнца несет с собой большие запасы энергии. Все виды этой энергии, попадая в атмосферу, в основном поглощаются ее верхними слоями, где происходят, как говорят ученые, «возмущения». Силовые линии магнитного поля Земли направляют обильные потоки корпускул в полярные широты. В связи с этим там возникают магнитные бури и полярные сияния. Корпускулярные лучи начинают проникать даже в атмосферу умеренных и южных широт. Тогда вспыхивают полярные сияния в таких отдаленных от полярных стран местах, как Москва, Харьков, Сочи, Ташкент. Такие явления наблюдались неоднократно и будут не раз наблюдаться в будущем.

Иногда магнитные бури достигают такой силы, что прерывают работу телефонной и радиосвязи, нарушают работу линий электропередач, вызывают сбои в электроснабжении.

Ультрафиолетовые лучи Солнца почти целиком поглощаются высокими слоями атмосферы

Для Земли это имеет огромное значение: ведь в большом количестве ультрафиолетовые лучи губительны для всего живого.

Солнечная активность, воздействуя на высокие слои атмосферы, существенным образом влияет на общую циркуляцию воздушных масс. Следовательно, оно отражается на погоде и климате всей Земли. По-видимому, влияние возмущений, возникающих в верхних слоях воздушного океана, передаются в его нижние слои - тропосферу. При полетах искусственных спутников Земли и метеорологических ракет были обнаружены расширения и уплотнения высоких слоев атмосферы: воздушные приливы и отливы, подобные океаническим ритмам. Однако механизм взаимосвязи индекса высоких и низких слоев атмосферы полностью еще не удалось раскрыть. Бесспорно, что в годы максимума солнечной активности происходит усиление циклов циркуляции атмосферы, чаще происходят столкновения теплых и холодных течений воздушных масс.

На Земле существуют области жаркой погоды (экватор и часть тропиков) и гигантские холодильники - Арктика и особенно Антарктика . Между этими областями Земли всегда существует разница в температуре и давлении атмосферы, что приводит в движение огромные массы воздуха. Идет непрерывная борьба между теплыми и холодными течениями, стремящимися выровнять разницу, возникающую из-за изменений в температуре и давлении. Иногда теплый воздух «берет перевес» и проникает далеко к северу до Гренландии и даже к полюсу. В других случаях массы арктического воздуха прорываются на юг до Черного и Средиземного морей, доходят до Средней Азии и Египта. Граница борющихся воздушных масс представляет собой самые неспокойные области атмосферы нашей планеты.

Когда разница в температуре движущихся воздушных масс возрастает, то на границе возникают мощные циклоны и антициклоны , порождающие частые грозы, ураганы, ливни.

Современные климатические аномалии вроде лета 2010 в европейской части России, и многочисленных наводнений в Азии не являются чем-то экстраординарным. Их не стоит считать предвестниками скорого конца света, или свидетельством глобального изменения климата. Приведем пример из истории.

В 1956 г. бурная погода охватила северное и южное полушария. Во многих районах Земли это вызвало стихийные бедствия и резкое изменение погоды. В Индии паводки на реках повторялись несколько раз. Вода затопила тысячи сел и смыла посевы. От наводнений пострадало около 1 млн. человек. Прогнозы не работали. От ливней, гроз и наводнений летом этого же года пострадали даже такие страны, как Иран и Афганистан, где обычно в эти месяцы бывают засухи. Особенно высокая солнечная активность с пиком излучения в период 1957-1959 годов, вызвала еще больший рост числа метеорологических катастроф - ураганов, гроз, ливней.

Всюду наблюдались резкие контрасты погоды. Например, в Европейской части СССР за 1957 г. оказалась необычайно теплой: в январе средняя температура была -5°. В феврале в Москве средняя температура достигла -1°, при норме -9°. В это же время в Западной Сибири и в республиках Средней Азии стояли сильные морозы. В Казахстане температура понизилась до -40°. Алма-Ата и другие города Средней Азии были буквально засыпаны снегом. В южном полушарии - в Австралии и в Уругвае - в те же месяцы стояла небывалая жара с суховеями. Атмосфера бушевала до 1959 г., когда начался спад солнечной активности.

Влияние вспышек Солнца и уровня солнечной активности на состояние растительного и животного мира сказывается косвенным путем: через циклы общей циркуляции атмосферы. Например, ширина слоев спиленного дерева, по которым определяется возраст растения, зависит главным образом от ежегодного количества осадков. В засушливые годы слои эти очень тонки. Количество годовых осадков изменяется периодически, что можно увидеть на годичных кольцах старых деревьев.

Срезы, сделанные на стволах мореных дубов (их находят в руслах рек), позволили узнать историю климата за несколько тысячелетий до нашего времени. Существование определенных периодов, или циклов, солнечной активности подтверждает исследования материалов, которые выносят реки с суши и откладывают на дне озер, морей и океанов. Анализ состояния проб донных отложений позволяет проследить течение солнечной активности на протяжении сотен тысяч лет. Взаимосвязи солнечной активности и процессов природы на Земле очень сложны и не объединены в общую теорию.

Ученые установили, что колебания солнечной активности совершаются в пределах от 9 до 14 лет

Солнечная активность влияет на уровень Каспийского моря, на соленость вод Балтийского и ледовитость северных морей. Для цикла повышенной солнечной деятельности характерно низкое стояние уровня Каспия: повышение температуры воздуха вызывает усиленное испарение воды и уменьшение стока Волги - главной питающей артерии Каспия. По той же причине повысилась соленость Балтийского моря и уменьшилась ледовитость северных морей . В принципе, ученые могут дать прогноз будущего режима северных морей на ряд ближайших десятилетий.

В настоящее время часто слышатся доводы, что Северный Ледовитый океан вскоре освободится ото льда и будет пригоден для судоходства. Следует искренне посочувствовать «познаниям» «экспертов», делающих такие заявления. Да, возможно, частично освободится на год-другой. А потом снова замерзнет. И чего Вы нам сказали такого, о чем мы не знали? Зависимость ледяного покрова северных морей от циклов и периодов повышенной солнечной активности надежно установлена более 50 лет назад и подтверждена десятилетиями наблюдений. Поэтому можно с высокой уверенностью утверждать, что лед нарастет так же, как и растаял, по мере прохождения цикла солнечной активности.

Просто о сложном – Солнечная активность и ее влияние на природу и климат в справочнике
  • Галерея изображений, картинки, фотографии.
  • Солнечная активность и ее влияние на природу и климат – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Солнечная активность и ее влияние на природу и климат.
  • Ссылки на материалы и источники – Солнечная активность и ее влияние на природу и климат в справочнике.
    Похожие записи

Чтобы в будущем не пропускать вспышки на Солнце, и последующие за ними полярные сияния, добавляю информацию о солнечной активности в реальном времени. Для обновления информации перезагрузите страницу.

Солнечные вспышки

На графике представлен общий поток рентгеновского излучения Солнца получаемый со спутников серии GOES в режиме реального времени. Солнечные вспышки видны в виде всплесков интенсивности. Во время мощных вспышек происходят нарушения радиосвязи в ВЧ диапазоне на дневной стороне Земли. Степень этих нарушений зависит от мощности вспышки. Балл (C,M,X) вспышек и их мощность в Вт/м 2 указаны на левой оси координат в логарифмическом масштабе. Вероятный уровень нарушений радиосвязи по шкале NOAA (R1-R5) показан справа. На графике — развитие событий в октябре 2003г.

Солнечные космические лучи (всплески радиации)

Минут через 10-15 после мощных солнечных вспышек к Земле приходят протоны высоких энергий — > 10 Мэв или так называемые солнечные космические лучи (СКЛ). В западной литературе — High energy proton flux and Solar Radiation Storms т.е. поток протонов высоких энергий или солнечная радиационная буря. Этот радиационный удар может вызывать нарушения и поломки в аппаратуре космических аппаратов, приводить к опасному облучению космонавтов и получению повышенной дозы радиации пассажирами и экипажами реактивных самолётов на высоких широтах.

Индекс геомагнитной возмущенности и магнитные бури

Усиление потока солнечного ветра и приход ударных волн корональных выбросов вызывают сильные вариации геомагнитного поля — магнитные бури. По данным, поступающим с космических аппаратов серии GOES, в режиме реального времени вычисляется уровень возмущённости геомагнитного поля, который и представлен на графике.

Ниже индекс протонов

Протоны принимают участие в термоядерных реакциях, которые являются основным источником энергии, генерируемой звёздами. В частности, реакции pp-цикла, который является источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

Максимально ожидаемый значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

Значения УФ-индекса

Австрия, Gerlitzen. 1526 м.

1 2 3 4 5 6 7 8 9 10 >10
низкий умеренный сильный очень сильный экстремальный
Данные значения УФ-индекса по планете Данные комплексного мониторинга в г.Томске

Компоненты магнитного поля

Зависимости вариаций компонент магнитного поля в гаммах от местного времени.

Местное время выражено в часах Томского летнего декретного времени (ТЛДВ). ТЛДВ=UTC+7часов.

Ниже представлен уровень возмущённости геомагнитного поля в К-индексах.

Вспышки на Солнце по данным спутника GOES-15

NOAA / Space Weather Prediction Center

Поток протонов и электронов взяты из GOES-13 GOES Hp, GOES-13 и GOES-11

Solar X-ray Flux

Вспышки на Солнце

На шкале существует пять категорий (по возрастанию мощности): A, B, C, M и X. Помимо категории каждой вспышке присваивается некоторое число. Для первых четырех категорий это число от нуля до десяти, а для категории X — от нуля и выше.

HAARP феррозонд (магнитометр)

«Компонент H» (черный след) положителен магнитный север,
«Компонент D» (красный след) положителен Восток,
«Компонент Z» (синий след) положителен вниз

Подробнее: http://www.haarp.alaska.edu/cgi-bin/magnetometer/gak-mag.cgi

График GOES Hp содержит 1-минутные усредненные параллельные компоненты магнитного поля в наноТеслах (nanoTeslas — nT) измеряемый GOES-13 (W75) и GOES-11 (W135).

Примечание: Время на картинках указано североатлантическое, то есть относительно
московского времени нужно отнять 7 часов (GMT-4:00)
Источники информации:
http://sohowww.nascom.nasa.gov/data/realtime-images.html
http://www.swpc.noaa.gov/rt_plots/index.html

Активность солнца в реальном времени

Здесь представлено моделирование солнечной активности в реальном времени. Обновление изображений происходит раз в 30 минут. Возможно периодическое отключение датчиков и камер на спутниках в виду технических неисправностей.

Изображение Солнца в реальном времени(онлайн).

Ультрафиолетовый телескоп, яркие пятна соответствуют 60-80 тыс. градусам по Кельвину. Спутник SOHO LASCO C3

Изображение короны солнца в реальном времени(онлайн). Характеристики Солнца

Расстояние до Солнца : 149.6 млн. км = 1.496· 1011 м = 8.31 световая минута

Радиус Солнца : 695 990 км или 109 радиусов Земли

Масса Солнца : 1.989 · 1030 кг = 333 000 масс Земли

Температура поверхности Солнца : 5770 К

Химический состав Солнца на поверхности : 70% водорода (H), 28% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Температура в центре Солнца : 15 600 000 К

Химический состав в центре Солнца : 35% водорода (H), 63% гелия (He), 2% остальных элементов (C, N, O, …) по массе

Солнце — основной источник энергии на Земле.
Основные характеристики
Среднее расстояние от Земли 1,496×10 11 м
(8,31 световых минут)
Видимая звёздная величина (V) -26,74 м
Абсолютная звёздная величина 4,83 м
Спектральный класс G2V
Параметры орбиты
Расстояние от центра Галактики ~2,5×10 20 м
(26 000 световых лет)
Расстояние от плоскости Галактики ~4,6×10 17 м
(48 световых лет)
Галактический период обращения 2,25-2,50×10 8 лет
Скорость 2,17×10 5 м/с
(на орбите вокруг центра Галактики)
2×10 4 м/с
(относительно соседних звёзд)
Физические характеристики
Средний диаметр 1,392×10 9 м
(109 диаметров Земли)
Экваториальный радиус 6,955×10 8 м
Длина окружности экватора 4,379×10 9 м
Сплюснутость 9×10 -6
Площадь поверхности 6,088×10 18 м 2
(11 900 площадей Земли)
Объём 1,4122×10 27 м 2
(1 300 000 объёмов Земли)
Масса 1,9891×10 30 кг
(332 946 масс Земли)
Средняя плотность 1409 кг/м 3
Ускорение на экваторе 274,0 м/с 2
(27,94 g)
Вторая космическая скорость (для поверхности) 617,7 км/с
(55 земных)
Эффективная температура поверхности 5515 C°
Температура короны ~1 500 000 C°
Температура ядра ~13 500 000 C°
Светимость 3,846×10 26 Вт
~3.75×10 28 Лм
Яркость 2,009×10 7 Вт/м 2 /ср
Характеристики вращения
Наклон оси 7,25°(относительно плоскости эклиптики)
67,23°(относительно плоскости Галактики)
Прямое восхождение северного полюса 286,13°
(19 ч 4 мин 30 с)
Склонение северного полюса +63,87°
Скорость вращения внешних видимых слоёв (на экваторе) 7284 км/ч
Состав фотосферы
Водород 73,46 %
Гелий 24,85 %
Кислород 0,77 %
Углерод 0,29 %
Железо 0,16 %
Сера 0,12 %
Неон 0,12 %
Азот 0,09 %
Кремний 0,07 %
Магний 0,05 %


Мы сможем увидеть то, что происходит сейчас в космосе. Иногда, фото появляется на нашем портале через считанные минуты, после того, как сработал затвор камеры во Вселенной. А это означает, что перед этим изображение успело преодолеть… полтора миллиона километров. Именно на таком расстоянии находятся спутники.

Трансляцию изображений Солнца начнем с нового современного космического телескопа. Изображения эти — удивительные. Благодаря двум американским спутникам близнецам STEREO мы можем увидеть невидимое. То есть ту сторону звезды, которая скрыта от наблюдения с Земли.

На приведенной схеме видно, что спутники-обсерватории A и B позволяют наблюдать Солнце с противоположных сторон. Изначально было запланировано, что со временем их орбиты разойдутся так, что мы сможем увидеть Солнце не просто сбоку, а полностью с обратной стороны. И в феврале 2011 года это произошло.

То что мы можем видеть прямо сейчас — похоже на фантастику. Почти в реальном времени наблюдаем скрытую жизнь космоса. Его тайну. И нам никогда не помешают в этом облака, тучи и другие атмосферные явления. Космос — идеальное место для подобных наблюдений. Кстати, непонятного здесь для ученых — 90 процентов из всех происходящих явлений. В том числе и в поведении ближайшей к нам звезды. Может, именно Вы поможете сделать основопологающие разгадки?

Смотрите: вот оно — наше Солнце (на снимке — ниже) , скромно спрятанное за «заглушкой», чтобы не производить засветку изображения. Широкоугольный объектив позволяет сделать обзор на сотни тысяч километров вокруг. Сделано это специально для того, чтобы мы могли видеть солнечную корону.

Трансляция этого изображения ведется со спутника STEREO B. Время на изображении указано по Гринвичу.

Время GMT (Гринвич): Если происходят выбросы в сторону Земли, то их направленность будет исходить к правому краю. Именно такие яркие лучистые сполохи и представляют опасность для нас — землян. Иногда, ученые пишут наспех электронным пером подсказки на изображении. Извещая нас о появлении в кадре какой-нибудь кометы или планеты. Выше — следующая «картинка» со спутника STEREO B, c маркировкой — behind_euvi_195, — но теперь уже с видом непосредственно на само Солнце. Мы наблюдаем: есть ли активность на невидимой стороне? В зависимости от местоположения сполохов по правому краю можно будет самим прогнозировать их быстроту появления на видимой стороне. Напомним, что поверхностные слои Солнца делают полный оборот около 25 суток. Вращение происходит слева направо. Зеленоватый цвет изображения появляется потому, что телескоп отображает атмосферу Солнца в определенном диапазоне волн. В данном случае — 195 А (Ангстрем). Мы «заглядываем» в температурный слой звезды на уровне около полутора миллионов градусов Цельсия. А вот на следующем изображении (ниже) — можем разглядеть более поверхностный слой, нагретый до 80 000°С Но это мы уже видим трансляцию с другого удивительного телескопа — космической обсерватории SDO. Она была запущена в космос в 2010 году. Главная ее цель — исследование динамических процессов на Солнце.

SDO транслирует изображения очень оперативно. Вы это сами можете видеть по маркировке всемирного времени на снимке. Примечательно, что взгляд этой обсерватории на Солнце точно совпадает с тем, каким мы сами видим его с Земли. Именно с этой стороны и «выстреливают» в нас опаснейшие протуберанцы и приходят магнитные бури. А образуются они, в большинстве случаев, в темных областях — пятнах. Их обширное появление — тревожный знак магнитной неспокойности. Это означает, что на Земле может произойти магнитная буря. И именно транслируемое изображение ниже позволяет нам наблюдать за ее предвестниками — пятнами.

Появились пятна — уделите более пристальное внимание своему здоровью. Доказано, что магнитным бурям подвержены абсолютно все люди. Но у одних — защитные механизмы срабатывают лучше, у других — хуже. Причины такой разницы ученым непонятны.

КАК ВЕСТИ СЕБЯ ВО ВРЕМЯ МАГНИТНЫХ БУРЬ?

Обобщающий совет врача-терапевта Мирославы БУЗЬКО:

ВПЕРВЫЕ! На нашем портале начата прямая трансляция с Международной космической станции: жизнь космонавтов, служебные переговоры, стыковки, виды Земли в реальном времени .

Кстати, неспокойная геомагнитная обстановка, создаваемая на Земле Солнцем, наиболее актуальна для тех, кто живет поближе к Северу. Это вызвано строением нашей планеты и ее положением в космосе. Территориально больше всего достается солнечных бурь — России (Сибирь и Европейский Север), США (Аляска) и Канаде.

Напомним, что солнечные изображения появляются на портале с временной задержкой, необходимой на их передачу с космической обсерватории и обработку для показа. Все проделывается в автоматическом режиме.

Если Вы видите на изображении или искаженную «картинку» — это означает, что произошел технический сбой. Иногда, в этом может быть само Солнце, которое в очередной раз выплеснуло на окружающих свою гигантскую энергию: А выбросы эти могут очень серъезно угрожать нашей цивилизации. Большая часть современных электронных устройств не защищены от воздействия аномальных солнечных излучений. Они могут выйти из строя моментально.

О нынешнем неблагоприятном прогнозе активности Солнца и о причинах, которые могут сильно разрушить земную инфраструктуру, напомним, можете прочитать в материале «Ахиллесова пята нового века»

Наблюдайте за жизнью настоящей Звезды! От нее реально зависит наша с Вами жизнь:

(Трансляция обеспечивается благодаря открытости в предоставлении информации со стороны космических агентств ЕС и NASA)

Иформер воздействия Солнца

Показаны средние прогнозные значения глoбaльного геомагнитного индекса Кр, на основе геофизических данных с двенадцати обсерваторий мира, собранных Службой Солнца SWPC NOAA. Данные нижеприведенного прогноза обновляются ежедневно. Кстати, Вы можете легко убедиться, что ученые почти не умеют прогнозировать солнечные события. Достаточно сравнить их предсказания с реальной ситуацией. Сейчас прогноз на три дня выглядит следующим образом:

Кр-индекс — характеризует общепланетарное геомагнитное поле, то есть — в масштабах всей Земли. По каждому дню показаны восемь значений — на каждый трёхчасовой интервал времени, в течении суток (0-3, 3-6, 6-9, 9-12, 12-15, 15-18, 18-21, 21-00 часов). Время указано московское (msk)

Вертикальные линии ЗЕЛЕНОГО цвета (I ) — безопасный уровень геомагнитной активности.

Вертикальные линии КРАСНОГО цвета (I ) — магнитная буря (Kp>5). Чем выше красная вертикальная линия, тем сильнее буря. Уровень, с которого вероятны заметные влияния на здоровье метеочувствительных людей (Kp=7) отмечен горизонтальной линией красного цвета.

Ниже вы можете видеть реальное отображение геомагнитного воздействия Солнца. По шкале значений Kp-индекса определяйтесь со степенью его опасности для вашего здоровья. Цифра выше 4-5 единиц означает наступление магнитной бури. Отметим, что в данном случае, на графике оперативно отображается уровень солнечного излучения уже достигшего Земли. Эти данные фиксируются и выдаются каждые три часа несколькими станциями слежения в США,
Канаде и Великобритании. А сводный результат мы видим благодаря Центру космических прогнозов (NOAA/Space Weather Prediction Center)

ВАЖНО! Учитывая, что опасный выброс солнечной энергии достигает Земли не ранее, чем через сутки, вы сами, с учетом оперативных изображений Солнца, транслируемых выше, сможете заранее подготовться к неблагоприятному воздействию, уровень которого отображается ниже.

Индекс геомагнитной возмущенности и магнитные бури

Индекс Kp определяет степень геомагнитной возмущенности. Чем выше индекс Kp тем возмущения больше. Kp < 4 — слабые возмущения, Kp > 4 — сильные возмущения.

Обозначение информера солнечного воздействия

Рентгеновское излучение Солнца*

Normal : Обычный солнечный рентгеновский поток.

Active : Возросшее солнечное рентгеновское излучение.

Мониторинг солнечной активности и геомагнитной обстановки Земли онлайн по различным параметрам... А также карты озонового слоя Земли и землетрясений в мире за последние двое суток, карты погоды и температуры.

Рентгеновское излучение Солнца

Рентгеновское излучение Солнца показывает график вспышечной активности Солнца. Рентгенограммы показывают события на Солнце, здесь используются для отслеживания солнечной активности и солнечных вспышек. Крупные солнечные рентгеновские вспышки могут менять ионосферу Земли, которая блокирует высокочастотные (ВЧ) радиопередачи на освещенную Солнцем сторону Земли.

Солнечные вспышки также связаны с Корональными выбросами массы (квм), которые в конечном итоге могут привести к геомагнитным бурям. SWPC посылает оповещения космической погоды на М5 (5х10-5 Вт/МВт) уровне. Некоторые крупные вспышки сопровождаются сильными радиовсплесками, которые могут конфликтовать с другими радиочастотами и вызывают проблемы для спутниковой связи и радио-навигации (GPS).

Шумановские резонансы

Резонансом Шумана называется явление образования стоячих электромагнитных волн низких и сверхнизких частот между поверхностью Земли и ионосферой.

Земля и её ионосфера - это гигантский сферический резонатор, полость которого заполнена слабоэлектропроводящей средой. Если возникшая в этой среде электромагнитная волна после огибания земного шара снова совпадает с собственной фазой (входит в резонанс), то она может существовать долгое время.

Шумановские резонансы

Прочитав в 1952 году статью Шумана о резонансных частотах ионосферы, немецкий врач Герберт Кёниг (Herbert König) обратил внимание на совпадение главной резонансной частоты ионосферы 7,83 Гц с диапазоном альфа-волн (7,5-13 Гц) человеческого мозга. Ему это показалось любопытным, и он связался с Шуманом. С этого момента начались их совместные исследования. Выяснилось, что и другие резонансные частоты ионосферы совпадают с главными ритмами человеческого мозга. Возникла мысль о неслучайности этого совпадения. Что ионосфера – своего рода задающий генератор для биоритмов всего живого на планете, своего рода дирижер оркестра, называемого жизнью.

И, соответственно, интенсивность и любые изменения шумановских резонансов влияет на высшую нервную деятельность человека и его интеллектуальные способности, что было доказано еще в середине прошлого века.

Индекс протонов

Протоны являются основным источником энергии Вселенной, генерируемой звездами. Они принимают участие в термоядерных реакциях, в частности, реакциях pp-цикла, которые являются источником почти всей энергии, излучаемой Солнцем, сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

Поток протонов

Поток электронов и протонов взяты из GOES-13 GOES Hp, GOES-13 и GOES-11. Высокоэнергетические частицы могут добраться до Земли где-то от 20 минут до нескольких часов после солнечного события.

Компоненты магнитного поля

GOES Hp - это минутный график, содержит усредненные параллельные компоненты магнитного поля Земли в нано Теслах (nT). Измерения: GOES-13 и GOES-15.

Космическое излучение

Через 8-12 минут после крупных и экстремальных солнечных вспышек к Земле долетают протоны высоких энергий - > 10 Мэв или их еще называют - солнечные космические лучи (СКЛ). Поток протонов высоких энергий, вошедших в атмосферу Земли, показывает настоящий график. Солнечная радиационная буря может вызвать нарушения или поломки в аппаратуре космических аппаратов, вывести из строя электронную технику на Земле, привести к радиационному облучению космонавтов, пассажиров и экипажи реактивных самолётов.

Геомагнитная возмущенность Земли

Усиление потока солнечного излучения и приход волн солнечных корональных выбросов вызывают сильные колебания геомагнитного поля - на Земле происходят магнитные бури. На графике показаны данные с космических аппаратов GOES, уровень возмущенности геомагнитного поля вычисляется в режиме реального времени.

Полярные сияния

Полярные сияния возникают, когда поток солнечного ветра сталкивается с верхними слоями земной атмосферы. Протоны вызывают диффузное явление Аврора, которое распространяется по силовым линиям магнитного поля Земли. Полярные сияния, как правило, сопровождается уникальным звуком, напоминающим легкое потрескивание, которое еще не изучено учеными.

Электроны возбуждаются путем ускорения процессов в магнитосфере. Ускоренные электроны распространяются в магнитном поле Земли в полярных регионах, где они сталкиваются с атомами и молекулами кислорода и азота в верхних слоях земной атмосферы. В этих столкновениях электроны передают свою энергию в атмосферу, таким образом, захватывая атомы и молекулы на более высокие энергетические состояния. Когда они расслабляются обратно вниз до нижних энергетических состояний, они
выделяют энергию в виде света. Это аналогично тому, как неоновая лампочка работает. Полярные сияния возникают, как правило, от 80 до 500 км над поверхностью земли.

Карта озонового слоя

Температурная карта

Погода в мире

Карта землетрясений

Карта показывает землетрясения на планете за последние сутки