Каким необычным свойством обладают кварки. Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной

В Стандартной модели — основной теории, которая объясняет устройство Вселенной, есть три типа частиц: кварки, лептоны и калибровочные бозоны. Последние — это так называемые частицы-переносчики четырех типов фундаментальных физических взаимодействий (например, фотон отвечает за электромагнитные силы), а остальные составляют привычную, осязаемую материю. Лептоны (тип частиц, к которым относятся электроны или нейтрино) обладают сравнительно малыми массами и могут существовать в свободной форме, а кварки навсегда связаны друг с другом цепями сильного взаимодействия.

Сейчас считается, что они могут существовать только парами — тогда кварки формируют частицы, называемые мезонами, или тройками — такие частицы называются барионами (например, протон и нейтрон — это как раз адроны, каждый из них составлен из трех кварков). Но после того, как на коллайдерах были открыты частицы, составленные из четырех и пяти кварков, классические представления Стандартной модели уже кажутся неполными.

— Как и когда были открыты сами кварки?

— В середине 60-х годов прошлого века знали уже много элементарных частиц, но совершенно не понимали, как они устроены. Были протоны, были нейтроны, на ускорителях и в космических лучах нашли пи-мезоны, K-мезоны, и вот в 1964 году американский физик Мари Гелл-Ман предложил простую теорию, в которой все эти элементарные частицы можно было составить всего из трех разных кварков. Постепенно их число увеличили до шести, внутри тех же протонов, действительно, нашли «неоднородности», которые отождествили с кварками, но их самих в свободном состоянии никто до сих пор не видел. Это называется конфайнментом: выбить одиночный кварк из мезона или адрона, по современным представлениям, просто невозможно.

— Почему кварки невозможно разделить?

— Кварки сцеплены между собой сильным взаимодействием, и, когда мы пытаемся их растащить, они начинают притягиваться друг к другу все больше. Такое сложно представить, но это свойство природы. Когда мы разводим два электрических заряда, они взаимодействуют все слабее, когда ракета выходит в космос, она все меньше притягивается к Земле — это свойства гравитационного и электромагнитного взаимодействий, а вот с сильным все наоборот. Чтобы развести кварки, нам нужно вложить в систему столько энергии, что ее уже хватит на появление новых кварков, которые мгновенно опять соберутся в пары и тройки с первоначальными кварками. Поэтому в физике элементарных частиц введена особая величина, называемая цветовым зарядом. Сами кварки могут быть красными, синими, зелеными или антикрасными, антисиними и антизелеными, а в природе они могут наблюдаться только в составе бесцветных комбинаций: парами, тройками или даже четверками, как в случае нашей новой частицы. Например, протон состоит из двух верхних кварков — одного синего и одного красного - и одного нижнего кварка зеленого цвета. В результате из трех цветов получается бесцветная комбинация.

— Получается, кварки могут в буквальном смысле появляться из ниоткуда? Просто рождаться из сгустков энергии?

— Да. Каждая элементарная частица — это в некотором смысле просто масса или, что то же самое, энергия. При этом многие из них по меркам макроскопического мира живут очень мало, исчезающие доли секунды. После этого они распадаются, и из этой же самой энергии образуются другие частицы. Например, пи-мезон распадается на мюон и нейтрино, нейтрон в свободном состоянии — на протон, электрон и нейтрино, а бозон Хиггса умеет распадаться даже разными способами: он может развалиться на пару прелестных кварков, на пару фотонов, на пару Z-бозонов и т.д. Так что элементарные частицы постоянно распадаются, превращаясь в небольшое количество стабильных, долгоживущих частиц, таких как электрон, фотон, нейтрино и протон.

Ускоритель «Тэватрон», на котором была открыта новая частица. Фото: Reidar Hahn/Fermilab

— Как открыли новый тетракварк?

— Это произошло на коллайдере «Тэватрон», который расположен в США неподалеку от Чикаго. Правда, сам ускоритель закончил работу еще в 2011 году, но экспериментальные данные с него до сих пор до конца не обработаны, и именно в них увидели следы рождения тетракварка. В экспериментах на «Тэватроне» протоны и антипротоны разгоняли до колоссальных скоростей, сталкивали их и смотрели, что будет происходить. После столкновения всегда рождаются сотни частиц, которые разлетаются во все стороны и затем начинают распадаться. В результате на расположенные в разных точках ускорителя детекторы приходят потоки частиц с разными энергиями, и именно в этих данных ученые ищут историю развития событий. Например, можно накладывать различные кинетические ограничения: «отсматривать» частицы, летящие только в определенном направлении или с определенной массой. Здесь очень важно понимать, что ты ищешь, потому что просто перебрать все варианты невозможно. Поэтому мы, экспериментаторы, цепляемся за какие-то наводки теоретиков или других экспериментаторов и ищем, уже исходя из них. В случае тетракварка мы увидели в конечном спектре масс частиц характерный пик, соответствующий распаду одной изначальной частицы на пять заряженных частиц с общей энергией примерно в 5,5 ГэВ. Это и есть наш тетракварк, который в несколько этапов распадается на пять заряженных частиц: два мюона, два K-мезона и один пи-мезон.

— Насколько вы уверены, что это действительно тетракварк, а не шумы?

— Сначала мы тоже сомневались в результатах и думали, что это не сигнал, а фон, но после полугода исследований мы уверены в результате настолько, что решили его опубликовать. Например, мы знаем, что на первом этапе наша частица превратилась в пи-мезон и B-мезон. При этом распад шел так быстро, что за него может отвечать только сильное взаимодействие, а оно не меняет типы кварков. Поэтому мы уверены, что первоначальная частица состояла из точно тех же четырех кварков, что и два образовавшихся из нее мезона. Мы проанализировали около 10 миллиардов событий и нашли 130 случаев, когда образовался тетракварк. Вероятность того, что фоновые события сымитируют увиденный нами пик составляет всего один шанс из шести миллионов. Такая малая вероятность считается в научной среде достаточной, чтобы сделать «заявку» на открытие новой частицы.

— А может так оказаться, что это не тетракварк, а, например, своеобразный атом из двух близкорасположенных мезонов?

— Здесь нам немного помогают теоретики. Они могут посчитать энергию связи в таком атоме, и, оказывается, она относительно маленькая — на уровне 5—10 МэВ. То есть такой гипотетический объект легко разорвать на два мезона, а в нашем случае энергия связи составляет около 100 МэВ — это жесткий, сильно связанный объект. Таких устойчивых молекул скорее всего не бывает. Так что, скорее всего, это именно четыре кварка, плотно связанных между собой в одну частицу.

— На других ускорителях уже тоже открывали тетракварки и пентакварки. Новая частица похожа на них?

— Да, на Большом адронном коллайдере (БАК) , на ускорителе KEKB в Японии — тетракварк Z(4430), в других экспериментах тоже находили похожие частицы. Кстати, изначально мы тоже охотились за тем самым пентакварком, который нашли на БАК, но нам не хватило статистики, и мы стали искать частицы с немного другими энергиями — применили экспериментальную интуицию. Z(4430) же немного легче нашего и состоит из других кварков: очарованного кварка, очарованного антикварка, верхнего и нижнего. Это все кварки первого и второго поколения, то есть сравнительно легкие и распространенные. А в нашей частице вместо очарованных кварка и антикварка есть странный кварк из второго поколения и тяжелый прелестный кварк из третьего.

— Такой состав стал неожиданностью?

Знаете, сейчас вообще не существует хорошей модели, которая бы объясняла, как образуются или распадаются частицы из более чем трех кварков. Поэтому каждое новое открытие становится сюрпризом и несет очень много полезной информации.

Экспериментаторы ищут как можно больше новых частиц с новым строением, а теоретики думают над моделью, которая может объяснить такую многокварковую конфигурацию. Теперь мы показали, что единичную частицу могут образовывать кварки сразу трех поколений и четырех разных типов — такого раньше не было.

— Раньше думали, что возможны только двухкварковые и трехкварковые частицы. Теперь открыли тетракварки и пентакварки. Что дальше: ждать ли частиц из шести или, скажем, 10 кварков?

— Теоретически никаких запретов на частицы более чем из трех кварков нет. Но интуиция подсказывает, что если и есть частица, скажем, из шести кварков, то ее масса настолько большая, а время жизни настолько маленькое, что зарегистрировать ее практически невозможно. Это как с химическими элементами в таблице Менделеева. Можно все больше и больше набирать протонов и нейтронов, но в какой-то момент их суммарная масса станет настолько большой, что ядро станет неустойчивым. Такие элементы очень быстро распадаются. Конечно, новые ядра постоянно , но это становится все сложнее. Подозреваю, что нечто подобное может произойти и с кварками, но только их критическое количество гораздо меньше.

— Почему сейчас стали открывать так много новых частиц?

— Сильно увеличилось количество экспериментов на ускорителях и их возможности. Поэтому за последние 10—12 лет открыли уже несколько десятков новых частиц, и я не исключаю, что дальше будет еще больше. Работает БАК, скоро переоткрывается KEKB в Японии — теперь интенсивность потоков позитронов и электронов, которые там сталкивают, станет выше в 40 раз. Кстати, в 60-е годы прошлого века, по моим оценкам, было найдено несколько десятков частиц, которые до появления кварковой модели безуспешно пытались классифицировать. Так что количественные измерения физиков-экспериментаторов в какой-то момент должны перерасти в качественное понимание, новую теорию. Когда мы только послали нашу статью в журнал и выложили ее препринт, за несколько следующих суток появилось сразу шесть теоретических работ по нашим результатам. Но когда создадут единую модель для новых многокварковых частиц, пока непонятно. Это может занять и несколько лет, и несколько десятков лет.

Новая теория сможет вписаться в Стандартную модель?

— Скорее всего, это будет расширение Стандартной модели, какая-то новая классификация частиц в ее рамках. Все-таки мы говорим, что тетракварки и пентакварки состоят из тех же самых кварков и скрепляются тем же самым сильным взаимодействием — надо только понять, как это происходит. Правда, может быть, я несколько утрирую: мы же с вами в конечном счете тоже состоим из протонов, нейтронов и электронов, но вряд ли когда-нибудь сможем до конца понять, как из элементарных частиц складывается человек. Так и с новой классификацией: возможно, здесь нужно принципиально новое понимание сил, действующих между кварками.

— А может так оказаться, что сами кварки состоят из других, еще более мелких частиц?

— Это проверяется на каждом новом ускорителе: первым делом физики пытаются «разбить» кварк и заглянуть к нему внутрь. Но пока ничего такого не видно. Кварк остается абсолютно точечной частицей во всех экспериментах. Но лично я уверен, что наверняка есть что-то более глубокое и фундаментальное.

— Каких экспериментальных открытий в области физики элементарных частиц вы ждете больше всего?

— Мне бы очень хотелось увидеть частицу, которая отвечает за темную материю. Это очень интересная загадка, в которой соприкасается астрофизика и физика элементарных частиц. Наблюдения косвенно указывают, что мы можем найти такую частицу на ускорителях или в космических лучах. Кстати, я сейчас в CERN оцениваю проекты будущих экспериментов на БАК и вижу, что все самые современные результаты физики элементарных частиц отлично согласуются со Стандартной моделью. Так что принципиально новую физику нужно искать именно в темной материи — сложно пока представить, чтобы ее можно было описать в рамках Стандартной модели.

Свойства фермионов (массы указаны в условных единицах относительно массы электрона), фактически в физике массы элементарных частиц при расчетах принято указывать в эквивалентной энергии, (Мэв). см. *)

Кварки

Аромат

Масса

Заряд

338561

Классификация элементарных частиц начала интенсивно развиваться с середины 1950-х годов. Параллельно предпринимались попытки "построить" все известные элементарные частицы из небольшого числа составных частей.

К числу таких попыток можно отнести нелокальную теорию поля Юкавы, единую теорию Гейзенберга и другие. Этим приятным фантазиям не суждено было стать настоящими физическими теориями. Главная причина их неудачи в том, что в них ещё недостаточно учитывались феноменальные свойствах элементарных частиц.

Первый реальный успех в деле классификации элементарных частиц выпал на долю Гелл-Манна и Цвейга, показавших, что все известные к 1964 г. барионы и мезоны (см. дальше) можно составить из трех фундаментальных объектов, названных Гелл-Манном кварками.

После 1964 г. были открыты новые барионы и мезоны , для классификации которых оказалось недостаточно трех кварков, введенных Гелл-Манном и Цвейгом. В настоящее время к трем первоначальным кваркам добавлены ещё три: общее число кварков возросло до шести. Кроме того, принято, что каждый кварк существует в трех "лицах"; если каждое из этих лиц считать за особую частицу, то полное число кварков равно 18. Забегая вперёд, поясним, что барионы образуются как соответствующим образом подобранные комбинации трёх кварков; разным тройкам кварков отвечают разные барионы. Мезоны строятся из двоек (пар) кварков.

Следует иметь ввиду, что согласно законам квантовой механики, элементарные частицы обладают волновыми свойствами и необычность их поведения определяется именно этим. Хотя стандартная модель способна достаточно точно описать все характеристики элементарных частиц, нам их поведение трудно представить только на основании повседневного опыта. Само слово «квантовый» означает «разбитый на части», т.е. дискретный. Поэтому, описывая элементарные частицы мы будем по мере описания перечислять и пояснять некоторые другие специфические характеристики элементарных частиц, которые описывают квантовые состояния частицы.

Основные понятия теории кварков выдвинули американские учёные. Чтобы различить шесть кварков (каждый из которых существует в трех лицах или видах), американские физики наделили кварки свойством, которое они назвали «аромат» . Разумеется, никакого различимого носом запаха кварки не испускают, но считается, что каждый из шести (тройных) кварков «пахнет» по-своему, имеет, так сказать, особый, собственный аромат. В частности, все три лица каждого кварка «пахнут» одинаково, то есть имеют общий для всей троицы единый аромат.

Что такое Аромат (flavor)?

Название для этой характеристики придумали Мюррей Гелл-Манн (Murray Gell-Mann) и Харальд Фрич (Harald Fritzsch), проходя мимо популярного кафе компании Baskin-Robbins с привлекательной рекламой множества сортов мороженого: «Count the Flavors. Where flavor counts» (в переводе, "Оцените ароматы. Аромат имеет значение") в 1968 г. Они пытались придумать новые названия для характеристик квантовых состояний.

В своё время, придумывая названия ароматов, американцы позабавились: они дали такие названия, чтобы не было неприятно нюхать, если бы кварки и в самом деле пахли. Названия даны веселые, смешные, похожие на названия духов в парфюмерной лавке: «очарование», «странность». Обычны названия только первых двух ароматов: «вверх» и «вниз». Однако, постепенно высокохудожественные названия (верхний, нижний, очарованный, странный, а особенно истинный и красивый) вышли из употребления учёных, и они предпочитают называть их просто по первой английской букве. Причём, вместо слов «истинный» (true ) и «красивый» (beauty ), предпочитают использовать слова «самый высокий» (top ) и «самый низкий» (bottom ). Проще уяснить, что т.н. аромат есть ни что иное, как тип кварка (u,d,s,c,b,t ).

К ароматам также относятся другие квантовые характеристики элементарных частиц (сейчас эти характеристики принято называть квантовыми числами): лептонное число (lepton number), барионное число (baryon number), электрический заряд (!), изоспин (или изотопический спин) (isospin), гиперзаряд (hypercharge), слабый гиперзаряд (weak hypercha-rge), слабый изоспин (weak isospin), странность (strangeness), очарование (charm), низменность (topness), высотность (bottomness). Они используются для учёта ряда свойств элементарных частиц.

Чтобы различить три вида (лица), в которые воплощается каждый из шести кварков, пользуются термином «цвет» . Конечно, кварки не имеют никакого видимого цвета. Такое название - просто метка, позволяющая различать «трех близнецов». Ну, а если говорить более строго научно, то цвет или цветовой заряд - это более сложный аналог спина, который характеризует взаимодействие кварков и глюонов . Название этой характеристики было выбрано по аналогии с оптикой, где красный, зеленый и синий цвета при смешении дают белый цвет. Дело в том, что в рамках сильного взаимодействия возможно притяжение либо двух частиц с противоположным цветом (цвет и антицвет), либо трех частиц с определенной комбинацией цветов, которая в сумме даёт «белый» цвет (разумеется, квантовый, а не оптический). Кварк имеет один из 3 цветов, а глюон - один из 8 цветов или антицветов. Откуда? Забегая вперед, сразу поясним.

Глюоны являются переносчиками сильного взаимодействия, именно они и "связывают" кварки между собой. Глюоны имеют не один, а два цветовых индекса (цвет и антицвет). Всего имеется 8 цветных глюонов , поскольку комбинация жж+сс+кк не имеет цветового заряда (т.е. является "белой") и, следовательно, не переносит сильное взаимодействие. В свободном состоянии глюоны не существуют. Они, как и кварки, "заперты" внутри бесцветных адронов . Все остальные элементарные частицы не имеют цвета.

Спин - одна из самых загадочных характеристик, которая демонстрирует, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Спин (от англ. to spin - "крутиться") электрона часто сравнивают с угловым моментом «быстро вращающегося волчка». Это неверно, поскольку спин не связан с движением в пространстве в нашем понимании и является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике. Спин измеряется целыми и полуцелыми числами, умноженными на постоянную Планка (h/2π ) (хотя для краткости часто это умножение не упоминается). Такой фундаментальный вывод вытекает из релятивистской квантовой теории поля, которая предсказывает, а опыт подтверждает, что S =0; 1/2; 1; 3/2; 2; ...
Частица, обладающая спином J (сейчас принято спин обозначать через J, чтобы не путать с S-кварком), может находиться в (2 J +1) спиновых состояниях. Например, спин J электрона равен 1/2, поэтому у него может быть только два спиновых состояния 2·(1/2)+1, т.е. 1/2 и -1/2.

Итак, каждый из 18 кварков имеет собственный аромат и цвет . При помощи цвета мы различаем кварковые лица, «пахнущие» одинаково: существует шесть различных «запахов»-ароматов. Выше мы говорили, что барионы строятся как подходящие комбинации трех кварков. Под словом «подходящая» имеется в виду бесцветная комбинация. То же относится и к парам кварков, из которых строятся мезоны. Комбинации надо выбирать «бесцветными», потому что наблюдаемые реально элементарные частицы не имеют цвета. Например, протон имеет кварковую структуру p=(uud) , т.е. состоит из двух u -кварков и одного d -кварка, нейтрон - n=(udd) , т.е. состоит из одного u -кварка и двух d -кварков.

Сами кварки не существуют в свободном состоянии, они всегда «связаны» между собой в частицах, которые они образуют, по крайней мере, свободных кварков, то есть кварков, сильно отдаленных от всех иных кварков обнаружить не удаётся. Кварки существуют только в связанном состоянии, и явление, приводящее к неразрывности кварковых связей, называется конфайнмент.

Кратко суть конфайнмента (т.е. "удержания", "пленения") состоит в том, что силы, связывающие кварки друг с другом, при удалении не уменьшаются, а возрастают (!). Это приписывается свойствам сильного взаимодействия - глюонного поля, которое связывает кварки внутри адронов. Такой непривычный вывод даёт квантовая хромодинамика - теория, описывающая все свойства адронов и их столкновений. Так, например, при попытке «вырвать» кварк из протона глюонное поле порождает дополнительную кварк-антикварковую пару, и от протона уже отделяется не кварк, а пи-мезон. Пи-мезон уже может улететь сколь угодно далеко от протона, потому что силы между адронами ослабевают с расстоянием.

У элементарных частиц электрический заряд может быть кратным только заряду электрона, т.е равным 0, ±1, ±2, ... за исключением кварков, заряд которых равен -1/3 и +2/3 заряда электрона, но кварки в совокупности образуют частицы только с целочисленным электрическим зарядом. В микромире справедлив закон сохранения электрического заряда, утверждающий, что суммы зарядов частиц до и после взаимодействия равны.

Теперь возникает естественный вопрос: насколько реально существование самих кварков? Экспериментаторы интенсивно искали их, причём самыми разными способами (например, с помощью счетчиков, трековых детекторов и опытов типа опыта Милликена) и в самых различных источниках (на ускорителях, в космическом излучении, в морской воде, в земных породах, в метеоритах и т. п.). Однако все попытки непосредственной регистрации кварков пока оказались безуспешными.

Сейчас общепринята точка зрения, согласно которой кварки, будучи цветными объектами, в принципе не могут существовать в свободном состоянии, а могут находиться только внутри белых частиц - адронов.

В частности, нельзя непосредственно зарегистрировать не только сами кварки q , но и дикварки qq , которые также должны нести некоторый цвет. Теоретическое обоснование конфайнмента цвета (его «удержания», «пленения») внутри адронов находится пока в стадии разработки. Решение проблемы кроется в весьма необычных свойствах сил, действующих между кварками: оказывается, энергия взаимодействия кварков не убывает с ростом расстояния между ними, как мы привыкли считать, а возрастает.

И тем не менее только с помощью кварков удаётся описать и объяснить всё многообразие свойств и превращений адронов, образующих чрезвычайно широкий класс. Мало того, опыты по рассеянию лептонов высоких энергий на протонах и нейтронах позволили измерить экспериментально основные характеристики кварков. Результаты этих опытов однозначно свидетельствуют о том, что кварки внутри адронов действительно есть, что их спин равен именно 1/2, что они обладают дробными электрическими зарядами и существуют в трех цветовых разновидностях.

Опыты по рассеянию электронов и позитронов из встречных пучков позволили почти непосредственно «увидеть» кварки. При столкновении эти частицы превращаются в фотон (виртуальный), который порождает кварк-антикварковую пару. Полный импульс системы равен нулю, а потому кварк и антикварк разлетаются в противоположные стороны. Они не могут существовать в свободном состоянии и «обесцвечиваются»: каждый генерирует большое количество мезонов, летящих преимущественно в его первоначальном направлении. В итоге образуются две достаточно узкие струи мезонов, которые и были зарегистрированы на опыте. Ни одна теоретическая схема, кроме кварковой, не в состоянии объяснить сколько-нибудь естественным способом двухструйную структуру событий и описать характеристики рождающихся мезонов.

Таким образом, принципиальная правильность общих концепций теории кварков сейчас не вызывает никаких сомнений. Кварки несомненно существуют, но только в связанном состоянии. Поэтому сам термин «существование» обрёл в физике микромира несколько неожиданную трактовку, и он требует даже философского переосмысления.

В котором есть информация о том, что все элементарные частицы, входящие в состав любого химического элемента, состоят из различного числа неделимых фантомных частичек По, мне стало интересно, почему же в докладе не говорится о кварках, ведь традиционно считается, что именно они являются структурными элементами элементарных частиц.

Теория кварков уже давно стала общепризнанной среди учёных, которые занимаются исследованиями микромира элементарных частиц. И хотя в самом начале введение понятия «кварк» было чисто теоретическим допущением, существование которого лишь предположительно подтвердилось экспериментально, на сегодняшний день этим понятием оперируют как непреклонной истинной. Учёный мир условился называть кварки фундаментальными частицами, и за несколько десятилетий это понятие стало центральной темой теоретических и экспериментальных изысканий в области физики высоких энергий. «Кварк» вошёл в программу обучения всех естественнонаучных ВУЗов мира. На исследования в данной области выделяются огромные средства - чего только стоит строительство Большого адронного коллайдера. Новые поколения учёных, изучая теорию кварков, воспринимают её в том виде, в каком она подана в учебниках, практически не интересуясь историей данного вопроса. Но давайте попробуем непредвзято и честно посмотреть в корень «кваркового вопроса».

Ко второй половине XX века, благодаря развитию технических возможностей ускорителей элементарных частиц - линейных и круговых циклотронов, а затем и синхротронов, учёным удалось открыть множество новых частиц. Однако что делать с этими открытиями они не понимали. Тогда была выдвинута идея, исходя из теоретических соображений, попытаться сгруппировать частицы в поисках некоего порядка (подобно периодической системе химических элементов - таблице Менделеева). Учёные условились тяжелые и средние по массе частицы назвать адронами , а в дальнейшем их разбить на барионы и мезоны . Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, назвали лептонами , они участвовали в электромагнитном и слабом взаимодействии . С тех пор физики пытались объяснить природу всех этих частиц, стараясь найти общую для всех модель, описывающую их поведение.

В 1964 году американские физики Мюррей Гелл-Ман (Лауреат Нобелевской премии по физике 1969 г.) и Джордж Цвейг независимо друг от друга предложили новый подход. Было выдвинуто чисто гипотетическое предположение, что все адроны состоят из трёх более мелких частиц и соответствующих им античастиц. И Гелл-Ман назвал эти новые частицы кварками. Занимательно, что само название он позаимствовал из романа Джеймса Джойса «Поминки по Финнегану», где герою во снах часто слышались слова о таинственных трёх кварках. То ли Гелл-Ман слишком эмоционально воспринял этот роман, то ли ему просто нравилось число три, но в своих научных трудах он предлагает ввести в физику элементарных частиц первые три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладающие дробным электрическим зарядом + 2 / 3 , — 1 / 3 и — 1 / 3 соответственно, а для антикварков принять, что их заряды противоположны по знаку.

Согласно данной модели протоны и нейтроны, из которых, как предполагают учёные, состоят все ядра химических элементов, составлены из трёх кварков: uud и udd соответственно (снова эти вездесущие три кварка). Почему именно из трёх и именно в таком порядке не пояснялось. Просто так придумали авторитетные научные мужи и всё тут. Попытки сделать теорию красивой не приближают к Истине, а лишь искривляют и без того кривое зеркало, в котором отражена Её частичка. Усложняя простое, мы отдаляемся от Истины. А всё так просто!

Вот так строится «высокоточная» общепризнанная официальная физика. И хотя изначально введение кварков предлагалось в качестве рабочей гипотезы, но спустя короткое время эта абстракция плотно вошла в теоретическую физику. С одной стороны, она позволила с математической точки зрения решить вопрос с упорядочиванием обширного ряда открытых частиц, с другой же, оставалась лишь теорией на бумаге. Как обычно это делается в нашем потребительском обществе, на экспериментальную проверку гипотезы существования кварков было направленно очень много человеческих сил и ресурсов. Средства налогоплательщиков расходуются, людям надо о чём-то рассказывать, отчёты показывать, говорить о своих «великих» открытиях, чтобы получить очередной грант. «Ну раз надо, значит сделаем», - говорят в таких случаях. И вот это случилось.

Коллектив исследователей Стэнфордского отделения Массачусетского технологического института (США) на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжёлый изотоп водорода, ядро которого содержит один протон и один нейтрон). При этом измерялись угол и энергия рассеяния электронов после столкновения. В случае малых энергий электронов рассеянные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман (Лауреат Нобелевской премии по физике 1965 г. и, кстати, один из создателей атомной бомбы в 1943-1945 годах в Лос-Аламосе) и Джеймс Бьёркен истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков .

Обратите, пожалуйста, внимание на этот ключевой момент. Экспериментаторы в ускорителях сталкивая пучки частиц (не единичные частицы, а пучки!!!), набирая статистику(!!!) увидели, что протон и нейтрон из чего-то там состоят. Но из чего? Они ведь не увидели кварки, да ещё и в числе трёх штук, это невозможно, они просто увидели распределение энергий и углы рассеяния пучка частиц. А поскольку единственной на то время теорией строения элементарных частиц, хоть и весьма фантастической, была теория кварков, то и посчитали этот эксперимент первой успешной проверкой существования кварков.

Позже, конечно же, последовали и другие эксперименты и новые теоретические обоснования, но суть их одна и та же. Любой школьник, прочитав историю данных открытий, поймёт, насколько всё в этой области физики притянуто за уши, насколько все банально нечестно.

Вот так и ведутся экспериментальные исследования в области науки с красивым названием - физика высоких энергий. Давайте будем честными сами перед собой, на сегодняшний день не существует чётких научных обоснований существования кварков. Этих частиц просто нет в природе. Понимает ли хоть один специалист, что на самом деле происходит при столкновении двух пучков заряженных частиц в ускорителях? То, что на этой кварковой теории строилась так называемая Стандартная модель, которая якобы является самой точной и правильной, ещё ни о чём не говорит. Специалистам хорошо известны все изъяны этой очередной теории. Вот только почему-то об этом принято умалчивать. Но почему? «И самая большая критика Стандартной модели касается тяготения и происхождения массы. Стандартная модель не учитывает тяготения и требует, чтобы масса, заряд и некоторые другие свойства частиц измерялись опытным путем для последующей постановки в уравнения» .

Несмотря на это огромные средства выделяются на эту область исследований, вдумайтесь только, на подтверждение Стандартной модели, а не поиски Истины. Построен Большой адронный коллайдер (CERN, Швейцария), сотни других ускорителей по всему миру, выдаются премии, гранты, содержится огромный штат технических специалистов, но суть всего этого - банальный обман, Голливуд и не более. Спросите любого человека - какую реальную пользу обществу приносят эти исследования - никто вам не ответит, поскольку это тупиковая ветвь науки. С 2012 года заговорили об открытии бозона Хиггса на ускорителе в CERN . История этих исследований - это целый детектив, в основе которого всё тот же обман мировой общественности. Занимательно, что этот бозон якобы открыли именно после того, как зашла речь о прекращении финансирования этого дорогостоящего проекта. И дабы показать обществу важность этих исследований, оправдать свою деятельность, дабы получить новые транши на строительство ещё более мощных комплексов, сотрудникам CERN, работающим в этих исследования, и пришлось пойти на сделку со своей совестью, выдавая желаемое за действительное.

В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» на этот счёт есть такая интересная информация: «Учёные обнаружили ча-стицу, предположительно похожую на бозон Хиггса (бозон был пред-сказан английским физиком Пите-ром Хиггсом (Peter Higgs; 1929), со-гласно теории, он должен обладать конечной массой и не иметь спина). На самом деле то, что обнаружили учёные, не является искомым бо-зоном Хиггса. Но эти люди, сами того ещё не осознавая, сделали действительно важное открытие и обнаружили гораздо большее. Они экспериментально обнаружили яв-ление, о котором подробно описа-но в книге «АллатРа» (примечание: книга «АллатРа», стр. 36 послед-ний абзац). .

Как же на самом деле устроен микромир материи? В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» есть достоверная информация об истинном строении элементарных частиц, знания, которые были известны и древним цивилизациям, чему есть неопровержимые доказательства в виде артефактов. Элементарные частицы состоят из различного числа фантомных частичек По . «Фантомная частичка По ‒ это сгусток, состоящий из септонов, вокруг которого находится небольшое разреженное собственное септонное поле. Фантомная частичка По имеет внутренний потенциал (является его носителем), обновляющийся в процессе эзоосмоса. Согласно внутреннему потенциалу, фантомная частичка По имеет свою соразмерность. Самой наименьшей фантомной частичкой По является уникальная силовая фантомная частичка По ‒ Аллат (примечание: подробнее см. далее по докладу) . Фантомная частичка По ‒ это упорядоченная структура, находящаяся в постоянном спиралевидном движении. Она может существовать только в связанном состоянии с другими фантомными частичками По, которые в конгломерате образуют первичные проявления материи. Вследствие своих уникальных функций, является своеобразным фантомом (призраком) для материального мира. Учитывая, что из фантомных частичек По состоит вся материя, это задаёт ей характеристику иллюзорной конструкции и формы бытия, зависимой от процесса эзоосмоса (наполнения внутреннего потенциала).

Фантомные частички По являются нематериальным образованием. Однако в сцепке (последовательном соединении) между собой, выстроенные согласно информационной программе в определённом количестве и порядке, на определённом расстоянии друг от друга, они составляют основу строения любой материи, задают её разнообразие и свойства, благодаря своему внутреннему потенциалу (энергии и информации). Фантомная частичка По ‒ это то, из чего состоят в своей основе элементарные частицы (фотон, электрон, нейтрино и так далее), а также частицы-переносчики взаимодействий. Это первичное проявление материи в этом мире» .

Проведя после прочтения данного доклада такое небольшое исследование истории развития теории кварков и в целом физики высоких энергий, стало понятно, как всё-таки мало знает человек, если ограничивает своё познание лишь рамками материалистического мировоззрения. Одни допущения от ума, теория вероятности, условная статистика, договорённости и отсутствие достоверных знаний. А ведь люди порой на эти исследования тратят свои жизни. Уверен, что среди учёных и этой области физики есть множество людей, которые действительно пришли в науку не ради славы, власти и денег, а ради одной цели - познания Истины. Когда им станут доступны знания «ИСКОННОЙ ФИЗИКИ АЛЛАТРА», они сами наведут порядок и сделают действительно эпохальные научные открытия, которые принесут реальную пользу обществу. С выходом в свет этого уникального доклада сегодня открыта новая страница мировой науки. Теперь уже стоит вопрос не в знаниях как таковых, а в том, готовы ли сами люди к созидательному использованию этих Знаний. В силах каждого человека сделать всё возможное, чтобы все мы преодолели навязанный нам потребительский формат мышления и пришли к пониманию необходимости создания основ построения духовно-созидательного общества будущего в грядущую эпоху глобальных катаклизмов на планете Земля.

Валерий Вершигора

Ключевые слова: кварки, теория кварков, элементарные частицы, бозон Хиггса, ИСКОННАЯ ФИЗИКА АЛЛАТРА, Большой адронный коллайдер, наука будущего, фантомная частичка По, септонное поле, аллат, познание истины.

Литература:

Коккедэ Я., Теория кварков, М., Издательство «Мир», 340 с., 1969, http://nuclphys.sinp.msu.ru/books/b/Kokkedee.htm ;

Arthur W. Wiggins, Charles M. Wynn, The Five Biggest Unsolved Problems in Science, John Wiley & Sons, Inc., 2003 // Уиггинс А., Уинн Ч. «Пять нерешённых проблем науки» в пер. на русский;

Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, 09 Jul 2012, CERN LHC, ATLAS, http://cds.cern.ch/record/1460439 ;

Observation of a new boson with a mass near 125 GeV, 9 Jul 2012, CERN LHC, CMS, http://cds.cern.ch/record/1460438?ln=en ;

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

Частицы в составе атомного ядра состоят из еще более фундаментальных частиц — кварков.

На протяжении двух последних веков ученые, интересующиеся строением Вселенной, искали базовые строительные блоки, из которых состоит материя, — самые простые и неделимые составляющие материального мира. Атомная теория объяснила всё многообразие химических веществ, постулировав существование ограниченного набора атомов так называемых химических элементов, объяснив природу всех остальных веществ через различные их сочетания. Таким образом, от сложности и многообразия на внешнем уровне ученым удалось перейти к простоте и упорядоченности на элементарном уровне.

Но простая картина атомного строения вещества вскоре столкнулась с серьезными проблемами. Прежде всего, по мере открытия всё новых и новых химических элементов стали обнаруживаться странные закономерности в их поведении, которые, правда, удалось прояснить благодаря вводу в научный обиход периодической системы Менделеева . Однако представления о строении материи всё равно сильно усложнились.

В начале XX столетия стало ясно, что атомы отнюдь не являются элементарными «кирпичиками» материи, а сами имеют сложную структуру и состоят из еще более элементарных частиц — нейтронов и протонов, образующих атомные ядра, и электронов, которые эти ядра окружают. И снова усложненность на одном уровне, казалось бы, сменила простота на следующем уровне детализации строения вещества. Однако и эта кажущаяся простота продержалась недолго, поскольку ученые стали открывать всё новые и новые элементарные частицы . Труднее всего было разобраться с многочисленными адронами — тяжелыми частицами, родственными нейтрону и протону, которые, как оказалось, во множестве рождаются и тут же распадаются в процессе различных ядерных процессов.

Более того, в поведении различных адронов были обнаружены необъяснимые закономерности — и из них у физиков стало складываться некое подобие периодической таблицы. Использовав математический аппарат так называемой теории групп , физикам удалось объединить адроны в группы по восемь — два типа частиц в центре и шесть в вершинах правильного шестиугольника. При этом частицы из каждой восьмеричной группы, располагающиеся на одном и том же месте в таком графическом представлении, обладают рядом общих свойств, подобно тому как схожие свойства демонстрируют химические элементы из одного столбца таблицы Менделеева, а частицы, расположенные по горизонтальным линиям в каждом шестиугольнике, обладают приблизительно равной массой, но отличаются электрическими зарядами (см. рисунок). Такая классификация получила название восьмеричный путь (в честь одноименной доктрины в буддистской теологии). В начале 1960-х годов теоретики поняли, что такую закономерность можно объяснить лишь тем, что элементарные частицы на самом деле таковыми не являются, а сами состоят из еще более фундаментальных структурных единиц.

Эти структурные единицы назвали кварками (слово позаимствовано из замысловатого романа Джеймса Джойса «Поминки по Финнегану»). Эти новые обитатели микромира оказались существами весьма странными. Для начала, они обладают дробным электрическим зарядом: 1/3 или 2/3 заряда электрона или протона (см. таблицу). А далее, по мере развития теории, выяснилось, что отдельно их не увидишь, поскольку они вообще не могут пребывать в свободном, не связанном друг с другом внутри элементарных частиц состоянии, и о самом факте их существования можно судить только по свойствам, проявляемым адронами, в состав которых они входят. Чтобы лучше понять этот феномен, получивший название пленение или заточение кварков , представьте, что у вас в руках длинный эластичный шнур, каждый конец которого представляет собой кварк. Если приложить к такой системе достаточно энергии — растянуть и порвать шнур, то он порвется где-то посередине, и свободного конца вы не получите, а получите два резиновых шнура покороче, и у каждого из них опять окажется два конца. То же и с кварками: какими бы энергиями мы ни воздействовали на элементарные частицы, стремясь «выбить» из них кварки, нам этого не удастся — частицы будут распадаться на другие частицы, сливаться, перестраиваться, но свободных кварков мы не получим.

Сегодня, согласно теории, предсказывается существование шести разновидностей кварков, и в лабораториях уже открыты элементарные частицы, содержащие все шесть типов. Самые распространенные кварки — верхний , или протонный (обозначается u — от английского up , или p proton ) и нижний , или нейтронный (обозначается d — от down , или n — от neutron ), поскольку именно из них состоят единственные по-настоящему долгоживущие адроны — протон (uud ) и нейтрон (udd ). Следующий дублет включает странные кварки s (strange ) и очарованные кварки с (charmed ). Наконец, последний дублет состоит из красивых и истинных кварков — b (от beauty , или bottom ) и t (от truth , или top ). Каждый из шести кварков, помимо электрического заряда, характеризуется изотопическим (условно направленным) спином . Наконец, каждый из кварков может принимать три значения квантового числа, которое называется его цветом (color ) и обладает ароматом (flavor ). Конечно же, кварки не пахнут и не имеют цвета в традиционном понимании, просто такое название сложилось исторически для обозначения их определенных свойств (см. Квантовая хромодинамика).

Стандартная модель останавливается на уровне кварков в детализации строения материи, из которой состоит наша Вселенная; кварки — самое фундаментальное и элементарное в ее структуре. Однако некоторые физики-теоретики полагают, что «луковицу можно лущить и дальше», но это уже чисто умозрительные построения. По моему личному мнению, Стандартная модель правильно описывает строение вещества, и хотя бы в этом направлении наука дошла до логического завершения процесса познания.

Теория кварков была разработана для того, чтобы описывать взаимодействие частиц. Важно отметить, что в свободном состоянии кварк в природе не встретить, так как кварк, строго говоря, сам по себе не является частицей. Это способ конфигурации электромагнитной волны в частице, а частица обычно включает в себя далеко не одну такую волну. Заряд кварка равен одной трети заряда электрона, а его масштаб составляет 0,5*10^-19 (10 в минус девятнадцатой степени), это меньше размера протона примерно в 20 тыс. раз. Адроны (к которым относится протон ) тоже состоят из кварков.

На настоящее время различают шести типов кварков, как правило, говорят, «ароматов». Помимо этого, кварк также имеет еще одну характеристику, важную для различения типа, это цвет. Очевидно, что это абстрактное деление, настоящий кварк, конечно же, не имеет ни цвета, на аромата. Но для калибрования кварков эта теория очень удобна. Каждому типу кварка соответствует антикварк – то есть, «частица», квантовые числа которой противоположны. Квантовые числа служат для описания свойств кварка.

История о том, как кварки получили свое название, достаточно забавна. Гелл-Манн, ученый, который впервые предположил, что адроны состоят из особенных частиц, позаимствовал это словечко из романа Джеймса Джойса «Поминки по Финнегану», в котором присутствуют : «Три кварка для мистера Марка!».

Теорию кварков вообще можно назвать одной из самых поэтичных. Тут и , и характеристики цвета и аромата, и сами типы кварков: истинный, очарованный, … Каждый тип кварка характеризуется зарядом и массой.

Роль кварков в физике

На основе кварков происходят сильное, слабое и электромагнитное взаимодействия. При сильных взаимодействиях может меняться цвет кварка, но не аромат. Слабые взаимодействия меняют аромат, но не цвет.

При сильном взаимодействии один отдельно взятый кварк не может удалиться от остальных кварков на сколько-нибудь заметное расстояние, именно поэтому в свободном виде их наблюдать невозможно. Это явление называется конфайнмент. Но адроны – «бесцветные» комбинации кварков – уже могут разлетаться друг от друга.

Реальны ли кварки?

Так как из-за конфайнмента увидеть отдельные кварки невозможно, то нередко неспециалисты спрашивают: «Реальны ли вообще кварки, если мы не можем их наблюдать? Не математическая ли это абстракция?»

Причин реальности теории кварков несколько:

Все адроны, несмотря на их многочисленность, обладают очень небольшим числом степеней свободы. Первоначально теория кварков описывала именно эти свободные параметры.
- Кварковая модель появилась раньше, чем стали известны многие адронные частицы, но все они в нее отлично вписывались.
- Кварковая модель некоторые последствия, которые затем были подтверждены экспериментально. Например, в адронных коллайдерах стало возможно «выбивать» кварки из протонов при высокоэнергетических столкновениях, и результаты этих процессов наблюдались в виде струй. Если бы протон был неделимой частицей, никаких струй бы не могло существовать.

Разумеется, несмотря на экспериментальные подтверждения, модель кварков еще оставляет физикам немало вопросов.

Самым распространенным минералом в земной коре является кварц. Он относится к породообразующим минералам. Встретить в природе кварц можно как в чистом виде, так и в виде силикатов.

Образование кварца

Название минерала произошло от немецкого слова «quarz». В переводе на русский оно означает «твердый». Впервые человек столкнулся с этим минералом в Альпах. Тогда все приняли его за лед. Но вскоре ему присвоили название «горный хрусталь».

Кристаллы кварца образуются в результате геологических изменений. Минерал не имеет цвета, но в отдельных случаях может иметь белые вкрапления. Происходит это из-за внутренних дефектов. Благодаря химическим реакциям, можно получить зеленый и голубой кварц.

Самым распространенным способом образования кварца в природе является возникновенье с помощью магмы кислого состава. Появившийся таким способом кварц можно встретить в вулканических, осадочных или известняковых породах.

Свойства кварца

Кварц имеет стеклянный блеск с жирным отливом. Твердость минерала равна семи по шкале Мооса. Если отломить кусочек кварца, то можно увидеть неровный излом.

Растворить этот минерал поможет щелочь. Температура его плавления примерно +1713 градусов Цельсия.Кварц имеет способность к стеклообразованию.

Самым важным свойством кварца является пьезоэффект. Суть его проста и заключается в том, что кварц является отличным проводником ультразвука. Плоская полированная пластина кварца с прикрепленными электродами образовывает резонатор. Он широко используется в качестве фильтра с высокой избирательной способностью.

Применение кварца

В настоящее время кварц является одним из самых ценных минералов. Его используют при производстве многих оптических приборов, а также при создании средств связи, таких как радио и телефон.

Кварц широко используется при создании ювелирных украшений. Благодаря своему главному свойству он используется и для военных нужд (кварцевый резонатор). Также в настоящее время кварц используют как источник ультразвука в промышленных и медицинских исследовательских и даже бытовых приборах.

Разновидности кварца

Существует множество разновидностей кварца. Связано это с его уникальностью. Проявляется она в том, что во время роста кристалл может захватывать другие минералы или остатки ила.

Самыми редкими и удивительными камнями считаются «Волосы Венеры» и кварц «фантом». Горный хрусталь молочного или дымчатого цвета с включениями золотистых волков является наиболее ценным. Легенда гласит, что богиня любви уронила свой локон в горную речку, и там он навсегда, превратившись в «Волосы Венеры».

Кварц фантом образовывается оседанием мельчайших частиц хлорита на растущий кристалл кварца. Такой камень является редкой и особенно ценной находкой для ученых и коллекционеров.

Раухтопаз выступает разновидностью кварца. В народе его называют дымчатым кварцем за его светло-серый или светло-бурый цвет.

Самый дорогой разновидности кварца является аметист. Он относится к драгоценным камням и имеет фиолетовый, фиолетово-розовый или сиренево-красный цвет.