Опричнина итоги правления ивана 4 кратко. Причины введения опричнины

Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.


Для обычного человека алмаз и графит – это два совершенно не похожих и никак не связанных друг с другом элемента. Алмаз вызывает ассоциации с переливающимися драгоценностями, вспоминается выражение «блестит как алмаз». Графит – нечто серое, то, из чего обычно делают карандашные грифели.

Трудно поверить, что оба минерала – это одно и то же вещество разной формы обработки.

Понятие и основные характеристики минералов

Алмазом называют прозрачный кристалл, не имеющий цвета, обладающий высокими характеристиками преломления света. Выделяют следующие основные свойства минерала:

Природа зарождает как алмазы определенных форм, так и в нескольких кристаллических формах, что обусловлено его внутренним строением. Ярко выраженные кристаллы имеют форму куба или тэтраэдра с плоскими гранями. Иногда грани кажутся рельефными из-за наличия невидимых глазу многочисленных наростов и преобразований.

Хотя многие считают алмаз самым прочным материалом на свете, но науке известно вещество превосходящее алмаз по прочности более чем на 11% — «гипералмаз».

Графит представляет собой кристаллическое вещество серо-черного цвета, обладающее металлическим блеском. По составу графит имеет слоистую структуру, его кристаллы состоят из мелких тонких пластинок. Это очень хрупкий минерал, напоминающий по внешнему виду сталь или чугун. У графита низкая теплоемкость, но высокая температура плавления. Кроме того, этот минерал:


На ощупь графит жирный, а при проведении по бумаге оставляет следы. Это происходит из-за того, что атомы кристаллической решетки слабо связаны.

Отличие графита от алмаза, особенности строения и процесс перехода одного минерала в другой

Алмаз и графит – аллотропные по отношению друг к другу минералы, то есть имеют различные свойства, но являются разными формами углерода. Их основное отличие заключается лишь в химическом строении кристаллической решетки.

Кристаллическая решетка алмаза имеет вид тэтраэдра, в котором каждый атом окружен еще 4 атомами и является вершиной соседнего тэтраэдра, образуя бесконечное множество атомов, имеющих прочные ковалентные связи.

Графит на атомном уровне состоит из пластов шестиугольников с вершинами-атомами. Атомы хорошо связаны между собой только на уровне пластов, но пласты между собой сильной связи не имеют, что делает графит мягким и нестойким к разрушению. Именно эта особенность и позволяет получить из графита алмаз.

Физические и химические свойства алмаза и графита хорошо видны из таблицы.

Характеристика
Строение атомной решетки Кубическая форма Гексагональная
Светопроводимость Хорошо проводит свет Не пропускает свет
Электропроводимость Не обладает Имеет хорошую электропроводимость
Связи атомов Пространственные Плоскостные
Структура Твердость и хрупкость Слоистость
Максимальная температура, при которой минерал остается неизменным 720 по Цельсию 3700 по Цельсию
Цвет Белый, голубой, черный, желтый, бесцветный Черный, серый, стальной
Плотность 3560 кг/м.куб. 2230 кг/м.куб.
Использование Ювелирное дело, промышленность Литейное производство, электроугольная промышленность.
Твердость по шкале Мооса 10 1

Химическая формула алмаза и графита одна и та же – углерод (С), но процесс создания в природе разный. Алмаз возникает при очень высоких давлениях и мгновенном охлаждении, а графит, наоборот, при низком давлении и высокой температуре.

Выделяют следующие методы получения алмазов:

Процесс алмаза в графит аналогичен. Разница лишь в показателях давления и температуры.

Месторождение минералов

Алмазы пролегают на глубинах более 100 км при температуре 1300 ̊С. От взрывной волны вступает в действие кимберлитовая магма, образуя так называемые кимберлитовые трубки, которые и являются коренными месторождениями алмазов.

Кимберлитовая трубка названа в честь африканской провинции Кимберли, где она и была впервые открыта. Породы с алмазными залежами называют кимберлитами.

Самые известные ныне месторождения находятся в Индии, Южной Африке и в России. На коренных месторождениях, состоящих из кимберлитовых и лампроитовых трубок, добывают до 80% всех алмазов.

Найти алмазы в добытой породе помогают рентгеновские лучи. Большинство найденных камней используется в промышленности, так как не обладают достаточными характеристиками для ювелирной области. Промышленные камни разделяют на 3 вида:

  • борт – мелкие камни, имеющие зернистую структуру;
  • баллас – камни круглой или грушевидной формы;
  • карбонадо – камень черного цвета, получивший свое название из-за сходства с углем.

Любопытно, что наиболее крупные и выдающиеся по характеристикам алмазы получают свое уникальное название. Самые известные из них – «Шах», «Звезда Минаса», «Кохинур», «Звезда Юга», «Президент Варгас», «Минас-Жерайс», «Английский алмаз Дрездена» и др.

Графит образуется в результате видоизменения осадочных пород. Мексиканские, ногинские и мадагаскарские графитовые месторождения богаты рудой с графитом низкого качества. Менее распространенные – ботогольский и цейлонский тип, отличаются рудой, богатой высоким содержанием графита. Крупнейшие известные месторождения находятся на Украине и в Краснодарском крае.

Сфера применения

Алмаз и графит используют гораздо шире, чем может показаться на первый взгляд. Алмазы нашли свое применение в следующих сферах:


В процентном соотношении использования алмазов выглядит так:

  1. Инструменты, машинные детали – 60%.
  2. Обрамление шлифовочных кругов -10%.
  3. Переработка проволоки-10%.
  4. Бурение скважин – 10%.
  5. Ювелирные изделия, мелкие детали – 10%.

Что касается графита, то в чистом виде он практически не используется, а подвергаются предварительной обработке, хотя в разных сферах используется графит разного качества. Для канцелярских карандашей используют графит высочайшего качества. Наиболее широкое применение нашло в литейном производстве, обеспечивая гладкую поверхность различных форм стали. Здесь используется практически необработанный графит.

Электроугольная промышленность наряду с природным использует искусственно созданный графит, также получивший широкое применение благодаря особой чистоте и постоянству состава. Электропроводимость сделала графит материалом для электродов электрических приборов. В металлургии используется как смазочный материал.

Алмаз и графит – одинаковые по составу, но по-своему уникальные вещества. Польза графита для различных отраслей промышленности гораздо выше алмаза.

Алмаз же, призванный радовать своей красотой, неоценим для экономики, принося огромные доходы от применения в ювелирной промышленности.

Введение

1.1.Общая характеристика алмаза

1.2. Общая характеристика графита

2. Промышленные типы месторождений гранита и алмаза

3. Природные и технологические типы алмазосодержащих и графитовых руд

4. Разработка месторождений гранита и алмаза

5. Области применения гранита и алмаза

Заключение

Список используемой литературы.


Введение

Алмазная промышленность нашей страны находится в стадии развития, внедрения новых технологий обработки минералов.

Найденные месторождения алмазов вскрываются лишь процессами эрозии. Для разведчика это означает, что существует множество «слепых» месторождений, не выходящих на поверхность. Об их присутствии можно узнать по обнаруженным локальным магнитным аномалиям, верхняя кромка которых располагается на глубине в сотни, а если повезет – то в десятки метров. (А. Портнов).

Исходя из вышесказанного, я могу судить о перспективности развития алмазной промышленности. Именно поэтому я выбрала тему – «Алмаз и графит: свойства, происхождение и значение».

В своей работе я попыталась проанализировать связь между графитом и алмазом. Для этого сравнила эти вещества с нескольких точек зрения. Я рассмотрела общую характеристику данных минералов, промышленные типы их месторождений, природные и технические типы, разработку месторождений, области применения, значение данных минералов.

Несмотря на то, что графит и алмаз полярные по своим свойствам, они являются полиморфными модификациями одного и того же химического элемента - углерода. Полиморфные модификации, или полиморфы - это вещества, которые имеют одинаковый химический состав, но различную кристаллическую структуру. С началом синтеза искусственных алмазов резко возрос интерес к исследованию и поискам полиморфных модификаций углерода. В настоящее время, кроме алмаза и графита, достоверно установленными можно считать лонсдейлит и чаотит. Первый во всех случаях был найден только в тесном взаимопрорастании с алмазом и поэтому называется еще гексагональным алмазом, а второй встречается в виде пластинок, чередующихся с графитом, но расположенных перпендикулярно его плоскости.


1. Полиморфные модификации углерода: алмаз и графит

Единственный минералообразующий элемент алмаза и графита - это углерод. Углерод (С) - химический элемент IV группы периодической системы химических элементов Д.И.Менделеева, атомный номер - 6, относительная атомная масса - 12,011(1). Углерод устойчив в кислотах и щелочах, окисляется только дихроматом калия или натрия, хлористым железом или алюминием. Углерод имеет два стабильных изотопа С(99,89%) и С(0,11%). Данные изотопного состава углерода показывают, что он бывает разного происхождения: биогенного, небиогенного и метеоритного. Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обусловливает особое положение углерода среди других элементов.

1.1 Общая характеристика алмаза

При слове «алмаз» сразу же вспоминаются тайные истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этой цели зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 850-1000*С, не оставляя твердого остатка, как и обычный уголь, а в струе чистого кислорода сгорает при температуре 720-800*С. При нагревании до 2000-3000*С без доступа кислорода он переходит в графит (это объясняется тем, что гомеополярные связи между атомами углерода в алмазе очень прочны, что обусловливает очень высокую температуру плавления.

Алмаз - бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света.

Атомы углерода в алмазе находятся в состоянии sp3-гибридизации. В возбужденном состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов.

Каждый атом углерода в алмазе окружен четырьмя другими, расположенными от него в направлении от центра в вершинах тетраэдра.

Расстояние между атомами в тетраэдрах равно 0,154 нм.

Прочность всех связей одинакова.

Весь кристалл представляет собой единый трехмерный каркас.

При 20*С плотность алмаза составляет 3,1515 гр/см. Этим объясняется его исключительная твердость, которая по граням различна и уменьшается в последовательности: октаэдр - ромбододекаэдр - куб. В то же время алмаз обладает совершенной спайностью (по октаэдру), а предел прочности на изгиб и сжатие у него ниже, чем у других материалов, поэтому алмаз хрупок, при резком ударе раскалывается и при дроблении сравнительно легко превращается в порошок. Алмаз обладает максимальной жесткостью. Сочетание этих двух свойств позволяет использовать его для абразивных и других инструментов, работающих при значительном удельном давлении.

Показатель преломления (2,42) и дисперсия (0,063) алмаза намного превышают аналогичные свойства других прозрачных минералов, что в сочетании с максимальной твердостью обусловливает его качество как драгоценного камня.

В алмазах обнаружены примеси азота, кислорода, натрия, магния, алюминия, кремния, железа, меди и других, обычно в тысячных долях процента.

Алмаз чрезвычайно стоек к кислотам и щелочам, не смачивается водой, но обладает способностью прилипать к некоторым жировым смесям.

Алмазы в природе встречаются как в виде хорошо выраженных отдельных кристаллов, так и поликристаллических агрегатов. Правильно образованные кристаллы имеют вид многогранников с плоскими гранями: октаэдр, ромбододекаэдр, куб и комбинации этих форм. Очень часто на гранях алмазов имеются многочисленные ступени роста и растворения; если они неразличимы глазом, грани кажутся искривленными, сферическими, в форме октаэдроида, гексаэдроида, кубоида и их комбинаций. Различная форма кристаллов обусловлена их внутренним строением, наличием и характером распределения дефектов, а также физико-химическим взаимодействием с окружающей кристалл средой.

Среди поликристаллических образований выделяются - баллас, карбонадо и борт.

Баллас - это сферолитовые образования с радиально-лучистым строением. Карбонадо - скрытокристаллические агрегаты с размером отдельных кристаллов 0,5-50 мкм. Борт - яснозернистые агрегаты. Балласы и особенно карбонадо имеют самую высокую твердость из всех видов алмазов.

Рис.1 Строение кристаллической решетки алмаза.


Рис.2 Строение кристаллической решетки алмаза.

1.2 Общая характеристика графита

Графит - серо-черное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступает даже бумаге.

Структура графита слоистая, внутри слоя атомы связаны смешанными ионно-ковалентными связями, а между слоями - существенно металлическими связями.

Атомы углерода в кристаллах графита находятся в sp2-гибридизации. Углы между направлениями связей равны 120*. В результате образуется сетка, состоящая из правильных шестиугольников.

При нагревании без доступа воздуха графит не претерпевает никакого изменения до 3700 *С. При указанной температуре он выгоняется, не плавясь.

Кристаллы графита - это, как правило, тонкие пластинки.

В связи с низкой твердостью и весьма совершенной спайностью графит легко оставляет след на бумаге, жирный на ощупь. Эти свойства графита обусловлены слабыми связями между атомными слоями. Прочностные характеристики этих связей характеризуют низкая удельная теплоемкость графита и его высокая температура плавления. Благодаря этому, графит обладает чрезвычайно высокой огнеупорностью. Кроме того, он хорошо проводит электричество и тепло, устойчив при воздействии многих кислот и других химических реагентов, легко смешивается с другими веществами, отличается малым коэффициентом трения, высокой смазывающей и кроющей способностью. Все это привело к уникальному сочетанию в одном минерале важных свойств. Поэтому графит широко используется в промышленности.

Содержание углерода в минеральном агрегате и структура графита являются главными признаками, определяющими качество. Графитом часто называют материал, который, как правило, не является не только монокристаллическим, но и мономинеральным. В основном имеют в виду агрегатные формы графитового вещества, графитовые и графитсодержащие породы и продукты обогащения. В них, кроме графита, всегда присутствуют примеси (силикаты, кварц, пирит и др.). Свойства таких графитовых материалов зависят не только от содержания графитового углерода, но и от величины, формы и взаимных отношений кристаллов графита т.е. от текстурно-структурных признаков используемого материала. Поэтому для оценки свойств графитовых материалов необходимо учитывать как особенности кристаллической структуры графита, так и текстурно-структурные особенности других их составляющих.

Рис.3. Строение кристаллической решетки графита.


Рис.4. Вкрапленники графита в кальците.


2. Промышленные типы месторождений алмаза и графита

Месторождения алмазов подразделяются на россыпные и коренные, среди которых выделяются типы и подтипы, различающиеся по условиям залегания, формам рудных тел, концентрациям, качеству и запасам алмазов, условиям добычи и обогащения.

Коренные месторождения алмазов кимберлитового типа во всем мире являются основными объектами эксплуатации. Из них добывается около 80% природных алмазов. По запасам алмазов и размерам они разделяются на уникальные, крупные, средние и мелкие. С наибольшей рентабельностью отрабатываются верхние горизонты выходящих на дневную поверхность уникальных и крупных месторождений. В них сосредоточены основные запасы и прогнозные ресурсы алмазов отдельных алмазоносных кимберлитовых полей. Кимберлиты – это «вулканические жерла», заполненные брекчией. Брекчия состоит из обломков и ксенолитов, окружающих и осевших сверху пород, из обломков пород, вынесенных с глубин 45-90 км и более. Цементом является вулканический материал, туфы щелочно-ультроосновного состава, так называемые кимберлиты и лампроиты. Кимберлитовые трубки располагаются на платформах, лампроитовые – в их складчатом обрамлении. Время образования трубок разное – от архея до кайнозоя, а возраст алмазов, даже самых молодых из них, составляет около 2-3 млрд. лет. Образование трубок связано с прорывом вверх по узким каналам под большим давлением, на глубине свыше 80 км, при температуре около 1000*щелочно-ультроосновных расплавов. Большинство хорошо изученных кимберлитовых тел имеет сложное строение; в наиболее упрощенном случае в строении трубки участвуют две основные разновидности пород, образовавшихся в ходе двух последовательных фаз внедрения: брекчия (1-й этап) и массивный «крупнопорфировый» кимберлит (2-й этап). В строении некоторых кимберлитовых трубок выявлены также кимберлитовые дайки и жилы, связанные с трубками. Обнаружены слепые тела, образованные порциями кимберлитовой магмы, не доходившими до дневной поверхности. Месторождения, связанные с дайками и жилами кимберлитов, как правило, относятся к категории мелких, реже средних по запасам алмазов Во многих случаях прорыв вверх достигал палео-поверхности, но многие трубки взрыва могут быть «слепыми» и до сих пор не вскрыты эрозией, т.е. залегают где-то на глубине. Но и на поверхности Земли есть места, где возникают давления вполне достаточные для образования алмаза. Это места удара метеоритов, где алмаз встречается не только в Земле, но и в ряде самих метеоритов.

Страница 1

Алмаз - самое твердое природное вещество. Кристаллы алмазов высоко ценятся и как технический материал, и как драгоценное украшение. Хорошо отшлифованный алмаз - бриллиант. Преломляя лучи света, он сверкает чистыми, яркими цветами радуги.

Размеры мировой добычи алмазов очень незначительны - гораздо меньше, чем благородных металлов - золота и платины. Из алмазов делают наконечники буров для сверления твердых горных пород. Также алмазы применяют для резки стекла и в виде “алмазного инструмента”(резцы, сверла, шлифовальные круги). Алмазным порошком шлифуют бриллианты и твердые сорта стали. Самый крупный из когда-либо найденных алмазов весит 602 г, имеет длину 11 см, ширину 5 см, высоту 6 см. Этот алмаз был найден в 1905 г и носит имя “Кэллиан”.

Один из самых крохотных в мире граненых алмазов, весом всего лишь 0,25 мг(в 4000 раз легче копеечной монетки), демонстрировался на всемирной выставке в Брюсселе. Несмотря на ничтожный вес и размер - зернышко объемом 0,07 мм3 ,- искусные руки гранильщика нанесли на нем на нем 57 граней, рассмотреть которые можно только под микроскопом.

В 1967 г. Б.В. Дерягин и Д.В. Федосеев вырастили на грани алмаза нитеобразный кристалл (“алмазные усы”). Рост проис­ходил при высокой температуре, причем источником углерода служил метан; за четыре часа кристаллическая нить вырастала на 1 мм, что, вообще говоря, очень много для процессов такого рода.

Большая часть образцов аморфного угля состоит из иска­женных кристаллов графита. Характерное расположение атомов углерода по углам шестиугольника при этом сохраняется.

В решетках графита часто встречаются разнообразные де­фекты структуры, как структурные, так и химические, связан­ные с захватом ионов и атомов. В решетку графита могут внед­ряться (А. Убеллоде, Ф. Льюис) атомы бора, кислорода, серы и т. п., образующие связи между слоями и влияющие на прово­димость графита. Графит образует своеобразные химические соединения, в которых присоединяющиеся частицы размещают­ся между плоскостями, занятыми атомами углерода.

При нагревании графита в парах щелочных металлов полу­чаются легко окисляющиеся соединения. Так, при 400 °С калий образует соединение C8K. Состав соединений сильно зависит от температуры и изменяется в широких пределах. Известны со­единения графита с рубидием, цезием; для натрия и лития чет­ких результатов пока нет; натрий, по-видимому, дает соедине­ние C64Na фиолетового цвета.

Графит дает также соединения с металлами, аммиаком и аминами типа MeC12(NH3)2. Решетка графита во всех случаях расширяется при образовании соединений, и межплоскостное расстояние достигает 0,66 нм, а для метиламинового комплекса лития даже до 0,69 нм. Получены соединения: C9Br, C5CI, C8CI, CF.

Тифлон (CF) серого цвета, изолятор, не похож на другие соединения типа соединений “внедрения”. Предполагается образование в нем ковалентных связей фтор - углерод.

Графит раньше применялся как пишущее средство. С XIX века и по сей день используют графитовые электроды в металлургии и химической промышленности, например в производстве алюминия: металл осаждается на графитовом катоде. Сейчас нашли применение графитизированные стали, то есть стали с добавлением монокристаллов графита. Эти стали используют при изготовлении коленчатых валов, поршней и других деталей, где особенно важна высокая прочность и твердость материала.

Графит играет важную роль в элект­ротехнической промышленности и атомной энергетике, где его используют в качестве замедлителя нейтронов. С помощью графитовых стержней регулируют скорость реакции в атомных котлах.

Способность графита расщепляться на чешуйки позволяет делать на его основе смазочные вещества. Графит - прекрасный проводник теплоты, при этом он может выдержать значительные температуры до 3000 °С и выше. К тому же он химически довольно стоек. Эти свойства нашли применение в производстве графитовых теплообменников и в ракетной технике(для изготовления рулей и сопловых аппаратов.

Вода
Вода, у тебя нет ни цвета, ни вкуса, ни запаха, тебя невозможно описать, тобой наслаждаются, не ведая, что ты такое. Нельзя сказать, что необходимо для жизни: ты сама жизнь. Ты исполняешь...