Начала евклида и античный тип рациональности. Древнегреческий математик Евклид: биография ученого, открытия и интересные факты

Все люди от природы стремятся к знанию. (Аристотель. Метафизика)

Начала Евклида. Книга 1

ОПРЕДЕЛЕНИЯ

Для греков определить какой-нибудь объект — значило отграничить его от других.

1. Точка есть то, что не имеет частей.

2. Линия — длина без ширины.

3. Концы линии — точки.

5. Поверхность есть то, что имеет только длину и ширину.

6. Концы поверхности — линии.

7. Плоская поверхность есть та, которая равно расположена по отношению к прямым на ней.

8. Плоский угол есть наклонение друг к другу двух линий в плоскости встречающихся друг с другом, но не расположенных по одной прямой.

9. Когда линии, содержащие угол, прямые, то угол называется прямолинейным.

10. Когда прямая, восстановленная на другой прямой, образует рядом углы, равные между собой, то каждый из равных углов есть прямой, а восставленная прямая называется перпендикуляром к той, на которой она восставлена.

11. Тупой угол—больший прямого.

12. Острый же — меньший прямого.

13. Граница есть то, что является оконечностью чего-либо.

14. Фигура есть то, что содержится внутри какой-нибудь или каких-нибудь границ.

15. Круг есть плоская фигура, содержащаяся внутри одной линии [которая называется окружностью], на которую все из одной точки внутри фигуры падающие на окружность круга прямые равны между собой.

16. Центром круга называется эта точка.

17. Диаметр круга есть какая угодно прямая, проведённая через центр и ограничиваемая с обеих сторон окружностью круга, она же и рассекает круг пополам.

18. Полукруг есть фигура, содержащаяся между диаметром и отсекаемой им <частью> окружности. Центр полукруга — то же самое, что и у круга.

19. Прямолинейные фигуры суть те, которые содержатся между прямыми, трёхсторонние — между тремя, четырёхсторонние же — четырьмя, многосторонние же — которые содержатся между более чем четырьмя прямыми.

20. Из трёхсторонних фигур равносторонний треугольник есть фигура, имеющая три равные стороны, равнобедренный же — имеющая только две равные стороны, разносторонний — имеющая три неравные стороны.

21. Кроме того, из трёхсторонних фигур прямоугольный треугольник есть имеющий прямой угол, тупоугольный же — имеющий тупой угол, а остроугольный — имеющий три острых угла.

22. Из четырёхсторонних фигур квадрат есть та, которая и равносторонняя и прямоугольная, разносторонник — прямоугольная, но не равносторонняя, ромб — равносторонняя, но не прямоугольная, ромбоид (параллелограмм) — имеющая противоположные стороны и углы, равные между собой, но не являющаяся ни равносторонней ни прямоугольной.

Приведем в виде задач несколько предложений из Евклида, надеемся, что размышляя над этими задачами, вы осознаете величие книги Евклида.

Задача 1

На данной ограниченной прямой построить равносторонний треугольник.

Пусть данная ограниченная прямая будет АВ (черт. 1).

Требуется на прямой АВ построить равносторонний треугольник.

Задача 2

От данной точки отложить прямую, равную данной прямой.

Пусть дана точка А и отрезок ВС; требуется от точки А отложить отрезок, равный отрезку ВС.

Посмотрите внимательно на чертеж и вы увидите решение задачи.

Отрезок AL равен отрезку BC, см. (черт. 2).

Задача 3

(Предложение 17 из второй книги Евклида.)

Из данной точки А к данному кругу С с центром Е провести касательную прямую линию.

Посмотрите внимательно на чертеж и вы увидите решение задачи.

Задача 4

(Предложение 15 из четвертой книги Евклида.)

В данный круг вписать шестиугольник равносторонний и равноугольный.

Пусть данный круг будет ABCDEI; требуется вписать в круг ABCDEI шестиугольник равносторонний и равноугольный.

Приведем решение Евклида.

Проведём диаметр AD круга ABCDEI и возьмём центр круга Н, из центра D раствором DH опишем круг EHCG, соединяющие прямые ЕН и СН продолжим до В и I и соединим A3, ВС, CD, DE, EI, IA. Я утверждаю, что ABCDEI шестиугольник равносторонний и равноугольный.

Действительно, поскольку точка Н есть центр круга ABCDEI, то НЕ равна HD. Далее, поскольку точка D центр круга EHCG, то DE равна DH.

Но, как доказано, НЕ равна HD; и значит, НЕ равна ED; значит, треугольник EHD равносторонний; и значит, три его угла EHD, HDE, DEH равны между собой, поскольку ведь в равнобедренных треугольниках углы при основании равны между собой (предложение 5 книги I), и три угла треугольника <вместе> равны двум прямым (предложение 32 книги I).

Значит, угол EHD — треть двух прямых. Подобным же образом будет доказано, что и угол DHC третья часть двух прямых. И поскольку прямая СН, восставленная на ЕВ, образует смежные углы, равные двум прямым (предложение 13 книги I), то значит, и оставшийся угол СНВ треть двух прямых; значит, углы EHD, DHC, СИВ равны между собой, так что и их углы через вершину ВНА, AHI, IHE (предложение 15 книги I) равны [углам EHD, DHC, СНВ.

Значит, шесть углов EHD, DHC, СНВ, ВНА, AHI, IHE равны между собой. Равные углы опираются на равные обводы (предложение 26 книги III); значит, шесть обводов АВ, ВС, CD, DE, EI, IА равны между собой.

Равные же обводы стягиваются равными прямыми (предложение 29 книги III); значит, шесть этих прямых равны между собой; значит, шестиугольник ABCDEI равносторонний.

Я утверждаю, что и равноугольный.

Действительно, поскольку обвод IA равен обводу ED, прибавим общий обвод ABCD; значит, вся IABCD равна всей EDCBA; и на обвод IABCD опёрся угол IED, на обвод же EDCBA угол АI1Е, значит, угол AIE равен DEI (предложение 27 книги III).

Подобным же образом будет доказано, что и остальные углы шестиугольника ABCDEI поодиночке равны каждому из углов AIE, IED; значит, шестиугольник ABCDEI равноугольный.

Доказано же, что он и равносторонний и вписывается в круг ABCDEI.

Итак, в данный круг вписывается шестиугольник равносторонний и равноугольный, что и требовалось сделать.

Замечание. Термин радиус был неизвестен грекам, слово «radius — луч> введено позднее.

Задача 5

(Предложение 16 из четвертой книги Евклида.)

В данный круг вписать пятнадцатиугольник равносторонний и равноугольный (иными словами, правильный).

Пусть данный круг будет ABCD; требуется в круг ABCD вписать пятнадцатиугольник равносторонний и равноугольный (см чертеж).

Впишем в круг ABCD сторону АС равностороннего треугольника, в него вписанного (предложение 2), и сторону АВ равностороннего пятиугольника; значит, каких равных долей будет в круге ABCD пятнадцать, таких в обводе АВС, являющемся третью круга, будет пять, в обводе АВ, являющемся пятой частью круга, будет три.

Значит, в остающемся обводе ВС равных долей будет две.

Рассечём ВС пополам в Е (предложение 30 книги III); значит, каждый из обводов BE и ЕС будет пятнадцатой частью круга ABCD.

Значит, если, соединив BE и ЕС, будем вставлять в круг ABCD одну за другой равные им прямые (предложение 1), то получим вписанный в круг пятнадцатиугольник равносторонний и равноугольный, что и требовалось сделать.

Подобным же образом, как для пятиугольника, если провести через деления по кругу касательные к кругу, то опишется около круга пятнадцатиугольник равносторонний и равноугольный (предложение 12).

Ещё же на основании доказательств, подобных тем, что для пятиугольника, мы впишем в данный пятнадцатиугольник и опишем около него круг (предложения 13 и 14), что и требовалось сделать (7, 8, 9, 10).

Евклид родился около 330 г. до н.э., предположительно, в г. Александрия. Некоторые арабские авторы полагают, что он происходил из богатой семьи из Нократа. Есть версия, что Евклид мог родиться в Тире, а всю свою дальнейшую жизнь провести в Дамаске. Согласно некоторым документам, Евклид учился в древней школе Платона в Афинах, что было под силу только состоятельным людям. Уже после этого он переедет в г. Александрия в Египте, где и положит начало разделу математики, ныне известному как «геометрия».

Жизнь Евклида Александрийского часто путают с жизнью Евклида из Мегуро, что делает сложным обнаружение любых надёжных источников жизнеописания математика. Достоверно известно только то, что именно он привлёк внимание общественности к математике и вывел эту науку на совершенно новый уровень, совершив революционные открытия в этой области и доказав множество теорем. В те времена Александрия была не только крупнейшим городом в западной части мира, но и центром крупной, процветающей отрасли производства папируса. Именно в этом городе Евклид разработал, записал и представил миру свои труды по математике и геометрии.

Научная деятельность

Евклида обоснованно считают «отцом геометрии». Именно он заложил основы этой области знаний и возвёл её на должный уровень, открыв обществу законы одного самых сложных разделов математики в то время. После переезда в Александрию, Евклид, как и многие учёные того времени, благоразумно проводит большую часть времени в Александрийской библиотеке. Этот музей, посвящённый литературе, искусству и наукам, был основан ещё Птолемеем. Здесь Евклид начинает объединять геометрические принципы, арифметические теории и иррациональные числа в единую науку геометрию. Он продолжает доказывать свои теоремы и сводит их в колоссальный труд «Начала».

За всё время своей малоисследованной научной деятельности, учёный закончил 13 изданий «Начал», охватывающих широкий спектр вопросов, начиная с аксиом и утверждений и заканчивая стереометрией и теорией алгоритмов. Наряду с выдвижением различных теорий, он начинает разрабатывать методику доказательства и логическое обоснование этих идей, которые докажут предложенные Евклидом утверждения.

Его труд содержит более 467 утверждений касательно планиметрии и стереометрии, а также гипотез и тезисов, выдвигающих и доказывающих его теории относительно геометрических представлений. Доподлинно известно, что в качестве одного из примеров в своих «Началах» Евклид использовал теорему Пифагора, устанавливающую соотношение между сторонами прямоугольного треугольника. Евклид утверждал, что «теорема верна для всех случаев прямоугольных треугольников».

Известно, что за время существования «Начал», вплоть до XX века, было продано больше экземпляров этой книги, чем Библии. «Начала», изданные и переизданные бесчисленное количество раз, в своей работе использовали разные математики и авторы научных трудов. Евклидова геометрия не знала границ, и учёный продолжал доказывать всё новые теоремы в совершенно разных областях, как, например, в области «простых чисел», а также в области основ арифметических знаний. Цепочкой логических рассуждений Евклид стремился открыть тайные знания человечеству. Система, которую учёный продолжал разрабатывать в своих «Началах», станет единственной геометрией, которую будет знать мир вплоть до XIX века. Однако современные математики открыли новые теоремы и гипотезы геометрии, и разделили предмет на «евклидову геометрию» и «неевклидову геометрию».

Сам учёный называл это «обобщённым подходом», основанным не на методе проб и ошибок, а на представлении неоспоримых фактов теорий. Во времена, когда доступ к знаниям был ограничен, Евклид принимался за изучение вопросов совершенно разных областей, в том числе и «арифметики и чисел». Он заключил, что обнаружение «самого большого простого числа» физически невозможно. Это утверждение он обосновал тем, что, если к самому большому известному простому числу добавить единицу, это неизбежно приведёт к образованию нового простого числа. Этот классический пример является доказательством ясности и точности мысли учёного, несмотря на его почтенный возраст и времена, в которые он жил.

Аксиомы

Евклид говорил, что аксиомы – это утверждения, не требующие доказательств, но при этом он понимал, что слепое принятие на веру этих утверждений не может использоваться в построении математических теорий и формул. Он осознавал, что даже аксиомы должны быть подкреплены неоспоримыми доказательствами. А потому учёный начал приводить логические заключения, подтверждавшие его геометрические аксиомы и теоремы. Для лучшего понимания этих аксиом, он разделил их на две группы, которые назвал «постулатами». Первая группа известна как «общие понятия», состоящие из признанных научных утверждений. Вторая группа постулатов является синонимом самой геометрии. Первая группа включает такие понятия, как «целое больше суммы частей» и «если две величины порознь равны одной и той же третьей, то они равны между собой». Вот лишь два из пяти постулатов, записанных Евклидом. Пять постулатов второй группы относятся непосредственно к геометрии, утверждая, что «все прямые углы равны между собой», и что «от всякой точки до всякой точки можно провести прямую».

Научная деятельность математика Евклида процветала, и в начале 1570-х г.г. его «Начала» были переведены с греческого языка на арабский, а затем и на английский язык Джоном Ди. С момента своего написания, «Начала» были перепечатаны 1 000 раз и, в конце концов, заняли почётное место в учебных классах XX столетия. Известно множество случаев, когда математики пытались оспорить и опровергнуть геометрические и математические теории Евклида, но все попытки неизменно оканчивались провалом. Итальянский математик Джироламо Саккери стремился усовершенствовать труды Евклида, но оставил свои попытки, не в силах отыскать в них ни малейшего изъяна. И лишь спустя столетие новая группа математиков сможет представить новаторские теории в области геометрии.

Другие работы

Не переставая трудиться над изменением теории математики, Евклид успел написать ряд работ на другую тематику, которые используются и на которые ссылаются по сей день. Эти труды были чистыми предположениями, основанными на неопровержимых доказательствах, красной нитью проходящими через все «Начала». Учёный продолжил изучение и открыл новую область оптики – катоптрику, в значительной мере утверждавшую математическую функцию зеркал. Его работы в области оптики, математических соотношений, систематизаций данных и изучения конических сечений затерялись в глубине веков. Известно, что Евклид успешно окончил восемь изданий, или книг, по теоремам, касающимся конических сечений, но ни одна из них не дошла до наших дней. Он также сформулировал гипотезы и предположения, основанные на законах механики и траектории движения тел. По-видимому, все эти работы были взаимосвязаны, и высказанные в них теории произрастали из единого корня – его знаменитых «Начал». Он также разработал ряд евклидовых «построений» – основных инструментов, необходимых для выполнения геометрических построений.

Личная жизнь

Есть свидетельства, что Евклид открыл при Александрийской библиотеке частную школу, чтобы иметь возможность обучать математике таких же энтузиастов, как он сам. Также бытует мнение, что в поздний период своей жизни он продолжал помогать своим ученикам в разработке собственных теорий и написании трудов. У нас нет даже чёткого представления о внешности учёного, а все скульптуры и портреты Евклида, которые мы видим сегодня, являются лишь плодом воображения их творцов.

Смерть и наследие

Год и причины смерти Евклида остаются для человечества тайной. В литературе встречаются туманные намёки на то, что он мог умереть около 260 г. до н.э. Наследие, оставленное учёным после себя, куда более значимо, чем впечатление, которое он производил при жизни. Его книги и труды продавались по всему миру до самого XIX века. Наследие Евклида пережило учёного на целых 200 веков, и служило источником вдохновения для таких личностей, как, например, Авраам Линкольн. По слухам, Линкольн всегда суеверно носил при себе «Начала», и во всех своих речах цитировал работы Евклида. Даже после смерти учёного, математики разных стран продолжали доказывать теоремы и издавать труды под его именем. В общем и целом, в те времена, когда знания были закрыты для широких масс, Евклид логическим и научным путём создал формат математики древности, который в наши дни известен миру под названием «евклидовой геометрии».

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Евклид и его начала.

В течение 2-х тысяч лет геометрию узнавали, либо из «Начал» Евклида, либо из учебников, написанных на основе этой книги. Лишь профессиональные математики обращались к трудам этих великих греческих геометров: Архимеда, Аполония- и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в XIX веке.

Об этом поразительном человеке история сохранила настолько мало сведений, что нередко высказывалось сомнения в самом его существовании. Что же дошло до нас? Каталог греческих геометров Прокла Диадоха Византийского, жившего в V веке н.э. – первый серьезный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея 1, который царствовал с 306 по 283 г. до н.э.

Евклид должен быть старше Архимеда, который ссылался на «Начала». До наших времен дошли сведения, что он преподавал в Александрии, столице Птолемея, начинавшей превращаться в один из центров научной жизни. Евклид был последователем древнегреческого философа Платона, и преподавал он, вероятно, четыре науки, которые, по мнению Платона, должны предшествовать занятиям философией: арифметику, геометрию, теорию гармонии, астрономию.

Что касается места Евклида в науке, то оно должно определяться не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров, Фалеса и Пифагора, Евдокса и Теэтета. Величайшая заслуга Евклида в том, что он подвел итог построению геометрии придал изложению столь совершенную форму, что на две тысячи лет «Начала» стали энциклопедией геометрии.

Евклид с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Позже греческие математики включили в «Начала» еще две книги написанные другими авторами.

Первая книга начинается с 23 «определений», среди них такие: точка есть то, что не имеет частей; линия есть длина без ширины, прямая есть линия, одинаково расположенная относительно всех точек; наконец, две прямые, лежащие в одной плоскости, называются параллельными, если они сколько угодно продолженные не пересекаются. Это скорее наглядные представления об основных объектах, и слово «определение» в современном понимании не точно передает смысл греческого «хорой», которым пользовался Евклид.

В книге 1 рассматриваются основные свойства треугольников, сравниваются их площади. Здесь появляются теоремы о сумме углов треугольников. Затем следует пять геометрических постулатов: через две точки можно провести одну прямую; каждая прямая может быть сколько угодно продолжена; данным радиусом из данной точки можно провести окружность, все прямые углы равны, если две прямые проведены к третьей под углами, составляющими в сумме меньше двух прямых, то они встречаются с той же стороны от этой прямой. Все эти постулаты, кроме одного вошли в современные курсы основной геометрии. За постулатами приводятся общие предположения или аксиомы, - восемь общематематических утверждений о равенствах и неравенствах. Книга заканчивается теоремой Пифагора.

В книге 2 излагается геометрическая алгебра, с помощью геометрических чертежей даются решения задач, сводящихся к квадратным уравнениям.

В книге 3 рассматриваются свойства круга, свойства касательных и хорд,в книге 4 – правильные многоугольники, появляются основы учения о подобии. В книгах 7-9 изложены начала теории чисел.

Последние книги посвящены стереометрии. В книге 11 излагаются сначала стереометрия, в 12 –ой книге с помощью места исчерпания определяются соотношение площадей двух кругов и отношение объемов пирамиды и призмы, конуса и цилиндра. Вершина стереометрии- теория правильных многогранников. В «Начала» не попало одно из величайших достижений греческих геометров- теория конических сечений. О них Евклид написал отдельную книгу «Начала конических сечений». Не дошедшую до нас, но ее цитировал в своих сочинениях Архимед.

«Начала» Евклида не дошли до нас в подлиннике. Двенадцать столетий отделяют от Евклида самые старые известные списки, семь столетий – сколь-нибудь подобные сведения о «Началах». В средневековую эпоху интерес к математике был утрачен, некоторые книги «Начал» пропали и потом с трудом восстанавливались по латинским и арабским переводам. А к тому времени тексты обросли «улучшениями» позднейших комментаторов.

В период возрождения европейской математики «Начала» изучали и воссоздавали заново. Логическое построение «Начал» аксиоматика Евклида воспринимались математиками как нечто безупречное до 19 века, когда начался период критического отношения к достигнутому, который закончился новой аксиоматической евклидовой геометрии- аксиоматикой Д. Гильберта. изложение геометрии в «Началах» считалось следовать ученые и за пределами математики.

Евклида алгоритм.

Алгоритм Евклида- это способ нахождения наибольшего общего делителя двух целых чисел.

Чтобы найти наибольший общий делитель двух целых положительных чисел, нужно сначала большее число разделить на остаток от первого деления, потом первый остаток- на вторую. Последний ненулевой положительный остаток в этом процессе и будет наибольшим общим делителем данных чисел.

Обозначив исходные числа через а и в, положительные остатки, получающиеся в результате делении, через r 1 , r 2 ,…… r n , а неполные частные через g 1, g 2, ………. g n+1,

Можно записать алгоритм Евклида в виде цепочки равенств:

a=bg 1 +r 1

b=r 1 g 2 +r 2

r n-2 =r n-1 g n +r n

Для нахождения набольшей общей меры двух отрезков поступают аналогично. Операцию деления с остатком заменяют ее геометрическим аналогом: меньший отрезок откладывают на большем столько раз, сколько возможно; оставшуюся часть большего отрезка откладывают на меньшем отрезке. Если отрезки а и в соизмеримы, то последний нулевой остаток даст наибольшую общую меру этих отрезков.

Алгоритм Евклида известен издавна. Ему уже более 2 тыс. лет. Этот алгоритм сформулировал в «Началах» Евклида, где из него выводятся свойства простых чисел, наименьшего общего кратного. Как способ нахождения наибольшей общей меры двух отрезков алгоритм Евклида был известен еще пифагорейцам. К середине XVI века алгоритм Евклида был распространен на многочлены от одного переменного.

Алгоритм Евклида имеет много применений. Равенства, определяющие его, дают возможность представить наибольший общий делитель d чиселa,b.

Единица.

Единица – это первое число натурального ряда, а также одна из цифр в десятичной системе счисления.

Считается, что обозначение единицы любого разряда одним и тем же знаком появилось впервые в Древнем Вавилоне приблизительно за 2 тыс. лет до н.э.

Древние греки, считавшие числами лишь натуральные числа, рассматривали каждое из них как собрание единиц. Самой же единице отводилось особое место: она числом не считалась.

Но уже Ньютон писал: «…. Под числом мы понимаем не столько собрание единиц, сколько отвлеченное отношение одной величины к другой величине, условно принятой нами за единицу». Таким образом, к тому времени единица уже заняла свое законное место среди других чисел.

Основное свойство, характеризующее число 1, таково: a*1=a.

Это свойство числа 1 переносится и на некоторые другие математические субъекты, для которых определена операция умножения.

Особенно плодотворно развивались отрасли знаний естественного направления: физика, астрономия, землеведение, тесно связанные с математикой и геометрией. К числу самых прославленных эллинистических геометров и математиков относился знаменитый Евклид.

Биография Евклида известна очень плохо. В молодости он, возможно, обучался в афинской Академии, которая была не только философской, но и математической и астрономической школой (к Академии примыкал Евдокс Книдский). Затем Евклид жил в Александрии при Птолемеях I и II. Так что биография Евклида проходила преимущественно в первой половине III в. до н. э. Живший много веков позднее неоплатоник Прокл рассказывает, что когда Птолемей I спросил Евклида, заглянув в его главный труд, нет ли более короткой дороги к геометрии, то Евклид якобы гордо ответил царю, что науке нет царского пути.

Евклиду принадлежат такие фундаментальные исследования, как «Оптика» и «Диоптрика». В своей оптике Евклид исходил из пифагорейской теории, согласно которой лучи света – прямые линии, простирающиеся от глаза к воспринимаемому предмету.

«Начала» Евклида

Главный труд Евклида – «Начала» (или «Элементы», в оригинале «Стойхейа»). «Начала» Евклида состоят из 13 книг. Позднее к ним были прибавлены еще две книги.

Первые шесть книг «Начал» посвящены геометрии на плоскости – планиметрии. В философско-теоретическом отношении, в плане философии математики особенно интересна первая книга, которая начинается с определений, постулатов и аксиом, учение о которых было заложено Аристотелем.

Евклид определяет точку как то, что не имеет частей. Линия – длина без ширины. Концы линии – точки. Прямая линия равно расположена по отношению к точкам на ней. Поверхность есть то, что имеет только длину и ширину. Концы поверхности – линии. Плоская поверхность есть та, которая равно расположена по отношению к прямым на ней. И так далее. Таковы определения Евклида.

Статуя Евклида в музее Оксфордского университета

Далее следуют постулаты, т. е. то, что допускается. Допустим, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из любой точки, принятой за центр, можно всяким раствором циркуля описать круг, что все прямые углы равны между собой и что если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то, будучи продолженными, эти две прямые рано или поздно встретятся с той стороны, где углы меньше двух прямых.

Аксиомы Евклида говорят о том, что величины, равные третьей величине, равны между собой, что если к равным прибавить равные, то и целые будут равными, и т. д.

Далее, в первой же книге «Начал» Евклида, рассматриваются треугольники, параллельные линии, параллелограммы. Вторая книга «Начал» содержит геометрическую алгебру: числа и отношения чисел выражаются в пространственных величинах и в их пространственных же отношениях. Третья книга «Начал» исследует геометрию круга и окружности, четвертая – многоугольники. Пятая книга дает теорию пропорций как для соизмеримых, так и для несоизмеримых величин. В книге VI Евклид прилагает эти теории к планиметрии. Книги VII – X содержат теорию чисел, причем X книга трактует иррациональные линии. XI, XII и XIII книги «Начал» посвящены стереометрии, при этом в XII книге применяется метод исчерпания.

В строгом смысле слова Евклида нельзя считать «отцом геометрии». Свои «Начала» были у Гиппократа Хиосского в V в. до н. э. В IV в. до н. э. «Начала» были у Леона, и у Феудия Магнесийского. Метод исчерпания применял Евдокс Книдский, возможный учитель Евклида по Академии. Проблемой иррациональности занимались пифагореец Гиппас Метапонтский, Феодор Киренский, Теэтет Афинский... Однако Евклид – не простой передатчик сделанного до него математиками. В «Началах» Евклида мы видим завершение математики как стройной науки, исходящей из определений, постулатов и аксиом и построенной дедуктивно. Математика Евклида – вершина древнегреческой дедуктивной науки. Она резко отличается от ближневосточной математики с ее практической приблизительной рецептурностью. Не случайно «Начала» Евклида по их логической стройности, ясности, изяществу и законченности сравнивают с афинским Парфеноном .

Правда, существовала легенда, что сам Евклид – не единственный автор дошедших до нас «Начал», что он сам дал лишь догматическое изложение материала, без доказательств, что доказательства были добавлены вышеупомянутым Теоном Александрийским. Теон Александрийский действительно занимался проблематикой «Начал». Но не он один. Этим же занимались и Прокл, и Симплиций. «Начала» Евклида были частично переведены на латинский язык Цензорином и Боэцием. Но эти их переводы затерялись. На Западе вплоть до конца XII в. находились в обращении тезисы Евклида без доказательств.

Что касается Ближнего Востока, то там Евклид был известен в переводах с греческого на сирийский, а с сирийского – на арабский. Первым арабским философом, который заинтересовался Евклидом, был, по-видимому, аль-Кинди (IX в.). Его интерес ограничивался евклидовой «Оптикой». Однако затем последовала масса переводов и комментариев на «Начала». Эти арабские тексты были переведены в XIII в. на латинский язык. Первый латинский перевод с греческого оригинала был делан в Европе в 1493 г. и отпечатан в 1505 г. в Венеции. Но до 1572 г., когда Федерико Коммандино в своем латинском переводе исправил эту ошибку, Евклида-математика путали с Евклидом Мегариком.

Постулаты Евклида

Из постулатов Евклида видно, что Евклид представлял пространство как пустое, безграничное, изотропное и трехмерное. Бесконечность и безграничность пространства предполагается такими постулатами Евклида, как тезисы о том, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из всякого центра и всяким раствором циркуля может быть описан круг.

Особенно знаменит пятый постулат Евклида, который буквально звучит так (выше мы дали пересказ): «Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых». Позднее Прокл выразил этот постулат так: «Если прямая пересекает одну из двух параллельных линий, то она пересечет также и вторую параллельную». Более привычная для нас формула: «Через данную точку можно провести лишь одну параллельную к данной прямой» – принадлежит Джону Плейферу.

Не раз делались попытки доказать пятый постулат Евклида (Птолемей, Насир аль-Дин, Ламберт, Лежандр). Наконец, Карл Гаусс высказал в 1816 г. гипотезу, что этот постулат может быть заменен другим. Эта догадка была реализована в параллельных исследованиях независимо друг от друга Н. И. Лобачевским (1792–1856) и Яношем Больяем (1802–1866). Однако оба эти исследователя (и русский, и венгерский) не получили признания других математиков, особенно тех, кто стоял на позициях кантовского априоризма в понимании пространства, который допускал только одно пространство – евклидово. Только Бернхард Риман (1826–1866) своей теорией многообразий (1854) доказал возможность существования многих видов неевклидовой геометрии. Сам Б. Риман заменил пятый постулат Евклида на постулат, согласно которому вообще нет параллельных линий, а внутренние углы треугольника больше двух прямых. Феликс Клейн (1849–1925) показал соотношение неевклидовых и евклидовой геометрий. Евклидова геометрия относится к поверхностям с нулевой кривизной, геометрия Лобачевского – к поверхностям с положительной кривизной, а геометрия Римана – к поверхности с отрицательной кривизной.

В течение двух тысяч лет геометрию узнавали либо из «Начал» Евклида, либо из учебников, написанных на основе этой книги. Лишь профессиональные математики обращались к трудам других великих греческих геометров: Архимеда, Аполлония – и геометров более позднего времени. Классическую геометрию стали называть евклидовой в отличие от появившихся в XIX в. «неевклидовых геометрий».

Об этом поразительном человеке история сохранила настолько мало сведений, что нередко высказываются сомнения в самом его существовании. Что же дошло до нас? Каталог греческих геометров Прокла Диадоха Византийского, жившего в V в. н.э., - первый серьезный источник сведений о греческой геометрии. Из каталога следует, что Евклид был современником царя Птолемея I, который царствовал с 306 по 283 г. до н.э.

Евклид должен быть старше Архимеда, который ссылался на «Начала». До наших времен дошли сведения, что он преподавал в Александрии, столице Птолемея I, начинавшей превращаться в один из центров научной жизни. Евклид был последователем древнегреческого философа Платона, и преподавал он, вероятно, четыре науки, которые, по мнению Платона, должны предшествовать занятиям философией: арифметику, геометрию, теорию гармонии, астрономию. Кроме «Начал» до нас дошли книги Евклида, посвященные гармонии и астрономии.

Что касается места Евклида в науке, то оно определяется не столько собственными его научными исследованиями, сколько педагогическими заслугами. Евклиду приписывается несколько теорем и новых доказательств, но их значение не может быть сравнимо с достижениями великих греческих геометров: Фалеса и Пифагора (VI в. до н. э.), Евдокса и Теэтета (IV в. до н.э.). Величайшая заслуга Евклида в том, что он подвел итог построению геометрии и придал изложению столь совершенную форму, что на две тысячи лет «Начала» стали энциклопедией геометрии.

Евклид с величайшим искусством расположил материал по 13 книгам так, чтобы трудности не возникали преждевременно. Позже греческие математики включили в «Начала» еще две книги – XIV-ю и XV-ю, написанные другими авторами.

Первая книга Евклида начинается с 23 «определений», среди них такие: точка есть то, что не имеет частей; линия есть длина без ширины; линия ограничена точками; прямая есть линия, одинаково расположенная относительно всех своих точек; наконец, две прямые, лежащие в одной плоскости, называются параллельными, если они, сколь угодно продолженные, не встречаются. Это скорее наглядные представления об основных объектах, и слово «определение» в современном понимании не точно передает смысл греческого слова «хорой», которым пользовался Евклид.

В книге I рассматриваются основные свойства треугольников, прямоугольников, параллелограммов, сравниваются их площади. Здесь появляется теорема о сумме углов треугольника. Затем следует пять геометрических постулатов: через две точки можно провести одну прямую; каждая прямая может быть сколь угодно продолжена; данным радиусом из данной точки можно провести окружность; все прямые углы равны; если две прямые проведены к третьей под углами, составляющими в сумме меньше двух прямых, то они встречаются с той же стороны от этой прямой. Все эти постулаты, кроме одного, вошли в современные курсы основной геометрии. За постулатами приводятся общие предположения, или аксиомы – восемь общематематических утверждений о равенствах и неравенствах. Книга заканчивается теоремой Пифагора (см. Пифагора теорема).

В книге II излагается геометрическая алгебра, с помощью геометрических чертежей даются решения задач, сводящихся к квадратным уравнениям. Алгебраической символики тогда не существовало.

В книге III рассматриваются свойства круга, свойства касательных и хорд, в книге IV – правильные многоугольники, появляются основы учения о подобии. В книгах VII-IX изложены начала теории чисел (см. Чисел теория), основанной на алгоритме нахождения наибольшего общего делителя, приводится алгоритм Евклида (см. Евклида алгоритм), сюда входит теория делимости и теорема о бесконечности множества простых чисел.

Последние книги посвящены стереометрии. В книге XI излагаются начала стереометрии, в XII с помощью метода исчерпания определяются отношение площадей двух кругов и отношение объемов пирамиды и призмы, конуса и цилиндра. Вершина стереометрии у Евклида – теория правильных многогранников. В «Начала» не попало одно из величайших достижений греческих геометров – теория конических сечений. О них Евклид написал отдельную книгу «Начала конических сечений», не дошедшую до нас, но ее цитировал в своих сочинениях Архимед.

«Начала» Евклида не дошли до нас в подлиннике. Двенадцать столетий отделяют от Евклида самые старые известные списки, семь столетий – сколь-нибудь подробные сведения о «Началах». В средневековую эпоху интерес к математике был утрачен, некоторые книги «Начал» пропали и потом с трудом восстанавливались по латинским и арабским переводам. А к тому времени тексты обросли «улучшениями» позднейших комментаторов.

В период возрождения европейской математики (XVI в.) «Начала» изучали и воссоздавали заново. Логическое построение «Начал», аксиоматика Евклида воспринимались математиками как нечто безупречное до XIX в., когда начался период критического отношения к достигнутому, который закончился новой аксиоматикой евклидовой геометрии – аксиоматикой Д. Гильберта. Изложение геометрии в «Началах» считалось образцом, которому стремились следовать ученые и за пределами математики.