Углекислый газ решетка. Строение вещества

Большинство твердых веществ имеет кристаллическое строение. Кристаллическая решетка построена из повторяющихся одинаковых структурных единиц, индивидуальных для каждого кристалла. Эта структурная единица носит название “элементарная ячейка”. Другими словами, кристаллическая решетка служит отображением пространственной структуры твердого вещества.

Классифицировать кристаллические решетки можно различным образом.

I. По симметрии кристаллов решетки классифицируются на кубические, тетрагональные, ромбические, гексагональные.

Эта классификация удобна при оценке оптических свойств кристаллов, а также их каталитической активности.

II. По природе частиц , находящихся в узлах решетки и по типу химической связи между ними различают атомные, молекулярные, ионные и металлические кристаллические решетки . Тип связи в кристалле определяет различие в твердости, растворимости в воде, величине теплоты растворения и теплоты плавления, электрической проводимости.

Важной характеристикой кристалла является энергия кристаллической решетки, кДж/мольэнергия, которую необходимо затратить на разрушение данного кристалла.

Молекулярная решетка

Молекулярные кристаллы состоят из молекул, удерживаемых в определенных положениях кристаллической решетки слабыми межмолекулярными связями (вандерваальсовыми силами) или водородными связями. Эти решетки характерны для веществ с ковалентными связями.

Веществ с молекулярной решеткой очень много. Это большое число органических соединений (сахар, нафталин и др.), кристаллическая вода (лед), твердый углекислый газ (“сухой лед”), твердые галогеноводороды, иод, твердые газы, в том числе и благородные,

Минимальна энергия кристаллической решетки у веществ с неполярными и малополярными молекулами (СН 4 , СО 2 и т.п.).

Решетки, образованные более полярными молекулами, имеют и более высокую энергию кристаллической решетки. Наибольшей энергией обладают решетки с веществами, образующими водородные связи (Н 2 О, NН 3).

Из-за слабого взаимодействия между молекулами эти вещества летучи, легкоплавки, имеют небольшую твердость, не проводят электрический ток (диэлектрики) и обладают низкой теплопроводностью.

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы одного или различных элементов, связанных между собой ковалентными связями по всем трем осям. Такие кристаллы , которые называют также ковалентными , сравнительно немногочисленны.

Примерами кристаллов этого типа могут служить алмаз, кремний, германий, олово, а также кристаллы сложных веществ, таких как нитрид бора, нитрид алюминия, кварц, карбид кремния. Все эти вещества имеют алмазоподобную решетку.

Энергия кристаллической решетки в таких веществах практически совпадает с энергией химической связи (200 – 500 кДж/моль). Это определяет и их физические свойства: высокие твердость, температура плавления и температура кипения.

Разнообразны электропроводящие свойства этих кристаллов: алмаз, кварц, нитрид бора – диэлектрики; кремний, германий – полупроводники; металлическое серое олово хорошо проводит электрический ток.

В кристаллах с атомной кристаллической решеткой нельзя выделить отдельную структурную единицу. Весь монокристалл представляет собой одну гигантскую молекулу .

Ионная решетка

В узлах ионной решетки чередуются положительные и отрицательные ионы, между которыми действуют электростатические силы. Ионные кристаллы образуют соединения с ионной связью, например, хлорид натрия NaCl, фторид калия и KF и др. В состав ионных соединений могут входить и сложные ионы, например, NO 3 - , SO 4 2 - .

Ионные кристаллы также представляют собой гигантскую молекулу, в которой каждый ион испытывает значительной воздействие со стороны всех остальных ионов.

Энергия ионной кристаллической решетки может достигать значительных величин. Так, Е (NaCl) = 770 кДж/моль, а Е (ВеО) = 4530 кДж/моль.

Ионные кристаллы имеют высокие температуры плавления и кипения и высокую прочность, но хрупки. Многие из них плохо проводят электрический ток при комнатной температуре (примерно на двадцать порядков ниже, чем у металлов), но с ростом температуры наблюдается увеличение электрической проводимости.

Металлическая решетка

Кристаллы металлов дают примеры простейших кристаллических структур.

Ионы металла в решетке металлического кристалла можно приближенно рассматривать в виде шаров. В твердых металлах эти шары упакованы с максимальной плотностью, на что указывает значительная плотность большинства металлов (от 0,97 г/см 3 у натрия, 8,92 г/см 3 у меди до 19,30 г/см 3 у вольфрама и золота). Наиболее плотная упаковка шаров в одном слое – это гексагональная упаковка, в которой каждый шар окружен шестью другими шарами (в той же плоскости). Центры любых трех соседних шаров образуют равносторонний треугольник.

Такие свойства металлов, как высокие тягучесть и ковкость, указывают на отсутствие жесткости в металлических решетках: их плоскости довольно легко сдвигаются одна относительно другой.

Валентные электроны участвуют в образовании связи со всеми атомами, свободно перемещаются по всему объему куска металла. На это указывают высокие значения электропроводимости и теплопроводности.

По энергии кристаллической решетки металлы занимают промежуточное положение между молекулярными и ковалентными кристаллами. Энергия кристаллической решетки составляет:

Таким образом, физические свойства твердых веществ существенно зависят от типа химической связи и структуры.

Структура и свойства твердых веществ

Характеристики Кристаллы
Металлические Ионные Молекулярные Атомные
Примеры K, Al, Cr, Fe NaCl, KNO 3 I 2 , нафталин алмаз, кварц
Структурные частицы Положительные ионы и подвижные электроны Катионы и анионы Mолекулы Атомы
Тип химической связи Металлическая Ионная В молекулах – ковалентная; между молекулами – вандерваальсовы силы и водородные связи Между атомами – ковалентная
t плавления Высокая Высокая Невысокая Очень высокая
t кипения Высокая Высокая Невысокая Очень высокая
Механические свойства Твердые, ковкие, тягучие Твердые, хрупкие Мягкие Очень твердые
Электропроводность Хорошие проводники В твердом виде – диэлектрики; в расплаве или растворе – проводники Диэлектрики Диэлектрики (кроме графита)
Растворимость
в воде Нерастворимы Растворимы Нерастворимы Нерастворимы
в неполяр- ных раство- рителях Нерастворимы Нерастворимы Растворимы Нерастворимы

(Все определения, формулы, графики и уравнения реакций даются под запись.)

Одним из самых удивительных элементов, который способен формировать огромное количество разнообразных соединений органической и неорганической природы, является углерод. Это настолько необычный по свойствам элемент, что еще Менделеев предрекал ему большое будущее, говоря о не раскрытых пока особенностях.

Позже это подтвердилось практически. Стало известно, что он - главный биогенный элемент нашей планеты, входящий в состав абсолютно всех живых существ. Помимо этого, способный существовать в таких формах, которые кардинально различаются по всем параметрам, но при этом состоят только лишь из атомов углерода.

В общем, особенностей у этой структуры много, именно с ними и постараемся разобраться в ходе статьи.

Углерод: формула и положение в системе элементов

В периодической системе элемент углерод располагается в IV (по новому образцу в 14) группе, главной подгруппе. Его порядковый номер 6, а атомный вес 12,011. Обозначение элемента знаком С говорит о его названии на латыни - carboneum. Есть несколько различных форм, в которых существует углерод. Формула его поэтому бывает различна и зависит от конкретной модификации.

Однако для написания уравнений реакций обозначение конкретное, конечно, есть. В целом, когда говорится о веществе в чистом виде, принята молекулярная формула углерода С, без индексации.

История открытия элемента

Сам по себе этот элемент известен с самой древности. Ведь один из главнейших минералов в природе - это каменный уголь. Поэтому для древних греков, римлян и других народностей секретом он не был.

Помимо этой разновидности, также использовали алмазы и графит. С последним долгое время было много запутанных ситуаций, так как часто без анализа состава за графит принимали такие соединения, как:

  • серебристый свинец;
  • карбид железа;
  • сульфид молибдена.

Все они были окрашены в черный цвет и поэтому считались графитом. Позже это недоразумение было разъяснено, и данная форма углерода стала сама собой.

С 1725 года большое коммерческое значение приобретают алмазы, а в 1970 освоена технология получения их искусственным путем. С 1779 года, благодаря работам Карла Шееле, изучаются химические свойства, которые проявляет углерод. Это послужило началом ряда важнейших открытий в области данного элемента и стало основой для выяснения всех его уникальнейших особенностей.

Изотопы углерода и распространение в природе

Несмотря на то что рассматриваемый элемент - один из важнейших биогенных, его общее содержание в массе земной коры составляет 0,15 %. Так происходит от того, что он подвергается постоянной циркуляции, естественному круговороту в природе.

В целом можно назвать несколько соединений минерального характера, в состав которых входит углерод. Это такие природные породы, как:

  • доломиты и известняки;
  • антрацит;
  • горючие сланцы;
  • природный газ;
  • каменный уголь;
  • нефть;
  • бурый уголь;
  • торф;
  • битумы.

Помимо этого, не следует забывать и о живых существах, которые являются просто хранилищем углеродных соединений. Ведь им образованы белки, жиры, углеводы, нуклеиновые кислоты, а значит самые жизненно важные структурные молекулы. В целом на пересчет сухой массы тела из 70 кг 15 приходится на чистый элемент. И так у каждого человека, не говоря уже о животных, растениях и прочих существах.

Если же рассмотреть и воды, то есть гидросферу в целом и атмосферу, то здесь присутствует смесь углерод-кислород, выражаемая формулой СО 2 . Диоксид или углекислый газ - один из основных газов, составляющих воздух. Именно в таком виде массовая доля углерода составляет 0,046%. Еще больше растворено углекислого газа в водах Мирового океана.

Атомная масса углерода как элемента составляет 12,011. Известно, что данная величина рассчитывается как среднее арифметическое между атомными весами всех существующих в природе изотопных разновидностей, с учетом их распространенности (в процентном соотношении). Так происходит и у рассматриваемого вещества. Есть три главных изотопа, в виде которых находится углерод. Это:

  • 12 С - его массовая доля в подавляющем большинстве составляет 98,93 %;
  • 13 С - 1,07 %;
  • 14 С - радиоактивный, период полураспада 5700 лет, устойчивый бетта-излучатель.

В практике определения геохронологического возраста образцов широко применяется радиоактивный изотоп 14 С, который является индикатором, благодаря своему длительному периоду распада.

Аллотропные модификации элемента

Углерод - это такой элемент, который в виде простого вещества существует в нескольких формах. То есть он способен формировать самое большое из известных на сегодня число аллотропных модификаций.

1. Кристаллические вариации - существуют в виде прочных структур с правильными решетками атомного типа. К данной группе относятся такие разновидности, как:

  • алмазы;
  • фуллерены;
  • графиты;
  • карбины;
  • лонсдейлиты;
  • и трубки.

Все они различаются строением кристаллической решетки, в узлах которых - атом углерода. Отсюда и совершенно уникальные, не схожие свойства, как физические, так и химические.

2. Аморфные формы - их образует атом углерода, входящий в состав некоторых природных соединений. То есть это не чистые разновидности, а с примесями других элементов в незначительном количестве. В данную группу входят:

  • активированный уголь;
  • каменный и древесный;
  • сажа;
  • углеродная нанопена;
  • антрацит;
  • стеклоуглерод;
  • техническая разновидность вещества.

Их также объединяют особенности строения кристаллической решетки, объясняющие и проявляемые свойства.

3. Соединения углерода в виде кластеров. Такая структура, при которой атомы замыкаются в особую полую изнутри конформацию, заполняемую водой или ядрами других элементов. Примеры:

  • углеродные наноконусы;
  • астралены;
  • диуглерод.

Физические свойства аморфного углерода

Из-за большого разнообразия аллотропных модификаций, выделить какие-то общие физические свойства для углерода сложно. Проще говорить о конкретной форме. Так, например, аморфный углерод обладает следующими характеристиками.

  1. В основе всех форм - мелкокристаллические разновидности графита.
  2. Высокая теплоемкость.
  3. Хорошие проводниковые свойства.
  4. Плотность углерода около 2 г/см 3 .
  5. При нагревании свыше 1600 0 С происходит переход в графитовые формы.

Сажа, и каменные разновидности находят широкое применение в технических целях. Они не являются проявлением модификации углерода в чистом виде, однако содержат его в очень большом количестве.

Кристаллический углерод

Существует несколько вариантов, в которых углерод - вещество, формирующее правильные кристаллы различного вида, где атомы соединяются последовательно. В результате происходит образование следующих модификаций.

  1. - кубическая, в которой соединяются четыре тетраэдра. В результате все ковалентные химические связи каждого атома максимально насыщенны и прочны. Это объясняет физические свойства: плотность углерода 3300 кг/м 3 . Высокая твердость, низкая теплоемкость, отсутствие электрической проводимости - все это является результатом строения кристаллической решетки. Существуют технически полученные алмазы. Образуются при переходе графита в следующую модификацию под влиянием высокой температуры и определенного давления. В целом так же высока, как и прочность - около 3500 0 С.
  2. Графит. Атомы расположены подобно структуре предыдущего вещества, однако происходит насыщение только трех связей, а четвертая становится более длинной и менее прочной, она соединяет между собой "слои" гексагональных колец решетки. В результате получается, что графит - мягкое, жирное на ощупь вещество черного цвета. Обладает хорошей электрической проводимостью и имеет высокую температуру плавления - 3525 0 С. Способно к сублимации - возгонке из твердого состояния в газообразное, минуя жидкое (при температуре 3700 0 С). Плотность углерода - 2,26 г/см 3, что гораздо ниже таковой у алмаза. Это объясняет их различные свойства. Из-за слоистой структуры кристаллической решетки, возможно использование графита для изготовления грифелей простых карандашей. При проведении по бумаге чешуйки отслаиваются и оставляют на бумаге след черного цвета.
  3. Фуллерены. Открыты были лишь в 80-х годах прошлого столетия. Представляют собой модификации, в которых углероды соединяются между собой в особую выпуклую замкнутую структуру, имеющую в центре пустоту. Причем форма кристалла - многогранник, правильной организации. Количество атомов четное. Самая известная форма фуллерен С 60 . Образцы подобного вещества были найдены при исследованиях:
  • метеоритов;
  • донных отложений;
  • фольгуритов;
  • шунгитов;
  • космического пространства, где содержались в виде газов.

Все разновидности кристаллического углерода имеют важное практическое значение, поскольку обладают рядом полезных в технике свойств.

Химическая активность

Молекулярный углерод проявляет низкую химическую активность вследствие своей устойчивой конфигурации. Заставить его вступать в реакции можно лишь сообщив атому дополнительную энергию и заставив электроны внешнего уровня распариться. В этот момент валентность становится равна 4. Поэтому в соединениях он имеет степень окисления + 2, + 4, - 4.

Практически все реакции с простыми веществами, как металлами, так и неметаллами, протекают под влиянием высоких температур. Рассматриваемый элемент может быть как окислителем, так и восстановителем. Однако последние свойства выражены у него особенно сильно, именно на этом основано применение его в металлургической и других отраслях промышленности.

В целом способность вступать в химическое взаимодействие зависит от трех факторов:

  • дисперсности углерода;
  • аллотропной модификации;
  • температуры реакции.

Таким образом, в ряде случаев происходит взаимодействие со следующими веществами:

  • неметаллами (водородом, кислородом);
  • металлами (алюминием, железом, кальцием и прочими);
  • оксидами металлов и их солями.

С кислотами и щелочами не реагирует, с галогенами очень редко. Важнейшее из свойств углерода - способность образовывать длинные цепи между собой. Они могут замыкаться в цикл, формировать разветвления. Так происходит образование органических соединений, которые на сегодняшний день исчисляются миллионами. Основа этих соединений два элемента - углерод, водород. Также в состав могут входить и другие атомы: кислород, азот, сера, галогены, фосфор, металлы и прочие.

Основные соединения и их характеристика

Существует множество различных соединений, в состав которых входит углерод. Формула самого известного из них - СО 2 - углекислый газ. Однако помимо этого оксида, существует еще СО - монооксид или угарный газ, а также недооксид С 3 О 2 .

Среди солей, в состав которых входит данный элемент, самыми распространенными являются карбонаты кальция и магния. Так, карбонат кальция имеет несколько синонимов в названии, так как в природе встречается в виде:

  • мела;
  • мрамора;
  • известняка;
  • доломита.

Важное значение карбонатов щелочноземельных металлов проявляется в том, что они активные участники процессов образования сталактитов и сталагмитов, а также подземных вод.

Угольная кислота - еще одно соединение, которое образует углерод. Формула ее - Н 2 СО 3 . Однако в обычном виде она крайне неустойчива и сразу же в растворе распадается на углекислый газ и воду. Поэтому известны лишь ее соли, а не она сама, как раствор.

Галогениды углерода - получаются в основном косвенным путем, так как прямые синтезы идут лишь при очень высоких температурах и с низким выходом продукта. Одно из самых распространенных - CCL 4 - тетрахлорметан. Ядовитое соединение, способное при вдыхании вызвать отравление. Получают при реакциях радикального фотохимического замещения в метане.

Карбиды металлов - соединения углерода, в которых он проявляет степень окисления 4. Также возможно существование объединений с бором и кремнием. Главное свойство карбидов некоторых металлов (алюминия, вольфрама, титана, ниобия, тантала, гафния) - это высокая прочность и отличная электропроводность. Карбид бора В 4 С - одно из самых твердых веществ после алмаза (9,5 по Моосу). Данные соединения используются в технике, а также химической промышленности, как источники получения углеводородов (карбид кальция с водой приводит к образованию ацетилена и гидроксида кальция).

Многие сплавы металлов изготавливают с использованием углерода, значительно повышая тем самым их качественные и технические характеристики (сталь - сплав железа с углеродом).

Отдельного внимания заслуживают многочисленные органические соединения углерода, в которых он - основополагающий элемент, способный соединяться с такими же атомами в длинные цепи различного строения. К ним можно отнести:

  • алканы;
  • алкены;
  • арены;
  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • спирты;
  • карбоновые кислоты и многие другие классы веществ.

Применение углерода

Значение соединений углерода и его аллотропных модификаций в жизни человека очень велико. Можно назвать несколько самых глобальных отраслей, чтобы стало понятно, что это действительно так.

  1. Данный элемент образует все виды органического топлива, из которого человек получает энергию.
  2. Металлургическая промышленность использует углерод как сильнейший восстановитель для получения металлов из их соединений. Здесь же находят широкое применение карбонаты.
  3. Строительство и химическая промышленность потребляют огромное количество соединений углерода для синтеза новых веществ и получения необходимых продуктов.

Также можно назвать такие отрасли хозяйства, как:

  • ядерная промышленность;
  • ювелирное дело;
  • техническое оборудование (смазки, жаропрочные тигли, карандаши и прочее);
  • определение геологического возраста пород - радиоактивный индикатор 14 С;
  • углерод - прекрасный адсорбент, что позволяет использовать его для изготовления фильтров.

Круговорот в природе

Масса углерода, находящегося в природе, включена в постоянный круговорот, который циклически совершается ежесекундно по всему земному шару. Так, атмосферный источник углерода - СО 2 , поглощается растениями и выделяется всеми живыми существами в процессе дыхания. Попадая в атмосферу, он снова поглощается, и так цикл не прекращается. При этом отмирание органических остатков приводит к высвобождению углерода и накоплению его в земле, откуда затем он снова поглощается живыми организмами и выводится в атмосферу в виде газа.

Задачи:

Оборудование и реактивы

Тип урока:

Форма организации работы:

Методы и приемы:

ХОД УРОКА

    Организационны. этап

Слайд 1

Слайд 2

Постановка проблемного

вопроса

Слайд 3

II . Актуализация знаний

Слайд 4

III . Формирование знаний

Слайд 5

Лабораторная

работа:

Кристаллические решетки

дать понятие о кристаллическом и аморфном состоянии твердых веществ, познакомить с типами кристаллических решеток;

развивать умения устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки;

воспитывать интерес к предмету

Модели кристаллических решеток поваренной соли, алмаза, графита, углекислого газа, металлов; пластилин, жевательная резинка, смолы, воск, поваренная соль NaCl, графит, сахар, вода; презентация.

формирование знаний

фронтальная, парная, индивидуальная.

объяснительно-иллюстративный, постановка проблемного вопроса, демонстрационный опыт, лабораторная работа.

Сегодня я хочу начать урок со слов поэта Леонида Мартынова:

«В мире этом – я знаю –

нет счета сокровищам,

Но весьма поучительно

для очей заглянуть

повнимательнее в нутро вещам,

прямо в нутро вещей».

Тема урока: Кристаллические решетки

Цель урока – понять, что такое кристаллическое и аморфное состояние твердых веществ, познакомиться с типами кристаллических решеток, законом постоянства состава веществ.

Посмотрите на слайд. На нем представлены вещества:

алмаз, медный купорос, аметист, графит, алюминий,

оксид кремния ( IV ), ртуть, каменная соль.

В конце урока вы должны ответить на вопрос:

Что общего у этих веществ?

Какие агрегатные состояния веществ вы знаете?

(О): Твердое, жидкое и газообразное.

Следовательно: вещества по агрегатному состоянию делят на газы, жидкости и твердые тела.

(запись схемы в тетрадь)

Приведите примеры веществ.

Для нас важны все три агрегатных состояния, так как любое вещество

может быть газом, жидкостью или твердым веществом.

Приведите примеры такого перехода:

Лед ↔ вода ↔ пар;

твердый натрий легко плавится и может испарятся, т.е. быть газообразным.

Газ кислород при низких температурах сначала превращается в жидкость, а при еще более низких – затвердевает в синие кристаллы.

Сегодня мы рассмотрим твердое состояние вещества.

Посмотрите на ваших столах предложены вещества

Пластилин, жевательная резинка, смола, воск, соль NaCl , графит, сахар.

Распределите предложенные вещества на две группы (по своему усмотрению).

Ответ учащихся

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Демонстрация решетки

Слайд 10

Пластилин, жевательная резинка, смола, воск – это аморфные вещества . У них часто нет постоянной температуры плавления, наблюдается текучесть, нет упорядоченного строения.

Напротив, соль NaCl , графит и сахар – кристаллические вещества . Для них характерны четкие температуры плавления, правильные геометрические формы, симметрия, упорядоченное строение.

Исходя из вашего ответа следует вывод ,

что все твердые вещества делятся на аморфные и кристаллические (их характеристика) (Запись в тетради)

Что бы выяснить отличие аморфных и кристаллических веществ мы заглянем внутрь этих веществ.

Кристаллические вещества характеризуются правильным расположением частиц, из которых они построены: атомов, молекул или ионов. Эти частицы расположены в строго определенных точках пространства – называемых узлами . Если соединить узлы прямыми линиями, то образуется пространственный каркас – кристаллическая решетка.

В соответствии с видом частиц можно выделить четыре типа кристаллических решеток: ионная, атомная, молекулярная, металлическая

Установим взаимосвязь между типом решетки, видом химической связи и свойствами веществ (заполнение таблицы)

1 кристаллическая решетка – ИОННАЯ.

Виды частиц в узлах решетки? -ионы

Вид связи между частицами – ионная, прочная.

Какие вещества могут иметь ионную кристаллическую решетку? – соли, оксиды и гидроксиды типичных металлов ( I III групп)

Какими физ. свойствами будут обладать такие вещества? – твердые, прочные, нелетучие, тугоплавкие.

Следующий тип кристаллической решетки – АТОМНАЯ

Виды частиц в узлах решетки – атомы

Вид связи между частицами? –(атомная или) ковалентная

Примеры – графит (его крист. решетка показана на слайде), кварц, алмаз.

Физические свойства веществ – такие же что и у веществ с ионной кристаллической решеткой – твердые, прочные, нелетучие, тугоплавкие, не растворимы в воде.

У алмаза кристаллическая решетка по структуре отличается от решетки графита. Она имеет тетраэдрическое строение. Из за такого своего строения алмаз – твердое, очень прочное вещество.

3 тип крист. решетки – МОЛЕКУЛЯРНАЯ.

В узлах такой решетки находятся – молекулы.

Между молекулами – слабые силы межмолекулярного притяжения, а внутри молекул – прочная ковалентная связь.

Примеры веществ –твердые при особых условиях вещества, которые при обычных условиях газы, жидкости; сера, иод, уксусная кислота.

Характерные физ.свойства таких веществ – непрочные, летучие, легкоплавкие, имеющие малую твердость.

На слайде приведена крист. решетка углекислого газа – оксида углерода ( IV ). В узлах находится молекула, состоящая из атома углерода и двух атомов кислород.

демонстрация крист решетки иода

Демонстрационный опыт.

Слайд 11

раздаточный материал

Слайд 12

Ответ учеников.

Слайд 13

Слайд 14

VI . Обобщение.

Первичное закрепление знаний

Слайд 15, 16

В кристаллических решетках простых веществ, например иода – в узлах находятся двухатомные молекулы иода.

Для веществ с молекулярной решеткой характерно явление возгонки (сублимации).

Возгонка иода. (Возгонка – это превращение (при нагревании) твердого вещества в газ, минуя жидкую фазу, а затем снова кристаллизация в виде инея.)

И последняя крист. решетка – МЕТАЛЛИЧЕСКАЯ

В узлах находятся – атом – ионы (металлов)

Связь – металлическая, осуществляемая свободными обобществленными электронами (которые двигаются между атом – ионами).

Посмотрите на кристаллическую решетка металлов, где показано что между ионами металлов находятся свободные электроны.

Примеры – металлы и сплавы.

Какими физ. свойствами будут обладать такие вещества? – ковкие, пластичные, электро – и теплопроводны, имеют мет. блеск (все свойства металлов).

Рассмотрев типы кристаллических решеток мы с вами установили взаимосвязь между строением атома, химическими связями, кристаллическими решетками и свойствами веществ

Строение химическая связь кристаллическая решетка свойства вещества.

Какой тип кристаллической решетки не встречается в простых веществах?

У простых веществ не бывает ионных решеток.

Откройте учебник на стр. 80, табл. 6 и обратите внимание на типы кристаллических решеток простых веществ в зависимости от их положения в периодической системе.

Для простых веществ-металлов- характерна металлическая кристаллическая решетка;

для неметаллов - атомная или молекулярная.

Остался еще один момент урока – закон постоянства состава вещества, которому подчиняются вещества с молекулярным строением (вещества с молекулярной крист решеткой).

Этот закон открыт французским химиком Ж.Л.Прустом.

Его формулировка такова:

вещества молекулярного строения имеют постоянный состав независимо от способа их получения.

Н-р: вода – не зависимо от того как ее получают, в каком агрегатном состоянии она находится, состав ее не меняется – Н 2 О

Для веществ с ионным строением закон Пруста не всегда выполняется.

Мы заглянули в нутро вещей. Рассмотрели кристаллические решетки

А теперь ответим на вопрос, который был задан в начале урока.

Что общего у предложенных веществ веществ?

Самостоятельная работа

V Подведение итогов.

Рефлексия. Анкета

VI . Домашнее задание

    Какие кристаллические решетки у О 2 , Н 2 О, NaCl, С ?

    Кремний имеет атомную кристаллическую решетку. Каковы его физические свойства?

    Оксид СО 2 имеет низкую t пл , а кварц SiO 2 – очень высокую (кварц плавится при 1725°С). Какие кристаллические решетки они должны иметь?

  • На уроке я работал активно/пассивно

  • Своей работой на уроке я доволен/не доволен

  • Урок для меня показался коротким/длинным

  • За урок я не устал/устал

  • Материал урока мне был понятен/не понятен

полезен/бесполезен

интересен/скучен

§ 22, упр. 6


Кристаллические решетки, вид связи и свойства веществ

Молекулярная

5. Ионная и металлическая связь. Водородная связь. Валентность

5.4. Типы кристаллических решеток

Вещества в твердом состоянии могут иметь аморфное и кристаллическое строение. В аморфных веществах (стекло, полимеры) расположение частиц неупорядоченное, а в кристаллических структурные единицы (атомы, молекулы или ионы) расположены в строгом порядке.

Под кристаллической решеткой понимается каркас, который образуется, если структурные единицы кристалла соединить воображаемыми прямыми линиями. Точки пересечения этих линий называются узлами кристаллической решетки . В зависимости от природы частиц, находящихся в узлах кристаллической решетки, а также от типа химической связи между ними различают четыре основных вида (типа) кристаллических решеток: атомную, молекулярную, ионную и металлическую.

Вещества с атомной, ионной и металлической кристаллическими решетками имеют немолекулярное строение

В узлах атомной кристаллической решетки находятся атомы одинаковых или разных химических элементов (как правило, неметаллов), связанных между собой прочными ковалентными связями (см. рис. 16.1 на с. 347). Вещества с атомной решеткой называются атомными или ковалентными кристаллами.

Запомним вещества с атомной кристаллической решеткой: бор, кремний, алмаз, графит, черный и красный фосфор, карборунд SiC, оксид кремния(IV) SiO 2 .

Благодаря высокой энергии ковалентных связей вещества атомного строения имеют очень высокую температуру плавления, высокие твердость и прочность, низкую растворимость; как правило, являются диэлектриками или полупроводниками (кремний, германий). Самое твердое природное вещество - алмаз (температура плавления 3500 °С), самое тугоплавкое - графит (3700 °С); высокую температуру плавления имеют карборунд SiC (2700 °С) и кремнезем SiO 2 (1610 °С).

В узлах молекулярных кристаллов (веществ с молекулярной кристаллической решеткой, молекулярного строения) находятся молекулы (рис. 5.7, а ). Между собой молекулы связаны слабыми межмолекулярными силами (не путайте: в молекулах связь ковалентная, т.е. прочная), для разрыва которых требуется сравнительно немного энергии. Поэтому молекулярные вещества имеют небольшую прочность, малую твердость, значительную сжимаемость, низкие температуры плавления и кипения. Для них характерна летучесть, многие имеют запах, некоторые возгоняются. Молекулярные кристаллы не проводят электрический ток, могут быть растворимы в полярных и неполярных растворителях.

Молекулярную кристаллическую решетку имеют большинство веществ с ковалентной полярной или неполярной связью, за исключением перечисленных выше веществ атомного строения. Молекулярное строение более характерно для органических веществ. Примеры веществ молекулярного строения: благородные газы (для них понятия атом и молекула идентичны, можно сказать, что благородные газы состоят из одноатомных молекул), галогены (в твердом состоянии), белый фосфор P 4 , ромбическая и моноклинная сера S 8 , твердые кислород, озон, азот, вода, галогеноводороды, алканы, бензол.

Рис. 5.7. Строение кристаллической решетки углекислого газа (CO 2) в твердом состоянии (а ) и хлорида натрия (б )

Все вещества с ионной связью образуют ионные кристаллические решетки , имеют ионное строение. Это соли, основные и амфотерные оксиды, основания, бинарные соединения металлов с неметаллами (гидриды, нитриды и т.д.). В узлах ионных кристаллов находятся противоположно заряженные простые или сложные катионы и анионы, связанные между собой прочной ионной связью (рис. 5.7, б ).Благодаря прочности ионной связи ионные кристаллы обладают большой твердостью, нелетучи и не имеют запаха, для них характерны высокие температуры кипения и плавления. При комнатной температуре ионные вещества плохо проводят электрический ток и теплоту, многие хорошо растворимы в полярных растворителях, их водные растворы и расплавы проводят электрической ток (электролиты). Для ионных веществ характерны слабая деформируемость и хрупкость, так как при смещении ионов относительно друг друга между одноименно заряженными ионами возникают силы отталкивания.

Вещества с металлической связью образуют металлические кристаллические решетки (металлические кристаллы), в которых (см. рис. 5.1) связь обеспечивается свободными электронами (электронным газом).

По этой причине простые вещества металлы (и их сплавы) имеют характерный металлический блеск, очень высокие тепло- и электропроводность, они непрозрачные, ковкие и пластичные. У металлов наблюдается большой разброс температур плавления (например, при обычных условиях ртуть находится в жидком агрегатном состоянии), твердости (мягкий свинец и очень твердый хром), что обусловлено некоторыми различиями в характере металлической связи разных металлов. Как уже отмечалось, мерой прочности металлической связи может служить температура плавления металлов: чем выше t пл, тем энергия металлической связи больше. Температура плавления металлов повышается в ряду:

ртуть → щелочные металлыщелочноземельные металлы

→ металлы d -семейства → вольфрам.

Пример 5.4. Среди соединений хлора с элементами 3-го периода наименьшую температуру плавления имеет:

Решение. Искомое вещество - SCl 2 , так как оно имеет молекулярную кристаллическую решетку (все другие вещества - ионную).