Как возникает эдс самоиндукции катушки индуктивности. Импульсный генератор эдс самоиндукции

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком ) пропорционален модулю индукции В магнитного поля внутри контура \(\left(\Phi \sim B \right)\), а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре \(\left(B\sim I \right)\).

Таким образом, собственный магнитный поток прямо пропорционален силе тока в контуре \(\left(\Phi \sim I \right)\). Эту зависимость математически можно представить следующим образом:

\(\Phi = L \cdot I,\)

Где L - коэффициент пропорциональности, который называется индуктивностью контура .

  • Индуктивность контура - скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:
\(~L = \dfrac{\Phi}{I}.\)

В СИ единицей индуктивности является генри (Гн):

1 Гн = 1 Вб/(1 А).

  • Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб.

Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур, но не зависит от силы тока в проводнике. Так, индуктивность соленоида можно рассчитать по формуле

\(~L = \mu \cdot \mu_0 \cdot N^2 \cdot \dfrac{S}{l},\)

Где μ - магнитная проницаемость сердечника, μ 0 - магнитная постоянная, N - число витков соленоида, S - площадь витка, l - длина соленоида.

При неизменных форме и размерах неподвижного контура собственный магнитный поток через этот контур может изменяться только при изменении силы тока в нем, т.е.

\(\Delta \Phi =L \cdot \Delta I.\) (1)

Явление самоиндукции

Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.

Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.

  • Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции . Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.

Появляющуюся при этом ЭДС - ЭДС самоиндукции E si . ЭДС самоиндукции создает в контуре ток самоиндукции I si .

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

Используя закон электромагнитной индукции для контура индуктивностью L и уравнение (1), получаем выражение для ЭДС самоиндукции:

\(E_{si} =-\dfrac{\Delta \Phi }{\Delta t}=-L\cdot \dfrac{\Delta I}{\Delta t}.\)

  • ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (E si < 0), т.е. индукционный ток направлен в противоположную сторону тока источника. При уменьшении тока (ΔI < 0), ЭДС положительная (E si > 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.

Из полученной формулы следует, что

\(L=-E_{si} \cdot \dfrac{\Delta t}{\Delta I}.\)

  • Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последовательно с катушкой L . При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. Объясняется это тем, что на участке цепи с лампой 1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой 2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукции I si , который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе 2 при замыкании цепи.

При размыкании ключа ток в лампе 2 также будет затухать медленно (рис. 3, а). Если индуктивность катушки достаточно велика, то сразу после размыкания ключа возможно даже некоторое увеличение тока (лампа 2 вспыхивает сильнее), и только затем ток начинает уменьшаться (рис. 3, б).

Рис. 3

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются специальными выключателями.

Энергия магнитного поля

Энергия магнитного поля контура индуктивности L с силой тока I

\(~W_m = \dfrac{L \cdot I^2}{2}.\)

Так как \(~\Phi = L \cdot I\), то энергию магнитного поля тока (катушки) можно рассчитать, зная любые две величины из трех (Φ, L, I ):

\(~W_m = \dfrac{L \cdot I^2}{2} = \dfrac{\Phi \cdot I}{2}=\dfrac{\Phi^2}{2L}.\)

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля:

\(\omega_m = \dfrac{W_m}{V}.\)

*Вывод формулы

1 вывод.

Подключим к источнику тока проводящий контур с индуктивностью L . Пусть за малый промежуток времени Δt сила тока равномерно увеличится от нуля до некоторого значения I I = I ). ЭДС самоиндукции будет равна

\(E_{si} =-L \cdot \dfrac{\Delta I}{\Delta t} = -L \cdot \dfrac{I}{\Delta t}.\)

За данный промежуток время Δt через контур переносится заряд

\(\Delta q = \left\langle I \right \rangle \cdot \Delta t,\)

где \(\left \langle I \right \rangle = \dfrac{I}{2}\) - среднее значение силы тока за время Δt при равномерном его возрастании от нуля до I .

Сила тока в контуре с индуктивностью L достигает своего значения не мгновенно, а в течение некоторого конечного промежутка времени Δt . При этом в цепи возникает ЭДС самоиндукции E si , препятствующая нарастанию силы тока. Следовательно, источник тока при замыкании совершает работу против ЭДС самоиндукции, т.е.

\(A = -E_{si} \cdot \Delta q.\)

Работа, затраченная источником на создание тока в контуре (без учета тепловых потерь), и определяет энергию магнитного поля, запасаемую контуром с током. Поэтому

\(W_m = A = L \cdot \dfrac{I}{\Delta t} \cdot \dfrac{I}{2} \cdot \Delta t = \dfrac{L \cdot I^2}{2}.\)

2 вывод .

Если магнитное поле создано током, проходящим в соленоиде, то индуктивность и модуль индукции магнитного поля катушки равны

\(~L = \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S, \,\,\, ~B = \dfrac {\mu \cdot \mu_0 \cdot N \cdot I}{l}\)

\(I = \dfrac {B \cdot l}{\mu \cdot \mu_0 \cdot N}.\)

Подставив полученные выражения в формулу для энергии магнитного поля, получим

\(~W_m = \dfrac {1}{2} \cdot \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S \cdot \dfrac {B^2 \cdot l^2}{(\mu \cdot \mu_0)^2 \cdot N^2} = \dfrac {1}{2} \cdot \dfrac {B^2}{\mu \cdot \mu_0} \cdot S \cdot l.\)

Так как \(~S \cdot l = V\) - объем катушки, плотность энергии магнитного поля равна

\(\omega_m = \dfrac {B^2}{2\mu \cdot \mu_0},\)

где В - модуль индукции магнитного поля, μ - магнитная проницаемость среды, μ 0 - магнитная постоянная.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 351-355, 432-434.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. - Мн.: Нар. асвета, 2008. - С. 183-188.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. - М.: Дрофа, 2005. - С. 417-424.

Взаимосвязь электрических и магнитных полей

Электрические и магнитные явления изучались давно, вот только никому не приходило в голову каким-то образом связать эти исследования между собой. И только в 1820 году было обнаружено, что проводник с током действует на стрелку компаса. Это открытие принадлежало датскому физику Хансу Кристиану Эрстеду. Впоследствии его именем была названа единица измерения напряженности магнитного поля в системе СГС: русское обозначение Э (Эрстед), англоязычное - Oe. Такую напряженность магнитное поле имеет в вакууме при индукции в 1 Гаусс.

Это открытие наводило на мысль о том, что из электрического тока можно получить магнитное поле. Но вместе с тем возникали мысли и по поводу обратного преобразования, а именно, как из магнитного поля получить электрический ток. Ведь многие процессы в природе обратимы: из воды получается лед, который можно снова растопить в воду.

На изучение этого очевидного сейчас закона физики после открытия Эрстеда ушло целых двадцать два года. Получением электричества из магнитного поля занимался английский ученый Майкл Фарадей. Делались различной формы и размеров проводники и магниты, искались варианты их взаимного расположения. И только, видимо, случайно ученый обнаружил, что для получения на концах проводника ЭДС необходимо еще одно слагаемое - движение магнита, т.е. магнитное поле должно быть обязательно переменным.

Сейчас это никого уже не удивляет. Именно так работают все электрические генераторы, - пока его чем-то вращают, электроэнергия вырабатывается, лампочка светит. Остановили, перестали вращать, и лампочка погасла.

Электромагнитная индукция

Таким образом, ЭДС на концах проводника возникает лишь в том случае, если его определенным образом перемещать в магнитном поле. Или, точнее говоря, магнитное поле обязательно должно изменяться, быть переменным. Это явление получило название электромагнитной индукции, по-русски электромагнитное наведение: в этом случае говорят, что в проводнике наводится ЭДС. Если к такому источнику ЭДС подключить нагрузку, то в цепи будет протекать ток.

Величина наведенной ЭДС зависит от нескольких факторов: длины проводника, индукции магнитного поля B, и в немалой степени от скорости перемещения проводника в магнитном поле. Чем быстрее вращать ротор генератора, тем напряжение на его выходе выше.

Замечание: электромагнитную индукцию (явление возникновение ЭДС на концах проводника в переменном магнитном поле) не следует путать с магнитной индукцией - векторной физической величиной характеризующей собственно магнитное поле.

Индукция

Этот способ был рассмотрен . Достаточно перемещать проводник в магнитном поле постоянного магнита, или наоборот перемещать (практически всегда вращением) магнит около проводника. Оба варианта однозначно позволят получить переменное магнитное поле. В этом случае способ получения ЭДС называется индукцией. Именно индукция используется для получения ЭДС в различных генераторах. В опытах Фарадея в 1831 году магнит поступательно перемещался внутри катушки провода.

Взаимоиндукция

Это название говорит о том, что в этом явлении принимают участие два проводника. В одном из них протекает изменяющийся ток, который создает вокруг него переменное магнитное поле. Если рядом находится еще один проводник, то на его концах возникает переменная же ЭДС.

Такой способ получения ЭДС называется взаимоиндукцией. Именно по принципу взаимоиндукции работают все трансформаторы, только проводники у них выполнены в виде катушек, а для усиления магнитной индукции применяются сердечники из ферромагнитных материалов.

Если ток в первом проводнике прекратится (обрыв цепи), или станет пусть даже очень сильным, но постоянным (нет никаких изменений), то на концах второго проводника никакой ЭДС получить не удастся. Вот почему трансформаторы работают только на переменном токе: если к первичной обмотке подключить гальваническую батарейку, то на выходе вторичной обмотки никакого напряжения однозначно не будет.

ЭДС во вторичной обмотке наводится только при изменении магнитного поля. Причем, чем сильнее скорость изменения, именно скорость, а не абсолютная величина, тем больше будет наведенная ЭДС.

Самоиндукция

Если убрать второй проводник, то магнитное поле в первом проводнике будет пронизывать не только окружающее пространство, но и сам проводник. Таким образом, под воздействием своего поля в проводнике наводится ЭДС, которая называется ЭДС самоиндукции.

Явления самоиндукции в 1833 году изучал русский ученый Ленц. На основании этих опытов удалось выяснить интересную закономерность: ЭДС самоиндукции всегда противодействует, компенсирует внешнее переменное магнитное поле, которое вызывает эту ЭДС. Эта зависимость называется правилом Ленца (не путать с законом Джоуля - Ленца).

Знак «минус» в формуле как раз и говорит о противодействии ЭДС самоиндукции причинам ее породившим. Если катушку подключить к источнику постоянного тока, ток будет возрастать достаточно медленно. Это очень заметно при «прозвонке» первичной обмотки трансформатора стрелочным омметром: скорость движения стрелки в сторону нулевого деления шкалы заметно меньше, чем при проверке резисторов.

При отключении катушки от источника тока ЭДС самоиндукции вызывает искрение контактов реле. В случае, когда катушка управляется транзистором, например катушка реле, то параллельно ей ставится диод в обратном направлении по отношению к источнику питания. Это делается для того, чтобы защитить полупроводниковые элементы от воздействия ЭДС самоиндукции, которая может в десятки и даже сотни раз превышать напряжение источника питания.

Для проведения опытов Ленц сконструировал интересный прибор. На концах алюминиевого коромысла закреплены два алюминиевых же кольца. Одно кольцо сплошное, а в другом был сделан пропил. Коромысло свободно вращалось на иголке.

При введении постоянного магнита в сплошное кольцо оно «убегало» от магнита, а при выведении магнита стремилось за ним. Те же самые действия с разрезанным кольцом никаких движений не вызывали. Это объясняется тем, что в сплошном кольце под воздействием переменного магнитного поля возникает ток, который создает магнитное поле. А в разомкнутом кольце тока нет, следовательно, нет и магнитного поля.

Немаловажная деталь этого опыта в том, что если магнит будет введен в кольцо и останется неподвижным, то никакой реакции алюминиевого кольца на присутствие магнита не наблюдается. Это лишний раз подтверждает, что ЭДС индукции возникает только в случае изменения магнитного поля, причем величина ЭДС зависит от скорости изменения. В данном случае просто от скорости перемещения магнита.

То же можно сказать и о взаимоиндукции и самоиндукции, только изменение напряженности магнитного поля, точнее скорость его изменения зависит от скорости изменения тока. Для иллюстрации этого явления можно привести такой пример.

Пусть через две достаточно большие одинаковые катушки проходят большие токи: через первую катушку 10А, а через вторую целых 1000, причем в обеих катушках токи линейно возрастают. Предположим, что за одну секунду ток в первой катушке изменился с 10 до 15А, а во второй с 1000 до 1001А, что вызвало появление ЭДС самоиндукции в обеих катушках.

Но, несмотря на такое огромное значение тока во второй катушке, ЭДС самоиндукции будет больше в первой, поскольку там скорость изменения тока 5А/сек, а во второй всего 1А/сек. Ведь ЭДС самоиндукции зависит от скорости возрастания тока (читай магнитного поля), а не от его абсолютной величины.

Индуктивность

Магнитные свойства катушки с током зависят от количества витков, геометрических размеров. Значительного усиления магнитного поля можно добиться введением в катушку ферромагнитного сердечника. О магнитных свойствах катушки с достаточной точностью можно судить по величине ЭДС индукции, взаимоиндукции или самоиндукции. Все эти явления были рассмотрены выше.

Характеристика катушки, которая рассказывает об этом, называется коэффициентом индуктивности (самоиндукции) или просто индуктивностью. В формулах индуктивность обозначается буквой L, а на схемах этой же буквой обозначаются катушки индуктивности.

Единица измерения индуктивности - генри (Гн). Индуктивностью 1Гн обладает катушка, в которой при изменении тока на 1А в секунду вырабатывается ЭДС 1В. Это величина достаточно большая: индуктивностью в один и более Гн обладают сетевые обмотки достаточно мощных трансформаторов.

Поэтому достаточно часто пользуются величинами меньшего порядка, а именно милли и микро генри (мГн и мкГн). Такие катушки применяются в электронных схемах. Одно из применений катушек - колебательные контура в радиоустройствах.

Также катушки используются в качестве дросселей, основное назначение которых пропустить без потерь постоянный ток при этом ослабив переменный (фильтры ). Как правило, чем выше рабочая частота, тем меньшей индуктивности требуются катушки.

Индуктивное сопротивление

Если взять достаточно мощный сетевой трансформатор и сопротивление первичной обмотки, то окажется, что оно всего несколько Ом, и даже близко к нулю. Выходит, что ток через такую обмотку будет очень большим, и даже стремиться к бесконечности. Кажется, короткое замыкание просто неизбежно! Так почему же его нет?

Одним из основных свойств катушек индуктивности является индуктивное сопротивление, которое зависит от индуктивности и от частоты переменного тока, который подведен к катушке.

Нетрудно видеть, что с увеличением частоты и индуктивности индуктивное сопротивление увеличивается, а на постоянном токе вообще становится равным нулю. Поэтому при измерении сопротивления катушек мультиметром измеряется только активное сопротивление провода.

Конструкция катушек индуктивности весьма разнообразна и зависит от частот, на которых работает катушка. Например, для работы в дециметровом диапазоне радиоволн достаточно часто используются катушки, выполненные печатным монтажом. При массовом производстве такой способ очень удобен.

Индуктивность катушки зависит от ее геометрических размеров, сердечника, количества слоев и формы. В настоящее время выпускается достаточное количество стандартных катушек индуктивности похожих на обычные резисторы с выводами. Маркировка таких катушек выполняется цветными кольцами. Также существуют катушки для поверхностного монтажа, применяемые в качестве дросселей. Индуктивность таких катушек составляет несколько миллигенри.

Термин индукция в электротехнике означает возникновение тока в электрической замкнутой цепи, если она находится в изменяющемся Открыта всего-то двести лет назад Майклом Фарадеем. Значительно раньше это мог бы сделать Андре Ампер, проводивший похожие опыты. Он вставлял в катушку металлический стержень, а затем, вот незадача, шел в другую комнату посмотреть на стрелку гальванометра - а вдруг она шевельнется. А стрелка исправно делала свое дело - отклонялась, но пока Ампер странствовал по комнатам - возвращалась на нулевую отметку. Вот так явление самоиндукции дожидалось еще добрый десяток лет, пока катушка, прибор и исследователь окажутся одновременно в нужном месте.

Главным моментом этого эксперимента было то, что ЭДС индукции возникает только тогда, когда магнитное поле, проходящее через замкнутый контур, изменяется. А вот менять его можно как угодно - или изменять величину самого магнитного поля, или просто перемещать источник поля относительно того же замкнутого контура. ЭДС, которая при этом возникает, назвали “ЭДС взаимоиндукции”. Но это было только начало открытий в области индукции. Еще более удивительным было явление самоиндукции, которое открыл примерно в то же время. В его опытах было обнаружено, что катушки не только индуцировало ток в другой катушке, но и при изменении тока в этой катушке, наводило в ней же дополнительную ЭДС. Вот ее-то и назвали ЭДС самоиндукции. В большое интерес представляет направление тока. Оказалось, что в случае с ЭДС самоиндукции ее ток направлен против своего “родителя” - тока, обусловленного основной ЭДС.

А можно наблюдать явление самоиндукции? Как говорится, нет ничего проще. Соберем две первая - последовательно включенная катушка индуктивности и лампочка, а вторая - только лампочка. Подключим их к аккумулятору через общий выключатель. При включении можно видеть, что лампочка в цепи с катушкой загорается “нехотя”, а вторая лампочка, более быстрая “на подъем”, включается мгновенно. Что происходит? В обеих цепях после включения начинает протекать ток, причем он изменяется от нуля до своего максимума, а как раз изменения тока и дожидается катушка индуктивности, которая порождает ЭДС самоиндукции. Есть ЭДС и замкнутая цепь - значит, есть и ее ток, но направлен он противоположно основному току цепи, который, в конце концов, достигнет максимального значения, определяемого параметрами цепи, и перестанет расти, а раз нет изменения тока - нет и ЭДС самоиндукции. Все просто. Аналогичная картина, но с “точностью до наоборот”, наблюдается при выключении тока. Верная своей “вредной привычке” противодействовать любому изменению тока, ЭДС самоиндукции поддерживает его протекание в цепи после отключения питания.

Сразу же стал вопрос - в чем заключается явление самоиндукции? Было установлено, что на ЭДС самоиндукции влияет скорость изменения тока в проводнике, и можно записать:

Отсюда видно, что ЭДС самоиндукции Е прямопропорциональна скорости изменения тока dI/dt и коэффициенту пропорциональности L, названному индуктивностью. За свой вклад в исследование вопроса, в чем состоит явление самоиндукции, Джордж Генри был вознагражден тем, что его имя носит единица измерения индуктивности — генри (Гн). Именно индуктивность цепи протекания тока определяет явление самоиндукции. Можно представить, что индуктивность - это некое “хранилище” магнитной энергии. В случае увеличения тока в цепи электрическая энергия преобразуется в магнитную, задерживает рост тока, а при уменьшении тока магнитная энергия катушки преобразуется в электрическую и поддерживает ток в цепи.

Наверное, каждому приходилось видеть искру при выключении вилки из розетки - это самый распространенный вариант проявления ЭДС самоиндукции в реальной жизни. Но в быту размыкаются токи максимум 10-20 А, а время размыкания порядка 20 мсек. При индуктивности порядка 1 Гн ЭДС самоиндукции в этом случае будет равна 500 В. Казалось бы, что вопрос, в чем состоит явление самоиндукции, не так и сложен. А на самом деле, ЭДС самоиндукции представляет собой большую техническую проблему. Суть в том, что при разрыве цепи, когда контакты уже разошлись, самоиндукция поддерживает протекание тока, а это приводит к выгоранию контактов, т.к. в технике коммутируются цепи с токами в сотни и даже тысячи ампер. Здесь зачастую речь идет об ЭДС самоиндукции в десятки тысяч вольт, а это требует дополнительного решения технических вопросов, связанных с перенапряжениями в электрических цепях.

Но не все так мрачно. Бывает, что эта вредная ЭДС очень даже полезна, например, в системах зажигания ДВС. Такая система состоит из катушки индуктивности в виде автотрансформатора и прерывателя. Через первичную обмотку пропускается ток, который выключается прерывателем. В результате обрыва цепи возникает ЭДС самоиндукции в сотни вольт (при этом аккумулятор дает всего 12В). Дальше это напряжение дополнительно трансформируется, и на свечи зажигания поступает импульс больше 10 кВ.

Изобретение относится к электротехнике, в частности к конструкциям индукционных генераторов тока, и может быть использовано в электромагнитных установках и электрических машинах, таких как двигатели, генераторы, трансформаторы, в частности, в качестве повышающего трансформатора. Технический результат состоит в повышении эдс на выходе за счет использования импульсных напряжений на вторичной обмотке и осуществления конструкции вторичной обмотки, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения, и одновременно суммарной мощности первичной и вторичной обмоток. 6 з.п. ф-лы, 2 ил.

Рисунки к патенту РФ 2524387

Изобретение относится к электротехнике, в частности к конструкциям импульсных индукционных генераторов тока.

Назначением данного изобретения является использование импульсного генератора ЭДС самоиндукции для обеспечения импульсного энергопитания различных электромагнитных установок и электрических машин, что позволяет существенно расширить арсенал импульсных источников энергии. Из уровня техники известен «Индукционный синхронный генератор», Заявка RU 9811934 7, опубл. 10.09.2000, МПК H02K 21/14, использующий токи обмотки статора, на якоре которого токи пульсируют, и индуктор (ротор), выполненный защищенным от магнитного поля токов обмотки якоря статора. Позволяет расширить режимы работы генератора. Однако в генераторе присутствуют вращающиеся части, а следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии. В предложенной конструкции невозможно получение требуемого высокого напряжения.

Известен «Генератор электрической энергии», заявка RU 9402533 5, опубл. 10.06.1996, МПК H02K 19/16, содержащий составные кольцевые обмотки с сердечником, индукционную катушку и обмотку возбуждения. Позволяет увеличить производительность генератора электрической энергии, уменьшить индуктивное сопротивление статорной обмотки, уменьшить затраты на механическую работу при преобразовании механической энергии в электрическую и повысить КПД. Однако генератор в силу особенностей конструкции не позволяет использовать ЭДС самоиндукции. В генераторе присутствуют вращающиеся части, а, следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии.

Известна полезная модель «Комбинированная электромагнитная обмотка», патент RU 96443, опубл. 27.07.2010, МПК H01F 5/00, в которой имеется два или более проводника с выводами, и проводники разделены диэлектриком. Позволяет расширить режимы работы. Однако оба проводника применяются в качестве первичной обмотки, отсутствует вторичная обмотка высокого напряжения, что не позволяет обмотку использовать в трансформаторах высокого напряжения, а также не обеспечивает съем и использование ЭДС индукции от вторичной обмотки.

Наиболее близкой заявкой на изобретение является «Индуктивно-статический способ генерации электрической энергии и устройство для его осуществления», RU 2004124018, опубл. 27.01.2006, МПК H01F 1/00, в соответствии с которым имеется первичная и вторичная обмотки, образующие катушку индуктивности с переходом свободной магнитной энергии в индуктивно-зависимое состояние, и происходит наведение ЭДС индукции и получение уплотнения магнитных потоков, пропорциональное увеличению электрической мощности. Позволяет использовать вторичную обмотку с меньшей на величину уплотнения магнитных потоков индуктивностью, чем достигается пропорциональное уплотнение и увеличение электрической мощности генератора. В способе используют индукционный и, одновременно, статический способы генерации. Однако не предложена конструкция вторичной обмотки генератора, которая позволяет производить непосредственный съем с генератора возникающее импульсное напряжение и ток ЭДС самоиндукции.

Также наиболее близким решением является классическая электрическая схема для проведения опытов по демонстрации электромагнитной индукции при размыкании цепи. Эта схема (устройство) функционально является импульсным генератором ЭДС самоиндукции. В связи с вышесказанным, в качестве прототипа принимаем установку, показанную на чертеже - рис.424 стр.231, учебник: Курс физики, часть вторая, изд. «Наука», Москва 1970 г. Авторы: Л.С. Жданов, В.А. Маранджан.

Однако в классической схеме сердечник из электротехнической стали конструктивно не способен выполнять в устройстве одновременно две функции: электропроводящей обмотки и классического, как на рис.424 прототипа, магнитопровода, т.е сердечника (М) индукционной катушки. Прототип не позволяет производить непосредственный съем и использование ЭДС самоиндукции, возникающей в сердечнике классической индукционной катушки.

Задачей предложенного изобретения является использование импульсных напряжений и осуществление конструкции вторичной обмотки генератора, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения.

Техническим результатом, который обеспечивает предложенное техническое решение, является существенное расширение арсенала средств для импульсного генерирования и преобразования электроэнергии. Заявленный технический результат обеспечен за счет того, что импульсный генератор ЭДС самоиндукции конструктивно исполнен в виде первичной и вторичной обмоток однофазного повышающего трансформатора в стандартном техническом исполнении (с учетом того, что вторичная обмотка является одновременно функционально электропроводником и магнитопроводом, то предлагается рассматривать представленную конструкцию как простейшую индукционную катушку с сердечником, конструктивно исполненным в виде спиральной катушки с возможностью съема с него ЭДС самоиндукции) и они снабжены двумя или более проводниками, которые разделены диэлектриком и каждый проводник имеет выводы. Генератор отличается тем, что первичная обмотка (проводник) низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере 2 витка, намотанных плотно или с небольшим зазором, виток к витку, лента обмотки выполнена шириной от 120 до 200 мм и толщиной от 1 до 2 мм; вторичная обмотка (проводник) высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, и имеет по меньшей мере 100 витков, намотанных плотно или с небольшим зазором, виток к витку, лента выполнена шириной от 120 до 200 мм и толщиной не более 0,1 мм. Первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, где вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом. При этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой трансформатора высокого напряжения, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции и, одновременно, выполняет функцию сердечника для первичной обмотки, ЭДС снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя, причем обеспечивают за счет частоты срабатывания ключа-прерывателя расчетные импульсное напряжение и ток, возникающие во вторичной обмотке, по формуле

где - где L - индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре и возникающей вследствие этого ЭДС самоиндукции,

- скорость изменения силы тока в электрической цепи

В частных случаях первичная обмотка может быть выполнена из медного или алюминиевого проводника, может иметь 3 витка и более, количество витков ограничено трансформаторным отношением: отношение количества витков вторичной обмотки к количеству витков первичной обмотки, что определяет коэффициент трансформации, т.е. насколько напряжение во вторичной обмотке больше, чем в первичной. Например, аккумуляторная батарея низкого напряжения может быть рассчитана на 12-24 вольт и она является источником постоянного тока. В частности, периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц. При этом частоты могут быть любые технически возможные для осуществления, но лучше 50 Гц, так как ее проще преобразовать либо потреблять с помощью имеющихся стандартных преобразователей или электроприборов. Расчетная ЭДС самоиндукции во вторичной обмотке обеспечивается, в частности, геометрией контура и магнитными свойствами сердечника для первичной обмотки. Так она может быть выполнена с формой контура, который выполнен круглым с диаметром 150 мм и более, что зависит от коэффициента трансформации, который и определит диаметр вторичной обмотки в зависимости от применяемой толщины электротехнической стали, или круглой спиральной формой. Поскольку вторичная обмотка является обмоткой высокого напряжения и выполнена из электротехнической стали, то это значит, что ее магнитные свойства определены самим материалом (т.е собственно магнитными свойствами электротехнической стали).

Изобретение в наиболее обобщенном виде иллюстрируется чертежами. Конкретное конструктивное исполнение не ограничивается показанными на чертежах вариантами исполнения.

На Фиг.1 показана схема расположения первичной и вторичной обмоток и аккумуляторная батарея с ключом-прерывателем.

На Фиг.2 - показано сечение А-А по соединенным вторичной и первичной обмоткам.

Данное техническое решение иллюстрируется чертежом, который не охватывает всех возможных конструктивных вариантов исполнения представленной схемы подключения.

Устройство Импульсного генератора ЭДС самоиндукции показано на фиг.1 и фиг.2 (в разрезе), и это устройство конструктивно исполнено в виде однофазного повышающего трансформатора (а также конструктивно является простейшей индукционной катушкой), который состоит из первичной (1) спирально-ленточной обмотки (медный или алюминиевый проводник), 2-3 витка толщиной 1-2 мм, шириной 120 мм, подключенной к аккумуляторной батарее (2) низкого напряжения 12-24 в - источник постоянного тока через ключ-прерыватель (3), образующих замкнутую электрическую цепь.

Вторичная спирально-ленточная обмотка высокого напряжения (4) из электротехнической стали, покрытой электроизоляцией, имеет количество витков от 100 и более, толщина ленты 0,1 мм, ширина 120 мм.

Вторичная обмотка (4) из электротехнической стали выполняет в конструкции две функции одновременно: электропроводящей обмотки и магнитопровода.

В качестве электропроводника вторичная обмотка (4) является индукционной катушкой высокого напряжения повышающего трансформатора.

В качестве магнитопровода вторичная обмотка (4) является сердечником для первичной обмотки (2) классической индукционной катушки.

Первичная (1) и вторичной (4) обмотки однофазного повышающего трансформатора и снабжены двумя или более проводниками (5), проводники вторичной обмотки имеют вывод (6) - т.е. ЭДС снимают посредством проводников (5, 6), электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя (3). Причем токи, возникающие во вторичной обмотке, рассчитывают по формуле

где L - индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре первичной обмотки (1) и возникающей вследствие этого ЭДС самоиндукции во вторичной обмотке (2),

- скорость изменения силы тока в электрической цепи первичной обмотки (1) за счет ключа-прерывателя (3).

Периодическое срабатывание ключа-прерывателя (3) осуществляют с промышленной частотой переменного тока 50 Гц. Расчетную ЭДС самоиндукции во вторичной обмотке (4) обеспечивают геометрией контура вторичной обмотки (4) и магнитными свойствами сердечника (4) для первичной обмотки (1).

Форма контура, полученного первичной (1) и вторичной (4) обмотками, в представленном варианте выполнена круглой диаметром 150 мм и более.

Устройство работает следующим образом.

При замыкании ключом (3) электрической цепи первичной обмотки (1) возникает магнитное поле, энергия которого запасается в магнитном поле вторичной обмотки (4).

Размыкание ключа (3) цепи первичной обмотки (1) образует убывающий ток, который по правилу Ленца стремится поддержать ЭДС наведенной индукции вторичной обмотки (4).

В результате запасенная в магнитном поле вторичной обмотки (4) энергия преобразуется в дополнительную энергию тока самоиндукции первичной обмотки (1), запитавшей электрическую цепь вторичной обмотки (4).

В зависимости от количества запасенной в цепи вторичной обмотки (4) магнитной энергии мощность тока самоиндукции может быть различной и определяется по известной формуле:

Таким образом, данным изобретением достигается технический результат, состоящий в том, что конструкция, материал и двойное функциональное назначение вторичной обмотки устройства позволяет снимать и эффективно использовать возникающую ЭДС самоиндукции.

Промышленная применимость предложенного технического решения подтверждается общими правилами физики. Так, эффект самоиндукции описан в учебнике (Л.С. Жданов, В.А. Маранджян, курс физики для средних специальных заведений, ч. 2 электричество, изд. Третье, стереотипное, главная редакция физико-математической литературы, М., 1970 г., стр.231,232,233). Самоиндукция возникает при размыкании цепи, она прямо пропорциональна скорости изменения силы тока в электрической цепи. В традиционных схемах явление самоиндукции всегда сопровождается возникновением искры, возникающей в месте разрыва цепи. Поскольку в предложенной конструкции нет разрыва электрической цепи во вторичной обмотке (4) благодаря ее конструкции, в зависимости от количества запасенной в этой цепи магнитной энергии, ток размыкания не осуществляет искрение, а переходит в генерированную мощность. Таким образом, в конструкции вторичной обмотки (4) при размыкании цепи постоянного тока в первичной обмотке (1) запасенная в магнитном поле этой цепи энергия превращается в энергию тока самоиндукции в цепи вторичной обмотки (4).

Поскольку электродвижущей силой (ЭДС) называют величину, равную работе сторонних сил, в нашем случае - это изменяющееся магнитное поле первичной катушки (1), отнесенной к единице положительного заряда, это и есть ЭДС, действующая в цепи или на ее участке, в нашем случае - это вторичная обмотка (4). Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами, и размерность ЭДС совпадает с размерностью потенциала и измеряется в тех же единицах. Поэтому векторную величину Е еще называют напряженностью поля сторонних сил. Поле сторонних сил в нашем случае возникает за счет переменного магнитного поля в первичной обмотке (1). Таким образом, ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил, т.е. сторонних сил, возникающих в первичной обмотке (1) за счет прерывания электрического поля ключом-прерывателем (3). Данное правило обеспечивает возникновение ЭДС индукции во вторичной обмотке (4). Это физическое явление описано в в учебнике (И.В. Савельев, Курс физики, том 2, электричество, стр.84,85, изд. Второе стереотипное, изд. Наука, главная редакция физико-математической литературы, М., 1966 г.).

Кроме сторонних сил, на заряд действуют силы электростатического поля, которые возникают непосредственно во вторичной катушке (4).

Устройство также использует явление электромагнитной индукции, описанной в (Р.А. Мустафаев, В.Г. Кривцов, учебник, физика, в помощь поступающим в ВУЗы, изд. М., Высшая школа, 1989 г.).

Таким образом, используемая в предложенном изобретении конструкция генератора как устройство позволяет эффективно генерировать, снимать и использовать ЭДС самоиндукции. Таким образом, устройство может быть изготовлено промышленным способом и внедряться в качестве перспективного эффективного импульсного генератора ЭДС самоиндукции, который позволяет расширить арсенал технических средств для импульсного генерирования и преобразования электроэнергии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Импульсный генератор эдс самоиндукции, конструктивно исполненный в виде однофазного повышающего трансформатора, состоящего из первичной и вторичной обмоток и снабжен двумя или более проводниками, которые разделены диэлектриком, а проводник имеет выводы, отличающийся тем, что первичная обмотка низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере два витка, намотанных плотно или на небольшом расстоянии друг от друга, лента обмотки выполнена шириной 120-200 мм и толщиной 1-2 мм; вторичная обмотка высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, имеет по меньшей мере 100 витков, намотанных плотно или на небольшом расстоянии друг от друга, лента выполнена шириной 120-200 мм и толщиной не более 0,1 мм, первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, а вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом, при этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой повышающего трансформатора, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции, и одновременно выполняет функцию сердечника для первичной обмотки, эдс снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя.

2. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка выполнена из медного или алюминиевого проводника.

3. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка имеет три витка.

4. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что аккумуляторная батарея низкого напряжения рассчитана на 12-24 вольт и является источником постоянного тока.

5. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц.

6. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что расчетную эдс самоиндукции обеспечивают геометрией контура и магнитными свойствами сердечника для первичной обмотки.

7. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что форма контура выполнена круглой диаметром 150 мм и более.

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

E=dФ/dt ,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы