Теория множеств для начинающих. Наивная теория множеств георга кантора

История

Наивная теория множеств

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия .

В 1870 году немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879-1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen» ). Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» - который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано . При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre ).

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер , полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее - дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре . Тем не менее, другие крупные математики - в частности, Готлоб Фреге , Рихард Дедекинд и Давид Гильберт - поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла , топологии и функционального анализа .

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной (см. Кризис математических основ). А именно, был обнаружен ряд теоретико-множественных антиномий : оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний , может быть «доказано» абсолютно любое утверждение).

Аксиоматическая теория множеств

Особенностью аксиоматического подхода является отказ от лежащего в основе программы Кантора представления о действительном существовании множеств в некотором идеальном мире. В рамках аксиоматических теорий множества «существуют» исключительно формальным образом, и их «свойства» могут существенно зависеть от выбора аксиоматики. Этот факт всегда являлся мишенью для критики со стороны тех математиков, которые не соглашались (как на том настаивал Гильберт) признать математику лишённой всякого содержания игрой в символы. В частности, Н. Н. Лузин писал, что «мощность континуума, если только мыслить его как множество точек, есть единая некая реальность», место которой в ряду кардинальных чисел не может зависеть от того, признаётся ли в качестве аксиомы континуум-гипотеза , или же её отрицание.

В настоящее время наиболее распространённой аксиоматической теорией множеств является ZFC - теория Цермело - Френкеля с аксиомой выбора . Вопрос о непротиворечивости этой теории (а тем более - о существовании модели для неё) остаётся нерешённым.

Не всеми математиками аксиома выбора принимается безоговорочно. Так, например Эмиль Борель и Анри Лебег считают, что доказательства, полученные при помощи этой аксиомы, имеют другую познавательную ценность, чем доказательства, независимые от неё. Другие же математики, такие как Феликс Хаусдорф и Адольф Френкель, принимают аксиому выбора безоговорочно, признавая за ней ту же степень очевидности, что и за другими аксиомами Цермело - Френкеля.

Основные понятия

В основе теории множеств лежат первичные понятия: множество и отношение быть элементом множества (обозначается как - «x есть элемент множества A», «x принадлежит множеству A»). Среди производных понятий наиболее важны следующие:

  • пустое множество , обычно обозначается символом ;
  • семейство множеств;
  • операции:

    Для множеств определены следующие бинарные отношения :

    • править] Расширения

      Основная статья: Теория комплектов

      Теория комплектов - естественное расширение (обобщение) теории множеств. Подобно множеству, комплект - набор элементов из некоторой области. Отличие от множества: комплекты допускают присутствие нескольких экземпляров одного и того же элемента (элемент входит от нуль раз, то есть, не входит в комплект, до любого заданного числа раз) . (см. например, Мультисочетания).

      Приложения

      См. также

      Примечания

      Литература

      • К. Куратовский , А. Мостовский Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. - М .: Мир, 1970. - 416 с.
      • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.
      • А. Френкель, И. Бар-Хиллел Основания теории множеств / Перевод с английского Ю. А. Гастева под редакцией А. С. Есенина-Вольпина . - М .: Мир, 1966. - 556 с.

Wikimedia Foundation . 2010 .

  • Математический анализ
  • Подмножество

Смотреть что такое "Теория множеств" в других словарях:

    ТЕОРИЯ МНОЖЕСТВ - ТЕОРИЯ МНОЖЕСТВ, раздел математики, начало которому было положено работами Джорджа БУЛЯ в области математической логики, но в настоящее время больше связанный с изучением МНОЖЕСТВ абстрактных или реальных объектов, а не с логическими… … Научно-технический энциклопедический словарь

    теория множеств - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN set theory … Справочник технического переводчика

    ТЕОРИЯ МНОЖЕСТВ - теория, в к рой изучаются множества (классы) элементов произвольной природы. Созданная прежде всего трудами Кантора (а также Р. Дедекинда и К. Вейерштрасса), Т. м. к концу 19 в. стала основой построения сложившихся к тому времени математич.… … Философская энциклопедия

    ТЕОРИЯ МНОЖЕСТВ - раздел математики, исследующий общие свойства множеств. Множеством называется любое объединение в одно целое некоторых определенных и различных между собой объектов нашего восприятия или мысли. В Т. м. изучаются общие свойства различных операций… … Энциклопедический словарь по психологии и педагогике

На правах рукописи.

Попов Н.А., Попов А.Н.

НАИВНАЯ ТЕОРИЯ МНОЖЕСТВ
И РЕШЕНИЕ ПАРАДОКСА КАНТОРА

CОДЕРЖАНИЕ
стр.

Предисловие. . . . . . . . . 5

Глава I. Введение. Основные сведения из теории множеств. . 8

Глава II. Противоречива ли канторовская наивная теория множеств?
Решение парадокса Кантора. . . .19

Глава III. Aксиоматика канторовской теории множеств. . . . . . . .60

Глава IV. Z-теорема и два ее доказательства. . . . . . . . . . .72

Глава V. Задача об отличии (обобщение Z-теоремы) . . . . . . . . .90

Глава VI. О логических парадоксах. . . . . . . . . . . . . . .87

ПРЕДИСЛОВИЕ

Привести общие логические основы современной мaтематики в такое состояние, чтобы их можно было излагать в школе подросткам 14 – 15 лет.
Колмогоров А.Н. Простоту – сложному // Известия. 1962. 31 дек.

Интуитивная канторовская так называемая «наивная» теория множеств среди математиков считается противоречивой теорией. В обоснование такой оценки обычно указывают на слишком расплывчатое, «недостаточно математи-ческое» определение понятия множества у Кантора. Некоторые вспомнят о парадоксах наивной теории – о парадоксе Рассела и парадоксе Кантора. Но в чем состоят эти парадоксы, мало кто может объяснить.
Других оснований считать «наивную» теорию противоречивой мы не знаем. Все это и было побудительным мотивом для излагаемой ниже попытки разобраться, можно ли обосновать построение наивной теории множеств, исходя только из канторовского определения понятия множества и принципа объемности.
Первоначальным толчком к этой работе было то странное обстоятельство, что одновременно с упоминаемым в некоторых учебниках (например, ) парадоксом Кантора в тех же учебниках излагается явно ошибочное, как нам казалось, доказательство знаменитой теоремы Кантора. Но, к сожалению, как выяснилось несколько позже, очевидность логической ошибки доказательства почти ни для кого не была очевидностью. А очевидность была в другом: более 100 лет никто из серьезных математиков доказательство теоремы Кантора не оспаривает. Так что этого не может быть! Отношение к оспаривающим теорему Кантора (а это редкие единичные случаи) сложилось приблизительно такое же, как к изобретателям вечного двигателя.
Как показала практика обсуждений этой проблемы, все продуманные и изложенные на бумаге рассуждения довольно трудны для восприятия и требуют значительных умственных усилий и, главное, времени. Поэтому серьезной критики нашей работы не находилось. Тема обсуждения очень редко встречала серьезное и добросовестное отношение. Ни один оппонент (а количество их исчисляется единицами) не смог представить ни одного убедительного возражения к изложенным соображениям.
Тем не менее, работа выполнена. Парадокс Кантора исследован и разрешен. Результаты его исследования следующие.
В главном Кантор оказался прав. Его знаменитую теорему нам удалось доказать, и выяснить, из каких аксиом она вытекает. А все известные нам противоречащие примеры, примеры множеств, противоречащих его теореме, включая множество всех множеств, оказались несостоятельными. В том смысле, что эти множества оказались внутренне противоречивыми образованиями: для них не выполняется одна из аксиом, определяющих понятие множества, а именно, аксиома определенности, сформулированная в главе III. Однако общепринятое, стандартное доказательство теоремы Кантора, излагаемое во всех учебниках, ошибочно. Ошибка доказательства состоит в том, что противоречие, вытекающее только из противоречивого определения множества, выдается в стандартном доказательстве от противного за свидетельство ложности допущения противного.
Небольшое отступление о «кризисе в основах» теории множеств должно дать читателю представление о содержании работы и ее отношении к существующему состоянию теории множеств.
В современной литературе по основаниям математики, в таких, в частности, монографиях, как «Введение в метаматематику», Клини , «Основания теории множеств», Френкель А.А., Бар-Хиллел, , состояние этой области знаний характеризуется как до сих пор не преодоленный кризис. Толчком к выявлению далеко идущих расхождений мнений и точек зрения по поводу самых основных математических понятий послужило открытие на рубеже ХIX и ХХ столетий так называемых антиномий (парадоксов) в самых основаниях недавно возникшей теории множеств. В стремлении избавить теорию от казавшихся недопустимыми противоречий и в результате пересмотра ее основ возникли так называемые аксиоматические теории множеств, свободные от известных к тому времени парадоксов. Этот успех был достигнут ценой сокращения области применимости основного понятия теории – понятия множества. Причину антиномий видели в рассмотрении «слишком обширных» (???) множеств. Некоторые интуитивно понятные совокупности, такие как множество всех множеств или множество всех мощностей были объявлены не множествами, а классами. От канторовской теории множеств фактически отказались, объявив ее противоречивой.
С нашей точки зрения, основанной на результатах исследования и вышеупомянутых парадоксов теории множеств, и так называемых диагональных доказательств, правильное решение проблемы парадоксов не было достигнуто. Парадоксы были из теории устранены, но не разрешены, то есть причины возникновения противоречий не были раскрыты до конца. В результате и в ныне общепризнанной теории множеств (ZF), и даже в некоторых теоремах математической логики (см. раздел V.7 главы V о доказательстве теоремы А.Тарского) применяются ошибочные методы доказательства. Мы утверждаем, что все доказательства теоремы Кантора в учебниках по теории множеств, математической логике и теории функций действительной переменной (например, см. ) ошибочны.
При тщательном исследовании теоретико-множественных парадоксов выяснилась бы причина противоречий в них. Это, как показано в разделах II.4 - II.11, всего-навсего противоречивые определения множеств. При ясном понимании этой причины не было бы и разговоров о кризисе в основаниях математики.
Общий план работы следующий.
В главе I даются основные сведения по теории множеств. Глава адресована читателям, не знакомым с теорией множеств, или желающим освежить свои знания в этой области. Читатели, имеющие даже поверхностные знания по теории множеств, могут эту главу пропустить (кроме раздела I.7) без ущерба для понимания последующего материала.
Содержание главы II представляет собой изложение исследования проблемы парадокса Кантора путем внимательного продумывания проблемы, исследования, основанного исключительно на логике здравого смысла. Это исследование продолжалось с перерывами в течение многих лет. Основной результат работы состоит в том, что парадокс Кантора исследован и разрешен.
В главе III делается попытка аксиоматического построения канторовской «наивной» теории множеств.
В главах IV и V излагается так называемая Z-теорема, обобщающая семейство диагональных парадоксов и объясняющая с единых позиций теоретико-множественные парадоксы. Глава VI посвящена разбору нескольких наиболее известных парадоксов.
Для понимания работы не требуется специальных знаний, достаточно даже поверхностного знакомства с основными понятиями теории множеств (понятиями "множество", "функция", "область определения" и тому подобными) и некоторая привычка к восприятию математических рассуждений, так что работа вполне доступна студентам физико-математических факультетов и просто человеку с университетским, высшим техническим или высшим педагогическим образованием. Авторы работы поставили перед собой задачу рассказать о результатах своих исследований парадоксов теории множеств на языке, понятном даже школьнику-старшекласснику. В какой степени им удалось решить эту задачу, пусть судит читатель.
Мы благодарим
Н.А.Дмитриева
за ценные дискуссии по теме работы, а также сотрудников ВНИИЭФ
М.И.Каплунова,
Г.С.Клинкова, И.В.Кузьмицкого,
В.С.Лебедева,
Б.В.Певницкого, В.И.Филатова, В.А.Щербакова и И.Т.Шморина, читавших фрагменты нашей работы в рукописях и обсуждавших ее.
Списки использованных источников в настоящем издании даются к каждой главе отдельно.

ГЛАВА I.
ВВЕДЕНИЕ. ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ МНОЖЕСТВ

I.1. О понятии множества. . . . . . . . . . . . . . . . . . 8
I.2. Способы описания множеств. . . . . . . . . . . . . . . . 10
I.3. Теоретико-множественные операции. . . . . . . . . . . . . 11
I.4. Количественное сравнение множеств. . . . . . . . . . . . . 11
I.5. Понятие подмножества. . . . . . . . . . . . . . . . . . 13
I.6. Теорема Кантора (формулировка) . . . . . . . . . . . . . . 14
I.7. Недоопределенные множества. . . . . . . . . . . . . . . . 14
I.8. О несчетных множествах. . . . . . . . . . . . . . . . . . 16
Список использованных источников. . . . . . . . . . . . . . 19

Эта глава имеет целью дать основные сведения из теории множеств читателю, не знакомому с этой теорией, или желающему освежить свои знания в этой области. Читатели, имеющие познания в теории множеств хотя бы в объеме курса для физико-математических факультетов педвузов могут эту главу пропустить (кроме раздела I.7) без ущерба для понимания последующего материала.

I.1. О понятии множества.

Термин “множество” в быту употребляется для обозначения больших количеств каких-то объектов, поддающихся счету. Мы говорим: множество ошибок, множество картин, великое множество людей.
Бытовое понятие “множество” довольно расплывчато, невозможно указать то количество, например, коров, которое следует назвать множеством коров. На эту тему известен так называемый “парадокс кучи”: начиная с какого количества зёрна образуют кучу зерна?
Для того, чтобы можно было строить какую-то теорию, понятия этой теории должны быть вполне четкими. Для построения теории множеств необходимо иметь четкое понятие множества. Гениальный основатель теории множеств Георг Кантор (1845 – 1918) дал свое знаменитое определение понятия множества. Вот оно.
«Под “множеством” мы понимаем объединение в одно целое М определенных вполне различаемых объектов m нашего восприятия или мышления (которые будут называться "элементами" множества M)».
Можно ли считать это определение достаточно четким, мы обсудим несколько позже, а сейчас отметим некоторые его особенности.
Для начала заметим, что о количестве объединяемых предметов ничего не говорится. Это значит, что уже два элемента образуют множество. Это значит, также, что множество останется множеством, если из него убрать один элемент. Руководствуясь этим принципом, мы приходим к понятию единичного множества, которое получается, если из множества двух элементов убрать один из них. И тут мы обнаруживаем, что канторовское определение множества не полно: в случае единичного множества никакого объединения мы не видим.
Дальше – больше. Убирая из единичного множества его единственный элемент, мы приходим к понятию пустого множества. Эту абстракцию уже не все могут переварить. При первом знакомстве с понятием множества не все соглашаются признать множеством пустое множество. В этой связи автору монографии «Введение в метаматематику» С.Клини канторовское определение понятия множества показалось недостаточно полным, и он дополнил его следующим образом:
«К множествам присоединяются пустое множество, не имеющее элементов, и единичные множества, каждое из которых обладает одним единственным элементом.»
Действительно, никакого «объединения в одно целое» в пустом и единичном множестве на первый взгляд не видно. Однако, как заметил В.А.Щербаков, если «объединение» производится по некоторому признаку, то при некоторых признаках будут возникать и единичные, и пустое множество, и тогда дополнение Клини уже не требуется.
Необходимость рассмотрения единичных множеств и пустого множества наряду с остальными видна из того, что, определяя какое-нибудь множество тем или иным способом, мы можем не знать заранее, содержит ли оно больше одного или хотя бы один элемент.
Здесь необходимо подчеркнуть, что единичное множество и его единственный элемент – это существенно разные понятия и разные вещи. Разница состоит в том, что единичное множество имеет все свойства множеств: у него есть подмножества, к нему можно применять теоретико-множественные операции, в то время как элемент единичного множества этими свойствами, если он сам не является множеством, не обладает.
Далее в определении Кантора говорится об «определенных и вполне различаемых объектах нашего восприятия или мышления». Здесь мы не будем обсуждать это основополагающее понятие – понятие объекта, отложив на время его анализ и считая его достаточно ясным для первого знакомства с понятием множества. Для нас сейчас гораздо важнее усвоить ту сторону понятия множества, то неотъемлемое свойство множества, о котором в определении Кантора ничего не говорится. Свойство это выражается следующим положением:
множество полностью определяется своими элементами.
В аксиоматических, формальных теориях эта сторона понятия множества формулируется как аксиома, называемая аксиомой объемности, или аксиомой экстенсиональности. Но и при изложении содержательной ("наивной") канторовской теории множеств это положение либо подразумевается, либо формулируется явно, например, как "интуитивный принцип объемности" в учебнике Р.Столла "Множества. Логика. Аксиоматические теории" .
Аксиома объемности утверждает, что множество не зависит от порядка перечисления или порядка расположения его элементов. Из одних и тех же элементов может состоять только одно множество. Например, разные перестановки, составленные из одних и тех же символов:

(а,b,с,d), (а,с,d,b), (b,d,c,a), и т. д.,

Представляют собой одно и то же множество, и как множества не различаются. Это значит, далее, что различаться разные множества могут только за счет присутствия или отсутствия в них по крайней мере одного элемента.
Отсюда становится видно, что существует только одно пустое множество, так как при отсутствии элементов у множеств нет признаков различия. Пустое множество обозначается значком;.
По своему составу, как это видно из определения Кантора, множества могут мыслиться как состоящие из реальных объектов (множество кошек гор. Сарова, например) или из мыслимых, понятийных сущностей (множество натуральных чисел). Среди последних очень важной разновидностью множеств являются бесконечные множества, то есть состоящие из бесконечного количества элементов.
Здесь надо отметить два обстоятельства. С одной стороны ясно, что это чисто мысленные абстракции, что множества реальных объектов бесконечными быть не могут. С другой стороны именно бесконечные множества придают особую ценность, красоту и неповторимость канторовской теории множеств. В заслугу Кантору справедливо ставится его научная смелость, когда он стал рассматривать бесконечные множества как сущности, доступные человеческому разуму.
Отметим также, что и само понятие множества является сугубо мысленным понятием, выражаясь словами Кантора – объектом нашей мысли.

I.2. Способы описания множеств

Если буква М обозначает некоторое множество, а буква х – некоторый "определенный и вполне различаемый объект нашего восприятия или мысли", то выражение "х; М" читается как "х принадлежит М", или "х входит в М", или "х является элементом М", или иным подобным образом. Перечеркнутый знак вхождения; означает отрицание утверждения о вхождении.
Если элементов a, b, c, ... множества М не слишком много, то возможно описание множества путем перечисления его элементов внутри фигурных скобок:
М = {a, b, c, ... }.
В противном случае множество принято описывать с помощью некоторого условия принадлежности P(x):
M = {x: P(x)}.
Это выражение читается так: множество M состоит из всех таких и только таких х, для которых суждение P(x) истинно. Читатель может заметить, что второй способ обозначения множества – более общий, и первая форма описания множества может быть сведена ко второй. Например, c помощью логической формулы:
М = {x: x=a, или х=b, или х=с, или... },

А если a, b, c,... – числа (все равно какие), то, например, с помощью уравнения:

М = {x: (x-a)(x-b)(x-c)... = 0}.

I.3. Теоретико-множественные операции.

Над множествами можно производить операции. Наиболее употребительны операции объединения и пересечения.
Объединение двух множеств есть множество, объединяющее в себе элементы обоих объединяемых множеств. Эта операция обозначается символом;. Например, если множество А={a,b,c}, и множество В={c,d,e}, то
A;B={a,b,c,d,e}.
Пересечением двух множеств называется множество, состоящее из общих элементов этих множеств. Эта операция обозначается символом;. Для двух множеств предыдущего примера А;B={c}.
Употребляются и другие, более сложные операции над множествами.

I.4. Количественное сравнение множеств.

Для конечных множеств вопрос о сравнении их численности решается просто: для этого достаточно сравниваемые множества пересчитать, а сравнивать натуральные числа мы умеем уже с начальной школы. Но как сравнивать бесконечные множества? Кантор предложил сравнивать бесконечные множества количественно по принципу взаимно однозначного соответствия.
ОПРЕДЕЛЕНИЕ. Мы говорим, что между множеством А и множеством В установлено взаимно однозначное соответствие, если каждому элементу множества А поставлен в соответствие один и только один элемент множества В так, что каждый элемент множества В поставлен в соответствие одному и только одному элементу множества А.
Взаимно однозначное соответствие мы будем обозначать более коротким термином “1-1-соответствие”, или еще короче – биекция.
По этому принципу два множества считаются равночисленными, или, точнее, равномощными, или эквивалентными, если между ними можно установить биекцию. Если же биекцию между ними установить нельзя, то более мощным считается то из них, на часть которого можно взаимно однозначно отобразить другое.
Очевидно, что отношение эквивалентности между множествами симметрично, рефлексивно и транзитивно. Ясно, также, что сравнивать методом 1-1-соответствия можно и конечные множества, и что этот метод является обобщением привычного способа сравнения конечных множеств их пересчетом. В сущности способ пересчета и есть метод сравнения 1-1-соответствием со стандартным множеством – множеством натуральных чисел.
Примеры сравнения бесконечных множеств.
Еще Галилей заметил, что множество всех квадратов натуральных чисел можно поставить в 1-1-соответствие с множеством всех натуральных чисел:

1, 2, 3, 4, 5, …
1, 4, 9, 16, 25, …

И в этом смысле квадратов натуральных чисел ровно столько же, сколько самих чисел. Таково же положение и с четными числами: их тоже ровно столько же. Мы видим, что при предложенном Кантором способе количественного сравнения множеств часть бесконечного множества оказалась количественно эквивалентна целому. Это свойство бесконечных множеств Кантор предложил принять в качестве определяющего признака бесконечного множества.
Множества, для которых можно установить биекцию с множеством натуральных чисел, иными словами – перенумеровать их элементы, называются счетными множествами. Счетными множествами, очевидно, являются и множество всех квадратов целых чисел, и множество всех четных чисел. Множество всех целых чисел (положительных и отрицательных) тоже счетное. Это видно из того, что все целые числа можно расположить в виде такой цепочки:
0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, . . .

Ясно, что в эту цепочку попадут все целые числа, и мы можем числа всей этой цепочки перенумеровать.
Но вот пример по-сложнее. Можно ли перенумеровать все положительные рациональные числа? Кантор предложил следующий способ нумерации множества всех положительных рациональных чисел. Расположим это множество в виде бесконечной таблицы – бесконечного количества бесконечных строк. В первой строке расположим все дроби со знаменателем 1, то есть натуральные числа в порядке возрастания. Во второй строке расположим все дроби со знаменателем 2 в порядке возрастания числителя, в третьей строке – в том же порядке все дроби со знаменателем 3, и так далее. После этого пронумеруем сначала все дроби с суммой числителя и знаменателя, равной 2 (это всего одна дробь 1/1), затем – все дроби с суммой знаменателя и числителя, равной 3 (это; и 2/1), затем – с суммой знаменателя и числителя, равной 4 (это 1/3, 2/2 и 3/1), и так далее. При этом сократимые дроби будем пропускать, так как они уже были пронумерованы ранее. Ясно, что при таком способе нумерации номер получит любое положительное рациональное число. На рис. I.1 изображена схема нумерации множества всех рациональных чисел, предложенная Кантором; стрелками указан порядок нумерации.
1/1, ; 2/1, 3/1, ; 4/1, 5/1, ; …
; ; ; ;
1/2, 2/2, 3/2, 4/2, 5/2, … .
; ; ; ;
1/3, 2/3, 3/3, 4/3, 5/3 …
; ;
1/4, 2/4, 3/4, 4/4, 5/4 …
; ;
1/5, 2/5, 3/5, 4/5, 5/5, …

Эта схема нумерации выбита на памятнике на могиле Кантора.
По той же самой схеме нумерации можно перенумеровать и множество всех упорядоченных пар натуральных чисел (поскольку каждому положительному рациональному числу соответствует упорядоченная пара натуральных чисел – числитель и знаменатель). Далее, расположив пронумерованное множество упорядоченных пар в одной строке, мы можем применить тот же прием для нумерации множества всех упорядоченных троек натуральных чисел, затем – четверок, и вообще упорядоченных n-ок, где n – любое натуральное число.

I.5. Понятие подмножества.

Множество М называется подмножеством множества N, если в M нет элементов, не входящих в N (в частности, М может совпадать с N).
Иными словами, в подмножестве не должно быть “посторонних” элементов, если характеризовать этим термином все элементы за пределами более широкого (вообще говоря) множества N.
Это определение хорошо тем, что оно охватывает и пустое множество: в пустом множестве нет никаких, а значит и “посторонних” элементов. Оно, таким образом, является подмножеством любого множества. Если определить понятие подмножества более понятным способом, как множества, состоящего только из элементов основного множества, то пустое множество придется причислять к подмножествам “отдельной строкой”. Необходимость же такого причисления видна из тех же соображений, что и необходимость дополнить пустым множеством общее понятие множества (см. выше).
Если множество М является подмножеством множества N, то это обстоятельство может быть кратко отмечено в обозначении множества M:

M = {x;N: P(x)}

(читается: множество M состоит из всех таких и только таких х из N, для которых суждение P(x) истинно).

I.5.1. Собственные и несобственные подмножества.
Пустое множество;, как уже говорилось, является подмножеством любого множества. В этом смысле оно стоит особняком, и поэтому его называют несобственным подмножеством.
Кроме пустого, несобственным подмножеством называют также подмножество, совпадающее со всем множеством. Остальные подмножества называются собственными. Они составляют "правильные" части основного множества, тогда как несобственные подмножества являются "неправильными" частями: это часть, равная целому, или нулевая часть.

I.5.2. Сколько подмножеств у самых простых множеств?
Наименее многочисленно пустое множество – в нем 0 элементов. Сколько же в нем подмножеств? Несмотря на отсутствие элементов, одно подмножество у пустого множества все же есть. Это оно само, это его дважды несобственное подмножество: во-первых, потому, что оно пустое, и, во-вторых, потому, что оно совпадает со всем множеством. (Заметим, что 20=1.)
У единичного множества, в котором всего один элемент, подмножеств уже два, оба несобственные: это пустое множество и подмножество, совпадающее со всем множеством. (Опять отметим, что 21 = 2.)
У множества, состоящего из двух элементов, к двум несобственным подмножествам добавляются два собственных – единичные подмножества, содержащие по одному из элементов множества. Итого – 4. (Снова отметим, что 22 = 4.)
Методом индукции или как-то еще читатель без труда докажет, что у конечного множества из n элементов 2n подмножеств.

I.6. Теорема Кантора (формулировка)

Мы видим, что при любом n 2n > n, то есть число подмножеств конечного множества всегда больше числа элементов. Это очевидное свойство конечных множеств Кантор обобщил на бесконечные множества, доказав свою знаменитую теорему, которая гласит:
мощность множества всех подмножеств больше мощности исходного множества.
На первый взгляд это обобщение настолько естественно, что в справедливости теоремы Кантора сомневаться не приходится. Мы, однако, приведем пример противоположного свойства. Количество всевозможных упорядоченных пар элементов конечного множества из n элементов дается формулой n2, и мы видим, что при n>1 n2>n. Однако мы видели (см. раздел I.3), что мощность множества упорядоченных пар бесконечного множества натуральных чисел не больше мощности исходного множества.
Общее возражение к обоим примерам соотношений численностей конечных множеств состоит в том, что аналогия не есть доказательство.

I.7. Недоопределенные множества

Существование недоопределенных множеств вытекает из существования парадоксальных, а именно противоречивых суждений. Покажем, как это получается.
Вспомним второй способ описания множеств (см. раздел I.2). Вот как излагается этот способ в учебнике Р.Столла
Интуитивный принцип абстракции. Любая форма Р(х) определяет некоторое множество А посредством условия, согласно которому элементами множества А являются в точности такие предметы а, что Р(а) есть истинное высказывание
Выражение «форма Р(х)» означает некоторое высказывание о каком-то предмете, в котором имя этого предмета заменено на переменную х, пробегающую заданную область значений. Другой термин для понятия «форма Р(х)» – одноместный предикат. В разделе I.2 в том же смысле употреблено выражение «условие принадлежности».
Но как быть, если при некоторых значениях х (для некоторых предметов а) суждение Р(х) оказывается противоречивым?
Конкретный пример множества с таким условием принадлежности делает более понятным поставленный вопрос.
Будем рассматривать названия каких-то объектов, но только однозначные названия, то есть относящиеся только к одному определенному объекту. Название, содержащееся в объекте с этим названием (объектом может быть множество, или, например, книга) будем называть внутренним названием. Название, не являющееся внутренним, будем называть внешним. Множество Е – множество внешних названий совокупности объектов S, если оно входит в совокупность S и имеет название, дает нам пример недоопределенного множества.
В самом деле, название множество Е имеет, оно выражено буквой Е. К какой из двух категории следует отнести название множества Е? Если признать его внешним названием, то есть одним из элементов множества Е, то оно окажется внутренним названием, и наоборот. Суждение о принадлежности названия множества Е к этому множеству не имеет значения истинности.
Ответ на поставленный выше вопрос очевиден. Для значений х, обращающих Р(х) в противоречивое суждение, нельзя установить, является ли соответствующий предмет а элементом множества А. Множество А по отношению к этому предмету недоопределено.
Но особенность недоопределенного множества не только и не столько в его недоопределенности. Гораздо важнее то, что его недоопределенность есть результат противоречивости его определения. Такой противоречивости, которую не сразу заметишь. Она ведь проявляется только по отношению к одному единственному его элементу (в нашем примере – к собственному названию множества внешних названий). Рассмотрение условия принадлежности к такому множеству приводит к противоречию. А так как мы привыкли, что противоречие есть результат либо ошибки, либо ложности одной из исходных посылок рассуждения, то отсюда возникает соблазн что-то доказать.
А между тем противоречие, вытекающее из противоречивого, а правильнее сказать – из невыполнимого определения, ровно ничего не доказывает (кроме невыполнимости этого определения). Непонимание этого не очень уж сложного обстоятельства приводит к появлению ложных теорем
Как следует относиться к множествам с противоречивыми определениями? Мы видим здесь две возможные формы этого отношения (с одним и тем же содержанием).
1) Можно противоречивые множества типа описанного выше множества Е продолжать считать множествами, допуская возможность противоречивых множеств, на которую указывал еще Кантор (противоречивым он считал множество всех множеств), но тогда возможность возникновения таких множеств нельзя не учитывать при доказательствах теорем.
С учетом этой возможности из противоречия, которое получается при доказательстве от противного, не всегда можно сделать вывод о ложности какой-то посылки: для противоречивого множества противоречие есть его законный атрибут и ни о чем не говорит.
2) Более правильным представляется оформить наше отношение к противоречивым множествам (точнее – к множествам с противоречивым определением) путем уточнения канторовского понятия множества в том смысле, что вопрос о принадлежности множеству любого объекта должен иметь однозначный и непротиворечивый ответ. Совокупности, не удовлетворяющие этому требованию, не позволяющие, подобно множеству Е, дать такой ответ на этот вопрос хотя бы для одного единственного элемента, не должны считаться полноценными множествами. Это недоопределенные множества.
Возможность появления недоопределенных множеств должна учитываться при доказательствах теорем, как уже говорилось.
Свойство определенности множества в указанном выше смысле в канторовском понятии множества, конечно же, подразумевается, хотя в явном виде, по-видимому, Кантором высказано не было. Правда, один из комментаторов канторовского определения понятия множества (см. раздел I.1) Роберт Р.Столл именно так истолковывает слова «определенных… объектов» в этом определении.
Уточнение понятия множества в указанном смысле может быть сформулировано в виде аксиомы исключенного третьего, которой должны подчиняться множества.
Аксиома исключенного третьего является частным случаем закона исключенного третьего, который гласит, что всякое суждение либо истинно, либо ложно, и третьего не дано. Но мы знаем, что возможны и вполне осмысленные противоречивые суждения, не истинные и не ложные, нарушающие, таким образом, закон исключенного третьего, примерами чему могут служить суждения из всевозможных парадоксов. Поэтому, чтобы исключить противоречивые множества из числа допустимых, мы не можем ограничиться ссылкой на этот закон, и должны предусмотреть возможность его нарушения специальной аксиомой.
АКСИОМА ИСКЛЮЧЕНОГО ТРЕТЬЕГО. Для всякого множества суждение о принадлежности к нему любого объекта либо истинно, либо ложно.
В существующих (и присутствующих в учебных программах математических факультетов ВУЗов) теориях множеств недоопределенные множества не возникают только из-за того, что возможность парадоксальных суждений в этих теориях не учитывается.

I.8. О несчетных множествах.

Предложенный Кантором метод количественного сравнения множеств путем установления биекции между сравниваемыми множествами (см. раздел I.3.) неявно предполагает, что существуют (могут встретиться) и такие бесконечные множества, между которыми установить биекцию невозможно. Если бы это было не так, то все бесконечные множества оказались бы равномощными, а канторовский метод сравнения множеств – бессодержательным.
Бесконечные множества, равномощные с множеством натуральных чисел, что означает, что все элементы их можно перенумеровать, называются счетными множествами. Отсюда следует, что несчетные множества (то есть множества, не являющиеся счетными) таковы (настолько многочисленны), что все их элементы перенумеровать невозможно.
Как показал Кантор, несчетным является множество всех действительных чисел промежутка от 0 до 1, обычно называемое континуумом. Мощность континуума принято обозначать буквой С. Отметим следующие замечательные свойства множеств с мощностью континуума.
Во-первых, множество действительных чисел х единичного отрезка равномощно с множеством действительных чисел у любого отрезка числовой прямой. Биекция между этими множествами устанавливается формулой:

У = a + x (b – a),

Где числа а и b соответствуют концам произвольного отрезка.
Во-вторых, формула у=tg(x-0.5;) устанавливает биекцию между единичным отрезком (точнее – полуинтервалом) и всей числовой прямой. Это значит, что мощность множества всех действительных чисел имеет ту же мощность, что и множество чисел единичного отрезка (отрезок в отличие от интервала включает в себя числа, соответствующие его концам, но эта разница не приводит к различию мощностей).
Следующий важный факт теории множеств состоит в том, что множество С (континуум) равномощно множеству всех подмножеств натурального ряда. В самом деле, каждое действительное число, меньшее единицы, можно взаимно однозначно представить правильной бесконечной двоичной дробью. Для этого условимся двоично-рациональные числа, имеющие два двоичных представления, одно из которых заканчивается бесконечной последовательностью единиц, представлять именно тем способом, при котором двоичная дробь бесконечна. А каждая такая дробь взаимно однозначно определяется подмножеством натурального ряда – множеством номеров тех разрядов двоичной дроби, в которых стоят единицы.
И, наконец, еще один совершенно неожиданный результат, который удивил самого Кантора, следует из канторовского определения равномощности множеств и возможности однозначного представления действительного числа бесконечной двоичной (или десятичной) дробью. Равномощным множеству С оказалось множество пар таких же чисел, то есть чисел промежутка от нуля до единицы. В переводе на язык аналитической геометрии это значит, что множество точек единичного отрезка оказалось равномощным множеству точек единичного квадрата.
В самом деле, каждому действительному числу единичного отрезка, представленному бесконечной последовательностью значений десятичных (например) разрядов этого числа, можно взаимно однозначно поставить в соответствие пару таких же чисел, одно их которых образовано из четных, а другое – из нечетных разрядов исходного числа.
Но это значит, что мощность С – мощность множества действительных чисел любого отрезка – имеет множество всех точек плоскости (биекция между единичным квадратом и всей плоскостью устанавливается так же, как и между единичным интервалом и всей числовой прямой).
Аналогичным способом устанавливается равномощность множеств точек отрезка и точек объемной фигуры – куба, а значит и множества всех точек всего бесконечного 3-хмерного и даже n-мерного пространства.
Этот удивительный результат при неблагожелательном отношении к канторовской теории множеств может быть поставлен в укор этой теории: вот к каким абсурдным результатам приводит предложенный Кантором метод количественного сравнения множеств по критерию взаимно однозначного соответствия.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
(к введению и гл. I)

1. Клини Cтефен K. Введение в метаматематику. М: Издательство Иностранной
литературы. 1957. 526c.
2. Френкель А.А., Бар-Хиллел. Основания теории множеств. М: Мир. 1966. 556с.

3. Александров П.С. Введение в общую теорию множеств и функций. Москва,
Ленинград. Гостехиздат. 1948. 412c.
4. Кэлли Джон Л. Общая топология. М: Наука. 1968. 384c.

5. Хаусдорф Ф. Теория множеств. Москва, Ленинград. ОНТИ. 1937.

6. Натансон И.П. Теория функций вещественной переменной. М: Гостехиздат.
1957. 552c.
7. Колмогоров А.Н., Драгалин А.Г. Математическая логика. Дополнительные гла-
вы. Издательство Московского Университета. 1984. 120с.
8.Архангельский А.В. Канторовская теория множеств. Издательство Московского
Университета. 1988. 112с.
9. Бурбаки Н. Теория множеств. М: Мир. 1965. 455c.

10. Ященко И.В. Парадоксы теории множеств. М. Издательство Московского
центра непрерывного математического образования. 2002. 40с.
11. Кантор Георг. Труды по теории множеств. Под ред. А.Н.Колмогорова и
А.П.Юшкевича. М: «Наука». 1985. 432с.
12. Столл Роберт Р. Множества. Логика. Аксиоматические теории. М: Просвеще-
ние. 1968. 230c.

Георг Фердинанд Людвиг Филипп Кантор (по моему и, думаю, не только по моему мнению) - один из величайших математиков за всю историю человечества. Пафосно, может быть, чересчур, но зато искренне))

Теорию множеств (возможно, немножко не в том виде, в котором мы знаем ее сейчас), основал именно он.
В это трудно поверить, но он первый ввел в математике понятие множества и дал ему неформальное определение. И случилось это во второй половине XIX века.
Раньше множествами в математике не оперировали!
Та теория множеств, которую выдвинул Кантор впоследствии получила название Наивной теории множеств .

Понятие множества сейчас входит в число так называемых первичных, неопределяемых, понятий. Таких, как, предположим, точка в математике или информация в теории информации.
Сам Кантор определял множество следующим образом: «множество есть многое, мыслимое как единое» .

Кантор разработал программу стандартизации математики, в основу которой как раз было положено понятие множества . Любой математический объект должен был рассматриваться как «множество».
Например, натуральный ряд представляет собой множество, удовлетворяющее аксиомам Пеано. Каждое натуральное число в отдельности - тоже множество, но состоящее всего из одного элемента.

Сам термин "теория множеств" был введен в математику позднее. Кантор же называл свою теорию "Mengenlehre" - учение о множествах.

Появление Mengenlehre вызвало нешуточные битвы в математических кругах. Учение имело как горячих поклонников (среди выдающихся математиков того времени), так и ярых противников.

Но в своем первоначальном виде теория оказалась нежизнеспособна.

Вот что написано в Википедии:
Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение!). Антиномии ознаменовали собой полный провал программы Кантора.

Виновником провала стал не кто иной как Бертран Рассел.
Однако теория эта успела безраздельно завладеть умами современников.

Вот что пишет о Канторе и его Mengenlehre Давид Гильберт (о котором я уже здесь рассказывала):

Никто и никогда не изгонит нас из его рая.
(с) Давид Гильберт. В защиту канторовой теории множеств.

ТЕОРИЯ МНОЖЕСТВ КАНТОРА. Кантор развил определенную технику оперирования с актуально бесконечными множествами и построил определенный аналог понятия количества для бесконечных множеств. Основой этой техники служит понятие взаимно-однозначного соответствия между элементами двух множеств. Говорят, что элементы двух множеств можно поставить во взаимно-однозначное соответствие, если каждому элементу первого множества можно поставить в соответствие элемент второго множества, разным – разные, и при этом каждый элемент второго множества будет соответствовать какому-то элементу первого. Про такие множества говорят, что они эквивалентны, что они имеют одинаковую мощность, или одинаковое кардинальное число. Если же можно доказать, что элементы множества А можно поставить во взаимно-однозначное соответствие с элементами подмножества В1 множества В, а элементы множества В нельзя поставить во взаимнооднозначное соответствие с элементами А, то тогда говорят, что мощность множества В больше мощности множества А.Эти определения применимы и к конечным множествам. В этом случае мощность представляет собой аналог конечных чисел. Но бесконечные множества имеют в этом смысле парадоксальные свойства. Бесконечное множество оказывается эквивалентным своей части, напр. так, как это происходит в т.н. «парадоксе Галилея»:

1, 2, 3, 4, ..., n, ...

2, 4, 6, 8, ..., 2n, ...

Эти парадоксы были известны давно, и именно они, в частности, служили препятствием для рассмотрения актуально бесконечных множеств. То, что здесь просто сказывается специфика актуально бесконечного, объяснял в «Парадоксах бесконечного» Больцано. Дедекинд считал это свойство актуально бесконечных множеств характеристическим.

Кантор развивает арифметику кардинальных чисел. Суммой двух кардинальных чисел является мощность объединения соответствующих им множеств, произведением – мощность т.н. множества-произведения двух данных множеств и т.д. Важнейшим оказывается переход от данного множества к множеству-степени, т.е., по определению, к множеству всех подмножеств исходного множества. Кантор доказывает основополагающую для его теории теорему: мощность множества-степени больше мощности исходного множества. Если мощность исходного множества записать через а, то в соответствии с арифметикой кардинальных чисел мощность множества-степени будет 2a, и мы имеем, следовательно, 2a >а.

Значит, переходя от некоторого бесконечного множества, напр. от множества всех натуральных чисел, имеющего мощность ℵα (обозначение Кантора) к множеству всех подмножеств этого множества, к множеству всех подмножеств этого нового множества и т.д., мы будем получать ряд множеств все более возрастающей мощности. Есть ли какой-то предел этому возрастанию? Ответить на этот вопрос можно, только введя в рассмотрение некоторые дополнительные понятия.

Оперировать с бесконечными множествами, лишенными всякой дополнительной структуры, вообще говоря, невозможно. Поэтому Кантор ввел в рассмотрение упорядоченные множества, т.е. множества, для любых двух элементов которых определено отношение «больше» > (или «меньше» <). Это отношение должно быть транзитивным: из a < b и b < с следует: а < с. Собственно, наиболее продуктивным для теории множеств является еще более узкий класс множеств: вполне упорядоченные множества. Так называются упорядоченные множества, у которых каждое подмножество имеет наименьший элемент. Вполне упорядоченные множества легко сравнивать между собой: они отображаются одно на часть другого с сохранением порядка. Символы вполне упорядоченных множеств, или ординальные (порядковые) числа, также образуют вполне упорядоченное множество, и для них также можно определить арифметические действия: сложение (вычитание), умножение, возведение в степень. Ординальные числа играют для бесконечных множеств роль порядковых чисел, кардинальные – роль количественных. Множество (бесконечное) определенной мощности можно вполне упорядочить бесконечным числом способов, каждому из которых будет соответствовать свое ординальное число. Тем самым каждому кардиналу (Кантор ввел для обозначения кардиналов «алефы» – первую букву еврейского алфавита с индексами) ℵα будет соответствовать бесконечно много ординалов:

0 1 2 ... ω0, ω0 + 1 ... ω1... ω2 ... ωn ... ωω0 ... Ω (ординалы)

0 1 2 ... ℵ0 ... ℵ1 ... ℵ2 ℵn …ℵ ω0 … τ («тау»-кардиналы)

Согласно теоремам теории множеств любой «отрезок» шкалы Ω ординальных чисел, сам как множество вполне упорядоченное, будет иметь больший ординал, чем все заключенные в этом отрезке. Отсюда вытекает, что невозможно рассматривать все Ω как множество, т.к. в противном случае Ω имело бы своим ординалом β, которое больше всех ординалов в Ω, но поскольку последнее содержит все ординалы, т.е. и β, то было бы: β > β (парадокс Бурали – Форти, 1897). Кантор стремился обойти этот парадокс введением (с 1880-х гг.) понятия консистентноcсти. Не любая множественность (Vielheit) есть множество (Menge). Множественность называется консистентной, или множеством, если ее можно рассматривать, как законченное целое. Если же допущение «совместного бытия» всех элементов множественности ведет к противоречию, то множественность оказывается неконсистентной, и ее, собственно, нельзя рассматривать в теории множеств. Такими неконсистентными множествами оказываются, в частности, Ω – множество всех ординальных чисел и τ («тау») – множество всех кардиналов («алефов»). Тем самым мы опять возвращаемся к бесконечности как к процессу. Как пишет математик 20 в. П.Вопенка: «Теория множеств, усилия которой были направлены на актуализацию потенциальной бесконечности, оказалась неспособной потенциальность устранить, а только смогла переместить ее в более высокую сферу» (Вопенка П. Математика в альтернативной теории множеств. – «Новое в зарубежной науке. Математика», 1983, № 31, с. 124.) Это не смущало, однако, самого Кантора. Он считал, что шкала «алефов» поднимается до бесконечности самого Бога и поэтому то, что последняя оказывается математически невыразимой, было для него само сабой разумеющимся: «Я никогда не исходил из какого-либо «Genus supremum» актуальной бесконечности. Совсем наоборот, я строго доказал абсолютное несуществование «Genus supremum» для актуальной бесконечности. То, что превосходит все бесконечное и трансфинитное, не есть «Genus»; это есть единственное, в высшей степени индивидуальное единство, в которое включено все, которое включает «Абсолютное», непостижимое для человеческого понимания. Это есть «Actus Purissimus», которое многими называется Богом» (Meschkowski H. Zwei unveroffentlichte Briefe Georg Cantors. – «Der Mathematilkuntemcht», 1971, № 4, S. 30–34).

Б. H. Катасонов

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 249-250.

Лекция 12: Основные понятия теории множеств

Рассмотрение системы как совокупности элементов дает возможность привлечь для ее математического описания аппарат теории множеств. При этом в ряде важных случаев связи между элементами удобно описываются с помощью аппарата математической логики.

Понятие множества — является одним из тех фундаментальных понятий математики, которым трудно дать точное определение, используя элементарные понятия. Поэтому ограничимся описательным объяснением понятия множества.

Множеством называется совокупность определенных вполне различаемых объектов, рассматриваемых как единое целое. Создатель теории множеств Георг Кантор давал следующее определение множества — «множество есть многое, мыслимое нами как целое».

Отдельные объекты, из которых состоит множество, называются элементами множества.

Множества принято обозначать большими буквами латинского алфавита, а элементы этих множеств — маленькими буквами латинского алфавита. Множества записываются в фигурных скобках { }.

Принято использовать следующие обозначения:

  • a ∈ X — «элемент a принадлежит множеству X»;
  • a ∉ X — «элемент a не принадлежит множеству X»;
  • ∀ — квантор произвольности, общности, обозначающий «любой», «какой бы не был», «для всех»;
  • ∃ — квантор существования: ∃y ∈ B — «существует (найдется) элемент y из множества B»;
  • ∃! — квантор существования и единственности: ∃!b ∈ C — «существует единственный элемент b из множества C»;
  • : — «такой, что; обладающий свойством»;
  • → — символ следствия, означает «влечет за собой»;
  • ⇔ — квантор эквивалентности, равносильности — «тогда и только тогда».

Множества бывают конечные и бесконечные . Множества называются конечным , если число его элементов конечно, т.е. если существует натуральное число n, являющееся числом элементов множества. А={a 1 , a 2 ,a 3 , ..., a n }. Множество называется бесконечным , если оно содержит бесконечное число элементов. B={b 1 ,b 2 ,b 3 , ...}. Например, множество букв русского алфавита — конечное множество. Множество натуральных чисел — бесконечное множество.

Число элементов в конечном множестве M называется мощностью множества M и обозначается |M|. Пустое множество — множество, не содержащее ни одного элемента — ∅. Два множества называются равными , если они состоят из одних и тех же элементов, т.е. представляют собой одно и тоже множество. Множества не равны X ≠ Y, если в Х есть элементы, не принадлежащие Y, или в Y есть элементы, не принадлежащие Х. Символ равенства множеств обладает свойствами:

  • Х=Х; — рефлексивность
  • если Х=Y, Y=X — симметричность
  • если X=Y,Y=Z, то X=Z — транзитивность.

Согласно такого определения равенства множеств мы естественно получаем, что все пустые множества равны между собой или что то же самое, что существует только одно пустое множество.

Подмножества. Отношение включения.

Множество Х является подмножеством множества Y, если любой элемент множества Х ∈ и множеству Y. Обозначается X⊆Y.

Если необходимо подчеркнуть, что Y содержит и другие элементы, кроме элементов из Х, то используют символ строгого включения ⊂: X⊂Y. Связь между символами ⊂ и ⊆ дается выражением:

X⊂Y ⇔ X⊆Y и X≠Y

Отметим некоторые свойства подмножества, вытекающие из определения:

  1. X⊆Х (рефлексивность);
  2. → X⊆Z (транзитивность);
  3. ∅ ⊆ M. Принято считать, что пустое множество является подмножеством любого множества.

Исходное множество А по отношению к его подмножествам называется полным множеством и обозначается I.

Любое подмножество А i множества А называется собственным множеством А.

Множество, состоящие из всех подмножеств данного множества Х и пустого множества ∅, называется булеаном Х и обозначается β(Х). Мощность булеана |β(Х)|=2 n .

Счетное множество — это такое множество А, все элементы которого могут быть занумерованы в последовательность (м.б. бесконечную) а 1 , а 2 , а 3 , ..., а n , ... так, чтобы при этом каждый элемент получил ишь один номер n и каждое натуральное число n было бы в качестве номера дано одному и лишь одному элементу нашего множества.

Множество, эквивалентное множеству натуральных чисел, называется счетным множеством.

Пример. Множество квадратов целых чисел 1, 4, 9, ..., n 2 представляет собой лишь подмножество множества натуральных чисел N. Множество является счетным, так как приводится во взаимно однозначные соответствия с натуральным рядом путем приписывания каждому элементу номера того числа натурального ряда, квадратом которого он является.

Существует 2 основных способа задания множеств.

  • перечислением (X={a,b}, Y={1}, Z={1,2,...,8}, M={m 1 ,m 2 ,m 3 ,..,m n });
  • описанием — указывается характерное свойства, которым обладают все элементы множества.

Множество полностью определено своими элементами.

Перечислением можно задать только конечные множества (например, множество месяцев в году). Бесконечные множества можно задать только описанием свойств его элементов (например, множество рациональных чисел можно задать описанием Q={n/m, m, n∈Z, m≠0}.

Способы задания множества описанием:

а) заданием порождающей процедуры с указанием множества (множеств), которое пробегает параметр (параметры) этой процедуры — рекурсивный, индуктивный.

X={x: x 1 =1, x 2 =1, x k+2 =x k +x k+1 , k=1,2,3,...} — мн-во чисел Фибониччи.

{мн-во элементов х, таких, что х 1 =1,х 2 =1 и произвольное х k+1 (при к=1,2,3,...) вычисляется по формуле х k+2 =х k +х k+1 } или Х=}