Основные функции системы комплемента. Растворение иммунных комплексов, осуществляемое фрагментами С3b и C4b

Система комплемента

Мембраноатакующий комплекс, вызывающий лизис клетки.

Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов , предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

История понятия

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Общее представление

Компоненты системы комплемента

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Основные этапы активации системы комплемента.

Классический и альтернативный пути активации системы комплемента.

Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путем. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

Биологические функции

Сейчас выделяют следующие функции:

  1. Опсонизирующая функция. Сразу вслед за активацией системы комплемента образуются опсонизирующие компоненты, которые покрывают патогенные организмы или иммунные комплексы, привлекая фагоцитов. Наличие на поверхности фагоцитирующих клеток рецептора к С3b усиливает их прикрепление к опсонизированным бактериям и активирует процесс поглощения. Такое более тесное прикрепление С3b-связанных клеток или иммунных комплексов к фагоцитирующим клеткам получило название феномена иммунного прикрепления .
  2. Солюбилизация (т.е. растворение) иммунных комплексов (молекулой C3b). При недостаточности комплемента развивается иммунокомплексная патология (СКВ-подобные состояния). [СКВ = системная красная волчанка]
  3. Участие в воспалительных реакциях. Активация системы комплемента приводит к выделению из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови биологически активных веществ (гистамина, серотонина, брадикинина), которые стимулируют воспалительную реакцию (медиаторов воспаления). Биологически активные компоненты, которые образуются при расщеплении С3 и С5 , приводят к высвобождению вазоактивных аминов, таких как гистамин , из тканевых базофилов (тучных клеток) и базофильных гранулоцитов крови. В свою очередь это сопровождается расслаблением гладкой мускулатуры и сокращением клеток эндотелия капилляров, усилением сосудистой проницаемости. Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода. Введение С5а животным приводило к артериальной гипотонии, сужению легочных сосудов и повышению проницаемости сосудов из-за повреждения эндотелия.
    Фукнции С3а:
    • выступать в роли хемотаксического фактора, вызывая миграцию нейтрофилов по направлению к месту его высвобождения;
    • индуцировать прикрепление нейтрофилов к эндотелию сосудов и друг к другу;
    • активировать нейтрофилы, вызывая в них развитие респираторного взрыва и дегрануляцию;
    • стимулировать продукцию нейтрофилами лейкотриенов.
  4. Цитотоксическая, или литическая функция. В конечной стадии активации системы комплемента образуется мембраноатакующий комплекс (МАК) из поздних компонентов комплемента, который атакует мембрану бактериальной или любой другой клетки и разрушает ее.
Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

Активация системы комплемента

Классический путь

Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по одной молекуле С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b.C5b остается на мембране и соединяется с комплексом C4b2a3b.Потом соединяются С6, С7, С8 и С9,которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

Альтернативный путь

Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbВb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bВb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе CЗbВb В заменяется Н фактором и под воздействием дезактивирующего соединения(Н) превращается в С3bi.Когда микробы попадают в организм комплекс СЗbВb начинает накапливаться на мембране. Он соединяется с С5, который расщепляется на C5a и C5b. C5b остается на мембране. Потом соединяются С6, С7, С8 и С9.После соединения С9 с С8, происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды(являются митогенами), вирусные частицы, опухолевые клетки.

Лектиновый (маннозный) путь активации системы комплемента

Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются с определенным образом ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

Регуляция системы комплемента

Система комплемента может быть очень опасной для тканей хозяина, поэтому ее активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

Регуляторные механизмы в основном действуют в трех точках.

  1. С1. Ингибитор С1 контролирует классический и лектиновый пути активации. Действует двумя путями: ограничивает действие С4 и С2 с помощью связывания C1r- и С1s-протеаз и подобным образом выключает лектиновый путь, удаляя ферменты MASP из MBP-комплекса.
  2. С3-конвертаза. Время жизни С3-конвертазы уменьшают факторы ускорения распада. Некоторые из них находятся на поверхности собственных клеток (например, DAF и CR1). Они действуют на С3-конвертазы и классического, и альтернативного путей активации. DAF ускоряет распад С3-конвертазы альтернативного пути. СR1 (C3b/C4b receptor) расположен главным образом на поверхности эритроцитов и отвечает за удаление из плазмы крови опсонизированных иммунных комплексов. Другие регуляторные белки производятся печенью и в неактивном состоянии растворены в плазме крови. Фактор I - сериновая протеаза, расщепляющая C3b и C4b. С4-связывающий белок (C4BP) расщепляет С4 и помогает фактору I расщеплять C4b.Фактор H связывается с гликозаминогликанами, которые есть на собственных клетках, но не на клетках патогенов. Этот белок является кофактором фактора I, а также ингибирует активность C3bBb.
  3. С9. CD59 и Гомологичный Фактор Ограничения ингибируют полимеризацию С9 во время образования мембраноатакующего комплекса, не давая ему сформироваться.

Роль системы комплемента при болезнях

Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.

Комплемент и его активация

Замечание 1

Комплемент – это сложная система белков, количеством свыше 30, присутствующих в цитоплазме и на поверхности клеток.

Комплемент представляет собой набор ферментов, которые активируются различными определенными стимулами. При этом формируется быстрый, многократно усиленный ответ: первичный сигнал инициирует каскадный процесс, при котором продукт одной реакции служит ферментом-катализатором последующей.

Комплемент является важной составной частью системы врожденного иммунитета, так как активированные или возникающие при расщеплении продукты обладают рядом защитных функций.

Многие компоненты комплемента обозначаются символом «С» и цифрой, которая соответствует хронологии их открытия.

Краткая характеристика некоторых компонентов системы комплемента

Больше всего в организме по сравнению с другими компонентами комплемента содержится компонента С3, выполняющего наиболее важные функции.

Замечание 2

В нормальных условиях белок $C3$ постоянно расщепляется с образованием функционально сходной молекулы. В дальнейшем при взаимодействии с другими компонентами комплемента, фактором В и в присутствии ионов магния образуется новый белок, обладающий новой важной ферментативной активностью – он является $C3$-конвертазой.

Расщепление $C3$ играет важную роль для устранения патогенных микробов.

    В ходе инфекции $C3$-конвертаза стабилизируется и происходит активация комплемента по альтернативному пути:

    • в присутствии большого количества микроорганизмов появляется $C3$-конвертазная активность;
    • образуется большое количество продуктов расщепления $C3$;
    • происходит связывание с поверхностью микробных клеток;
    • на связанную конвертазу воздействует белок пропердин, способствующий ее большей стабилизации;
    • на поверхности микробных клеток накапливается большое количество белка $C3b$.
  1. Комплемент активируется при связывании углеводов микробной поверхности с манносвязывающим лектином (МСЛ), являющимся белком плазмы крови.

    • МСЛ связывается с остатками маннозы и других углеводов, входящих в состав бактериальных клеток;
    • инициируется ряд реакций, завершающиеся активацией комплемента;
    • МСЛ активирует комплемент путем взаимодействия с сериновыми протеазами;
    • активация $C3$ инициирует действие механизма положительной обратной связи и образование лизирующего мембрану комплекса.
  2. Реакции, инициируемые расщепление $C3$, приводят к образованию лизирующего мембрану комплекса.

    • в результате ряда превращений образуется амфипатическая молекула, способная проникать в липидный бислой и полимеризоваться с образованием лизирующего мембрану комплекса (ЛМК);
    • ЛМК образует трансмембранный канал, полностью проницаемый для воды и электролитов;
    • за счет высокого внутриклеточного давления и входов ионов натрия в клетку поступает вода, что приводит к лизису.

Биологические функции комплемента

Комплемент выполняет следующие защитные функции:

  1. Компонент $C3b$ связывает рецепторы комплемента. Фагоцитарные клетки несут рецепторы для компонентов комплемента $C3b(CR1)$ и $C3bi(CR3)$, что способствует прикреплению микробных клеток к фагоцитам и последующему фагоцитозу. Процесс связывания $C3bc$ микробными клетками называется опсонизация.
  2. При активации комплемента высвобождаются биологически активные фрагменты. При расщеплении молекул $C3$ и $C5$ образуются небольшие пептиды $C3a$ и $C5a$, являющиеся анафилатоксинами и выполняющими ряд важных функций:

    • вызывают высвобождение защитных медиаторов (гистамин, фактор некроза опухолей, лейкотриен $B4$ и др;
    • воздействуют на эозинофилы, $C5a$ – на нейтрофилы;
    • стимулируют в клетках дыхательную активность;
    • повышают экспрессию поверхностных рецепторов для $C3b$;
    • $5a$ –сильный хемотаксический агент для нейтрофилов;
    • воздействуют на эндотелий капилляров, расширяя сосуды и повышая их проницаемость.
  3. Лизирующий мембрану комплекс комплемента повреждает мембрану.

  4. Комплемент принимает участие в индукции антител ообразования. Рецептор для $C3b$ участвует в регуляции активности $B$-клеток. Пролиферация $B$-клеток и синтез ими антител зависят от активации, индуцируемой связыванием антигена с поверхностными клеточными рецепторами. В присутствии $C3b$ пороговая концентрация антигена для активации $B$-клеток снижается, поэтому они активируются при намного меньшем содержании антигена в организме.

Комплемент - система сывороточных белков и нескольких белков клеточных мембран, выполняющих 3 важные функции: опсонизацию микроорганизмов для дальнейшего их фагоцитоза, инициацию сосудистых реакций воспаления и перфорацию мембран бактериальных и других клеток. Компоненты комплемента обозначают буквами латинского алфавита C, B и D с добавлением арабской цифры (номер компонента) и дополнительных строчных букв. Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (C1, C2 ... C9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (C1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b).

Активация комплемента В норме, когда внутренняя среда организма «стерильна» и патологического распада собственных тканей не происходит, уровень активности системы комплемента невысок. При появлении во внутренней среде микробных продуктов происходит активация системы комплемента. Она может происходить по трём путям: альтернативному, классическому и лектиновому.

- Альтернативный путь активации. Его инициируют непосредственно поверхностные молекулы клеток микроорганизмов [факторы альтернативного пути имеют буквенное обозначение: P (пропердин), B и D].

Из всех белков системы комплемента в сыворотке крови больше всего C3 - его концентрация в норме составляет 1,2 мг/мл. При этом всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 с образованием C3a и C3b. Компонент C3b - опсонин, т.е. он способен ковалентно связываться как с поверхностными молекулами микроорганизмов, так и с рецепторами на фагоцитах. Кроме того, «осев» на поверхности клеток, C3b связывает фактор В. Тот, в свою очередь, становится субстратом для сывороточной сериновой протеазы - фактора D, который расщепляет его на фрагменты Ва и Bb. C3b и Bb образуют на поверхности микроорганизма активный комплекс, стабилизируемый пропердином (фактор Р).

◊ Комплекс C3b/Bb служит С3-конвертазой и значительно повышает уровень расщепления С3 по сравнению со спонтанным. Кроме того, после связывания с C3 он расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (наиболее сильный) и C3a - анафилатоксины комплемента, т.е. медиаторы воспалительной реакции. Они создают условия для миграции фагоцитов в очаг воспаления, вызывают дегрануляцию тучных клеток, сокращение гладких мышц. C5a также вызывает повышение экспрессии на фагоцитах CR1 и CR3.

◊ С C5b начинается формирование «мембраноатакующего комплекса», вызывающего перфорацию мембраны клеток микроорганизмов и их лизис. Сначала образуется комплекс C5b/C6/ C7, встраивающийся в мембрану клетки. Одна из субъединиц компонента C8 - C8b - присоединяется к комплексу и катализирует полимеризацию 10-16 молекул C9. Этот полимер и формирует неспадающуюся пору в мембране, имеющую диаметр около 10 нм. В результате клетки становятся неспособными поддерживать осмотический баланс и лизируются.

- Классический и лектиновый пути сходны друг с другом и отличаются от альтернативного способом активации C3. Главной C3конвертазой классического и лектинового пути служит комплекс C4b/C2a, в котором протеазной активностью обладает C2a, а C4b ковалентно связывается с поверхностью клеток микроорганизмов. Примечательно, что белок C2 гомологичен фактору В, даже их гены расположены рядом в локусе MHC-III.

◊ При активации по лектиновому пути один из белков острой фазы - MBL - взаимодействует с маннозой на поверхности клеток микроорганизмов, а MBL-ассоциированная сериновая протеаза (MASP - Mannose-bindingprotein-Associated Serine Protease) катализирует активационное расщепление C4 и C2.

◊ Сериновой протеазой классического пути служит C1s, одна из субъединиц комплекса C1qr 2 s 2 . Она активируется, когда по крайней мере 2 субъединицы C1q связываются с комплексом антиген-антитело. Таким образом, классический путь активации комплемента связывает врождённый и адаптивный иммунитет.

Рецепторы компонентов комплемента. Известно 5 типов рецепторов для компонентов комплемента (CR - Complement Receptor) на различных клетках организма.

CR1 экспрессирован на макрофагах, нейтрофилах и эритроцитах. Он связывает C3b и C4b и при наличии других стимулов к фагоцитозу (связывания комплексов антиген-антитело через FcyR или при воздействии ИФНу - продукта активированных T-лимфоцитов) оказывает пермиссивное действие на фагоциты. CR1 эритроцитов через C4b и C3b связывает растворимые иммунные комплексы и доставляет их к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При нарушении этого механизма иммунные комплексы выпадают в осадок - прежде всего в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), приводя к развитию гломерулонефрита.

CR2 B-лимфоцитов связывает продукты деградации C3 - C3d и iC3b. Это в 10 000-100 000 раз увеличивает восприимчивость B-лимфоцита к своему антигену. Эту же мембранную молекулу - CR2 - использует в качестве своего рецептора вирус Эпштейна-Барр - возбудитель инфекционного мононуклеоза.

CR3 и CR4 также связывают iC3b, который, как и активная форма C3b, служит опсонином. В случае если CR3 уже связался с растворимыми полисахаридами типа бета-глюканов, связывания iC3b с CR3 самого по себе достаточно для стимуляции фагоцитоза.

C5aR состоит из семи доменов, пенетрирующих мембрану клетки. Такая структура характерна для рецепторов, связанных с G-белками (белки, способные связывать гуаниновые нуклеотиды, в том числе ГТФ).

Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.

- C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.

- DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.

- Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.

- Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на C4c и C4d.

- Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.

- Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.

ЗАОЧНАЯ АКАДЕМИЯ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ

ЗАОЧНАЯ АКАДЕМИЯ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ

К. П. Кашкин, Л. Н. Дмитриева

БЕЛКИ СИСТЕМЫ КОМПЛЕМЕНТА: СВОЙСТВА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ (Лекция)

Кафедра иммунологии Российской медицинской академии последипломного образования Минздрава РФ, Москва

Защита организма от чужеродных агентов осу­ществляется с участием множества так называе­мых антигеннеспецифиче-ских клеточных и гумо­ральных факторов имму­нитета. Последние пред­ставлены различными бел­ками и пептидами крови. присутствующими также и в других жидкостях орга­низма. Гуморальные анти-геннеспецифические фак­торы иммунитета или са­ми обладают антимикроб­ными свойствами или спо­собны активировать дру­гие гуморальные и клеточ­ные механизмы иммунной защиты организма.

В 1894 г. В. И. Исаев и Р. Пфейффер показали, что свежая сыворотка крови иммунизированных животных обладает бакте-риолитическими свойствами. Позднее этот антимикробный сы-вороточный фактор был назван алексином (греческий alexo - защищаю, отражаю), или комплементом и охарактеризован как термолабильный фактор, обеспечивающий лизис микробов в иммунной сыворотке, а также лизис сенсибилизированных ан­тителами эритроцитов.

Согласно современным представлениям, комплемент - это система сывороточных белков, которая может активиро­ваться в результате взаимодействия некоторых инициальных компонентов системы с комплексами антиген-антитело или с другими активирующими систему молекулами.

Белки системы комплемента представлены 13 гликопротеи-нами плазмы крови. Регуляция системы осуществляется семью белками плазмы крови и множеством связанных с мембранами клеток белков и рецепторов.

В литературе систему комплемента обозначают латинской буквой С", отдельные же компоненты - дополнительно араб­скими цифрами (Cl, C2, СЗ и т. д.) или заглавными буквами (факторы: В, D): субъединицы комплемента, а также продукты расщепления или активации белков системы - дополнительно малыми латинскими буквами (например: Clq, СЗа, СЗЬ и т. д.);

активированные формы компонентов комплемента могут обозна­чаться штрихом сверху (Cl , СЗ, В и т. д.). Нумерация компо­нентов С" соответствует хронологии их открытия и не всегда сов­падает с последовательностью вовлечения компонентов в реак­цию активации системы комплемента.

Активация системы комплемента происходит в результате взаимодействия некоторых циркулирующих в крови белков системы комплемента с активирующими систему агентами. Та­кое взаимодействие изменяет конформационную структуру мо­лекул соответствующих компонентов комплемента, так что у белковых молекул вскрываются участки, способные взаимодей­ствовать с последующими компонентами системы, фиксиро­вать их и иногда расщеплять.

Такой "каскадный" тип активации характерен как для системы комплемента, так и для многих других бел­ковых систем крови. При активации системы компле­мента происходят "потребле­ние" растворимых в плазме нативных белков компле­мента и их фиксация на раз­личных нерастворимых но­сителях (агрегаты молекул, поверхности клеток и т. д.).

Классический путь активации системы комплемента

Известны два главных пути активации компле­мента - классический, от­крытый первым, и альтер­нативный, установленный позднее. Классический путь отличается от альтернатив­ного тем, что активация системы инициируется Clq-субком-понснтом комплемента, в результате взаимодействия Clq с Fc-фрагментом конформационно измененных IgG и IgM крови. Конформационые изменения Fc-фрагментов у IgG и IgM воз­никают при взаимодействии этих иммуноглобулинов крови с антигенами, а также искусственно в результате термической (63°С, 10 мин) или химической (диазобензидин) обработки им­муноглобулинов.

В зависимости от той роли, которую играют отдельные компоненты комплемента в процессе активации и обеспече­нии функции системы, белки комплемента можно условно разделить на несколько блоков: распознающий (Cl), активи­рующий систему (C2, С4, СЗ) и атакующий мембраны клеток (С5, С6, С7, С8, С9). Свойства белков, входящих в эти блоки, суммированы в табл. I. Активация системы комплемента клас­сическим способом начинается с Clq-субкомпонента компле­мента, конформационные изменения молекул которого "запус­кают" этот процесс (рис. 1). Clq является сывороточным глико-протеином, построенным из 18 полипептидных цепей трех ти­пов: А, В и С. Цепи А, В и С со стороны N-концов цепочек собраны вместе, образуя шесть глобулярных головок. Сами А-, В- и С-цепочки с помощью дисульфидных связей удерживают­ся друг с другом, формируя шесть подобных коллагену трой­ных спиралей. С-концы полипептидных цепочек всех шести спи­ралей Clq удерживаются вместе. По форме молекула Clq напо­минает моллюска с шестью щупальцами (рис. 2). Как и у колла­гена, в составе Clq в больших количествах содержатся глицин, гидрооксипролин и гидрооксилизин. Около 8% массы Clq со­ставляют углеводы, среди которых доминируют гликозилгалак-тозильные остатки. Clq не обладает энзиматической активно­стью, но с помощью своих шести коллагеноподобных трехспи­ральных нитей - "щупалец" - взаимодействует как с циркули­рующими в крови комплексами из С1г- и Cls-субкомпонентов комплемента (участки нитей между глобулярными головками и центральной частью молекулы Clq), так и с Fc-участками кон­формационно измененных молекул IgG и IgM (глобулярные го­ловки на свободных концах шести нитей Clq). Изолированный из крови Clr-компонент комплемента представляет собой ди-мер (С1Гз), При рН 5,0 диссоциирующий на две мономерные молекулы С1г. Каждый мономер С1г представлен полипептид-ной цепью из 688 аминокислотных остатков. Полипептидная цепь мономера образует на конечных участках молекулы по одному домену. При димеризации участок контактного связы­вания мономеров располагается между этими доменами так, что димер С1гз имеет форму асимметричной "X". Активированный С1г2 является сериновой протеазой и в построении активного

Рис. 1. Классический путь активации системы комплемента.

а - компоненты комплементз в водной фазе; б - компоненты комплемента, иммобилизованные на мембранах клеток; Аг - антигены на мембране клеток; at - антитела к соответствующим антигенам классов IgM и IgG; МАК. - мембраноатакующий комплекс.

Комплемент – система белков сыворотки крови, принимающая участие в регуляции воспалительных процессов, активации фагоцитоза и разрушающем (литическом) действии на клеточные мембраны.

В систему комплемента входит около двух десятков белков, их содержание составляет ~ 5 % от всех белков плазмы крови, т. е. концентрация в крови 3 – 4 г/л. Белки комплемента обозначают символом ʼʼСʼʼ и цифрой, соответствующей хронологии их открытия, продукты расщепления компонентов комплемента – маленькой латинской буквой (С3b, C5a и др.). В наибольшем количестве в крови содержится компонент С3, который выполняет центральную роль в активации комплемента.

Для этой системы характерен быстрый, многократно усиленный ответ на антигеннный сигнал за счёт каскадного процесса. При этом продукт одной реакции является катализатором последующей.

В отсутствие антигена компоненты комплемента находятся в неактивном состоянии. Существует два пути активации комплемента˸ без участия антител – альтернативный, и с участием антител – классический. Активацию комплемента по альтернативному пути вызывают компоненты микробных клеток, по классическому – комплексы антиген – антитело. Общим для обоих путей является образование фермента С3-конвертазы, который расщепляет компонент С3 на фрагменты С3а и С3b. Меньший фрагмент С3а принимает участие в развитии воспалительного процесса и хемотаксиса. Больший фрагмент С3b, связываясь с С3-конвертазой, образует С5-ковертазу – фермент, катализирующий расщепление С5 на фрагменты С5а и С5b. Высвобождающийся фрагмент С5b остается фиксированным на мембране и последовательно присоединяет С6, С7, С8 и С9, благодаря чему образуется мембраноатакующий комплекс (МАК), который лизирует клетку-мишень за счёт формирования трансмембранного канала. По этому каналу внутрь клетки поступают ионы Na + и вода, клетка набухает и лопается, т. е. лизирует. Среди других эффектов системы комплемента необходимо отметить следующие˸

- развитие воспалительной реакции и хемотаксис. Компоненты комплемента С3а и С5а могут привлекать к месту воспаления иммунокомпетентные клетки, например фагоциты, которые атакуют бактерии и пожирают их.

- Опсонизация (облегчение распознавания) микроорганизмов. Фрагменты С3b связываются с поверхностью бактерий, благодаря чему создается метка для узнавания фагоцитами, имеющими рецепторы к этому компоненту комплемента.

Рис. 13. Активация белков системы комплемента

Активность системы комплемента контролируется ингибиторами плазмы крови, блокирующими избыточную реакцию.

Фагоцитоз (ʼʼпоеданиеʼʼ клетками) – первая реакция иммунной системы на внедрение чужеродного антигена. Механизм фагоцитоза включает 8 последовательных стадий (рис. 14)˸

1. Хемотаксис – направленное перемещение фагоцитирующих клеток к объекту по градиенту концентрации хемотаксических соединений.

Рис. 14. Стадии фагоцитоза

2. Адгезия - распознавание и прикрепление чужеродного объекта к поверхности фагоцита. Процесс адгезии усиливают опсонины (комплемент С3b, антитела), обволакивающие объекты фагоцитоза. В этом случае связывание происходит с участием фагоцитарных рецепторов для С3b комлемента и /или Fc антитела.