Распределение энергии в ферми сфере. Ферми-энергия

3.1. Статистическое описание коллектива частиц.

Функция распределения частиц по состояниям. Фермионы и бозоны

Согласно результатам зонной теории твердых тел электроны в кристаллах удобно рассматривать как свободные частицы, эффективная масса которых отличается от массы свободного электрона. В полупроводниках, кроме электронов, носителями заряда являются и положительно заряженные частицы - дырки. Таким образом, в явлениях, в которых основную роль играют эти частицы (электропроводность, теплопроводность, взаимодействие со светом и т.д.) твердое тело можно рассматривать как газ электронов и дырок.

Системы, состоящие из большого количества тождественных частиц, являются предметом изучения статистической физики. Основной особенностью статистических закономерностей является их вероятностный характер. Хорошо известен метод статистического описания коллектива молекул идеального газа. Несмотря на то, что скорость отдельной молекулы газа является величиной случайной в газе, состоящем из большого числа одинаковых молекул, наблюдается определенная закономерность в распределении их по скоростям. Используя методы статистической физики, всегда можно указать, какая доля молекул имеет скорость, заключенную в данном интервале значений.

Основная задача статистики состоит в определении числа частиц, энергия которых лежит в заданном интервале. Результатом решения этой статистической задачи является нахождение функции распределения частиц по энергиям , которую обозначают обычно f(E). Если dZ - число возможных состояний ансамбля частиц с энергией, заключенной в интервале от E до E+dE , а dN - число частиц, находящихся в этих состояниях, то по определению

(3.1)

Таким образом, функция распределения частиц по энергиям есть плотность заполнения данных состояний частицами.

Для молекул идеального газа f (E ) известна как функция распределения Максвелла-Больцмана :

(3.2)

где С - параметр, не зависящий от энергии; k - постоянная Больцмана; Т - абсолютная температура.

Формулу (3.2) называют часто также каноническим распределением или распределением Гиббса . Из этого распределения можно легко получить известное из молекулярной физики распределение Максвелла молекул идеального газа по скоростям теплового движения. Статистика молекул идеального газа исходит из следующих основных положений:

1. Молекулы газа подчиняются законам классической механики.

2. Молекулы газа обладают индивидуальностью, позволяющей отличать их друг от друга. Поэтому, когда две молекулы, находящиеся в разных состояниях меняют местами, это приводит к новому распределению их по состояниям (новому микросостоянию).

3. Предполагается, что все способы распределения равновероятны.

Предположение о том, что электронный газ в металлах подчиняется статистике Максвелла-Больцмана, опровергается рядом экспериментальных результатов. Например, из этого предположения следует, что электроны должны давать вклад в теплоемкость металлов, который примерно на два порядка больше экспериментально наблюдаемой величины. Противоречие снимается, если учитывать квантовые свойства частиц в кристаллах.

В отличие от классической статистики Максвелла-Больцмана квантовая статистика стоит на точке зрения принципиальной неразличимости тождественных частиц . Поэтому перестановка местами двух квантовых частиц не приводит к новому микросостоянию. Для электронов и всех частиц с полуцелым спином необходимо учитывать также принцип Паули . Согласно этому принципу в одном квантовом состоянии может находиться только одна частица. Такие частицы называются фермионами и подчиняются квантовой статистике Ферми-Дирака . Иной квантовой статистикой описываются частицы с нулевым и целым спином. Эти частицы не подчиняются принципу Паули и в одном состоянии их может бытьсколько угодно. Такие частицы называются бозонами , квантовая статистика, которая описывает их распределение по энергиям, - статистикой Бозе-Эйнштейна . Сравнение этих трех статистик приведено на рис. 3.1 на примере распределения двух частиц по трем состояниям. Различные состояния частиц на этом рисунке изображены клетками.

Все возможные способы распределения двух частиц, подчиняющихся классической статистике Максвелла-Больцмана, по трем состояниям показаны на рис. 3.1,а. Поскольку частицы в этой статистике различимы, они обозначены разным цветом. Всего возможно девять микросостояний, математическая вероятность каждого из них равна 1/9. В квантовых статистиках Бозе-Эйнштейна и Ферми-Дирака микросостояния 1 и 2, 3 и 4, 5 и 6 принципиально неразличимы и каждая пара таких состояний должна рассматриваться как одно микросостояние. Для бозонов число возможных микросостояний равно 6 (рис. 3.1,б), а вероятность каждого из них - 1/6. Для фермионов микросостояния, в которых в каждом состоянии находятся по две частицы, реализоваться не могут. Остаются в статистике Ферми-Дирака только три возможных микросостояния, изображенные на рис. 3.1,в. Вероятность каждого из них равна 1/3.


Статистике Бозе-Эйнштейна подчиняются фотоны и фононы, играющие важную роль в физических свойствах твердых тел. Функция распределения Бозе-Эйнштейна имеет вид

(3.3)

Здесь Е В - химический потенциал системы бозонов.

Если полное число частиц не фиксировано, а должно определяться из условия термодинамического равновесия, как это имеет место для фотонов при излучении абсолютно черного тела, или фононов в кристалле, химический потенциал равен нулю. В этом случае формула (3.3) совпадает с формулой Планка, определяющей среднее число фотонов в данном типе колебаний теплового излучения абсолютно черного тела.

3.2. Функция распределения Ферми-Дирака. Уровень Ферми.

Энергия Ферми. Влияние температуры на распределение Ферми-Дирака

Функция распределения Ферми-Дирака, описывающая распределение фермионов по состояниям, имеет следующий вид:

, (3.4)

здесь E F - химический потенциал системы фермионов, т.е. работа, которую необходимо затратить, чтобы изменить число частиц в системе на одну. В случае электронов величина E F называется энергией Ферми .

Рассмотрим вид функции Ферми-Дирака при температуре, стремящейся к абсолютному нулю. Как нетрудно видеть из формулы (3.4), для любой энергии частицы, большей энергии Ферми, экспонента в знаменателе стремится к бесконечности при , следовательно f(Е) стремится к нулю. Это значит, что все энергетические состояния с Е > E F совершенно свободны при абсолютном нуле. Если Е < E F при , f(E) стремится к единице. Это значит, что все квантовые состояния с энергией, меньше энергии Ферми, полностью заняты электронами. Отсюда понятен физический смысл энергии Ферми как параметра распределения электронов по состояниям: энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля . Энергетический уровень, соответствующий энергии Ферми, называется уровнем Ферми .

Вид функции распределения Ферми-Дирака при Т = 0К представлен на рис. 3.2,а. На рис. 3.2,б показано распределение электронов по энергетическим уровням в зоне проводимости металла при этой же температуре.

Если Т ¹ , то при энергии частицы, равной энергии Ферми, функция распределения Ферми-Дирака равна 1/2 . Это значит, что при любой температуре, отличающейся от абсолютного нуля, уровень Ферми заполнен наполовину. Вид функции Ферми-Дирака для двух различных температур показан схематически на рис. 3.3. Изменение характера распределения электронов по состояниям связано с тепловым возбуждением электронов. При этом часть электронов переходит в состояния с энергиями, большей энергии Ферми. Соответственно часть состояний ниже уровня Ферми оказывается свободной. В результате функция f(E) "размыта" вблизи энергии Ферми. Тепловому возбуждению подвергается незначительная часть электронов, находящихся вблизи уровня Ферми. Функция Ферми-Дирака заметно отличается от вида, который она имела при абсолютном нуле, лишь при . Величина "размытия" пропорциональна температуре (рис. 3.3). Чем выше температура, тем более существенному изменению подвергается функция распределения.



При условии

(3.5)

экспонента в знаменателе становится значительно больше единицы в формуле (3.4). В этом случае единицей можно пренебречь и распределение Ферми-Дирака преобразуется к виду

(3.6)

Выражение (3.6) совпадает по форме с функцией распределения Максвелла-Больцмана.

Вероятность того, что некоторый энергетический уровень с энергией Е свободен, т.е. занят дыркой, равна

(3.7)

Таким образом, функция распределения Ферми-Дирака для дырок аналогична функции распределения для электронов, если в ней изменить знаки показателей экспонент. Это хорошо согласуется с представлением о том, что дырки являются носителями положительного заряда.

Газ носителей заряда, подчиняющийся статистике Ферми-Дирака, называется вырожденным . Если носители заряда подчиняются статистике Максвелла-Больцмана, то они называются невырожденными .

3.3. Функция плотности состояний электронов и дырок

Для определения числа частиц, имеющих энергию в заданном интервале, необходимо, кроме функции распределения , знать функцию плотности состояний . Эта функция описывает распределение уровней в соответствующих зонах и определяет число уровней, приходящихся на единичный интервал энергии. По определению

(3.8)

Здесь, как и раньше, dZ - число возможных состояний ансамбля частиц (число уровней) с энергией, заключенной в интервале от E до E+dE . Функцию g(E) вычислим для кубического кристалла со стороной L . Энергия электрона у дна зоны проводимости приближенно может быть представлена в виде

(3.9)

здесь энергия дна зоны проводимости, - эффективная масса электрона у дна зоны проводимости, k - квазиимпульс электрона, - его компоненты. Согласно граничным условиям, компоненты квазиимпульса могут принимать только следующие дискретные значения энергии:

Каждому набору чисел n x , n y , n z отвечает некоторое квантовое состояние (квантовый уровень). В пространстве волновых векторов каждому квантовому состоянию соответствует объем , где V - объем кристалла. Эти элементарные кубические ячейки займут в пространстве волновых чисел объем шара радиусом k , соответствующего максимально возможному значению модуля волнового вектора. Выделим шаровой слой, заключенный между двумя поверхностями k = const и k +dk = const . Объем этого слоя составляет . Разделив этот объем на объем элементарной ячейки и умножив на 2, поскольку в каждом состоянии могут находиться по два электрона с противоположно направленными спинами, получим число состояний в объеме шарового слоя:

. (3.10)

Согласно (3.9)

Подставляя значения k 2 и dk в формулу (3.10), получим

Учитывая (3.8), получим окончательное выражение для плотности квантовых состояний электронов у дна зоны проводимости:

(3.11)

Энергию дырок у потолка валентной зоны можно записать также в виде параболического закона:

(3.12)

где E v - энергия потолка валентной зоны, - эффективная масса дырки. Вычисления, аналогичные тем, которые были проведены выше для электронов, приводят к следующему выражению для функции плотности состояний дырок вблизи потолка валентной зоны:

(3.13)

Следует подчеркнуть, что формулы (3.11) и (3.13) справедливы только для состояний вблизи экстремумов энергии, т.е. у дна или потолка энергетической зоны. В средней же части зоны точный вид функции g(E ) неизвестен. На рис. 3.4 схематически представлены зависимости плотности квантовых уровней вблизи дна зоны проводимости и потолка валентной зоны.


3.4. Концентрации электронов и дырок в полупроводнике.

Закон действующих масс. Невырожденный газ электронов и дырок

Вычислим концентрацию электронов в зоне проводимости полупроводника. Число электронов dN , находящихся в dZ состояниях энергетической зоны в соответствии с уравнением (3.1) определяется выражением

Учитывая, что dZ = g(E) dE , получим

. (3.14)

Общее число электронов в зоне проводимости найдем, проинтегрировав выражение (3.14) в пределах зоны

, (3.15)

здесь Е п - энергия потолка зоны проводимости. Поскольку функция распределения Ферми-Дирака очень быстро уменьшается с увеличением энергии, то верхний предел интегрирования можно взять равным бесконечности. Если степень заполнения энергетических состояний электронами в зоне проводимости мала (f(E) << 1), что практически всегда имеет место в полупроводниках, то единицей в знаменателе формулы (3.4) можно пренебречь. При этих условиях подстановка функций f(E) и g(E) в уравнение (3.15) приводит к следующему выражению для концентрации электронов в зоне проводимости:

. (3.16)

Преобразуем теперь выражение (3.16) к виду

Произведем замену переменных в подынтегральном выражении

В результате получим

Интеграл в этом выражении равен . Следовательно

(3.17)

где

. (3.18)

Величину N c называют эффективной плотностью состояний в зоне проводимости . Это название связано с тем, что полная концентрация электронов, распределенных в действительности в определенном энергетическом интервале в зоне проводимости, такая же, как если бы зона была занята N c уровнями, обладающими одной и той же энергией Е c .

Аналогично можно вычислить концентрацию дырок в валентной зоне. Поскольку вакантное состояние в валентной зоне образуется в результате перехода электрона из этого состояния в зону проводимости, то вероятность того, что состояние с энергией Е в валентной зоне не занято, равна .

Тогда концентрация дырок

здесь E v - потолок валентной зоны.

При условии, что газ дырок невырожденный, получим

(3.19)

где эффективная плотность состояний в валентной зоне

. (3.20)

Перемножая выражения (3.17) и (3.19), получим

(3.21)

где n i - концентрация собственных носителей заряда в полупроводнике, E g = E c - E v - ширина запрещенной зоны.

Соотношение (3.21) называется законом действующих масс . При выводе этого закона использовано предположение о том, что степень заполнения энергетических уровней носителями заряда много меньше единицы. Такой газ носителей называется невырожденным , а полупроводники - невырожденными .

В общем случае вырожденным газом в физике называется газ, свойства которого отличаются от свойств классического идеального газа вследствие квантово-механических свойств частиц газа. Вырожденный газ подчиняется квантово-механическим статистикам Ферми-Дирака или Бозе-Эйнштейна, невырожденный газ - статистике Маквелла-Больцмана. Условием перехода газа в невырожденное состояние является выполнение неравенства f(E) << 1. Можно показать, что это условие для электронного газа эквивалентно следующему соотношению:

(3.22)

Аналогичное соотношение справедливо и для дырок с заменой n на p и на .

Вопрос о том, является газ носителей заряда в кристалле вырожденным или невырожденным определяется только его концентрацией и температурой. Подстановка численных значений величин, входящих в неравенство (3.22), приводит к выводу о том, что при комнатной температуре (Т ~ 300К) газ носителей будет невырожденным, если его концентрация значительно меньше 10 25 м -3 . Это условие выполняется практически для всех полупроводников. Поскольку концентрация электронов в зоне проводимости металлов превышает 10 28 м -3 , то электронный газ металлов всегда является вырожденным.

Таким образом, закон действующих масс выполняется для любого невырожденного полупроводника независимо от роли примесей, т.е. в любом невырожденном полупроводнике увеличение концентрации носителей одного знака приводит к уменьшению концентрации носителей противоположного знака. Следует отметить также, что произведение электронной и дырочной концентраций не зависит от положения уровня Ферми.

3.5. Уровень Ферми в полупроводниках

Понятия энергии Ферми и уровня Ферми были введены ранее для металлов. Поскольку в полупроводниках функция распределения электронов по состояниям имеет тот же вид, что и в металлах, то энергия Ферми в полупроводниках имеет тот же физический смысл: энергия Ферми - это максимально допустимая энергия, ниже которой при нулевой абсолютной температуре все энергетические уровни заняты [f(E) = 1], а выше которой все уровни пусты [f(E ) = 0]. Для полупроводников, у которых при абсолютном нуле валентная зона полностью заполнена, а зона проводимости совершенно свободна, функция распределения имеет разрыв. Следовательно, уровень Ферми в полупроводнике должен лежать при абсолютном нуле в запрещенной зоне.

Для собственного полупроводника концентрации электронов и дырок равны (n = p ), т.к. каждый электрон, покинувший валентную зону, создает одну дырку. Приравнивая равенства (3.17) и (3.19), получим

Разрешая последнее равенство относительно Е F , получим

(3.23)

Если эффективные массы электронов и дырок равны [ = , = 0] уровень Ферми собственного полупроводника при любой температуре располагается посередине запрещенной зоны.

Температурная зависимость положения уровня Ферми в собственном полупроводнике определяется третьим слагаемым в уравнении (3.23). Если эффективная масса дырки в валентной зоне больше эффективной массы электрона в зоне проводимости, то уровень Ферми смещается с повышением температуры ближе к дну зоны проводимости. В противоположном случае уровень Ферми смещается к потолку валентной зоны. Положение уровня Ферми в собственном полупроводнике с изменением температуры схематически показано на рис. 3.5.

Для большинства полупроводников эффективная масса дырки не намного превышает эффективную массу электрона и смещение уровня Ферми с изменением температуры незначительно. Однако у антимонида индия (InSb) , а ширина запрещенной зоны невелика (E g = 0,17 эВ), так что при Т > 450 K уровень Ферми входит в зону проводимости. При этой температуре полупроводник переходит в вырожденное состояние.


Положение уровня Ферми в примесных полупроводниках может быть найдено из условия электронейтральности кристалла. Для донорного полупроводника это условие записывается в виде

, (3.24)

здесь N d - концентрация донорных уровней, n d - концентрация электронов на донорных уровнях. Концентрация электронов в зоне проводимости равна сумме концентраций дырок в валентной зоне и концентрации положительно заряженных ионов доноров (последняя, очевидно, равна N d - n d ).

Концентрацию электронов на донорных уровнях можно вычислить, умножив концентрацию этих уровней N d на функцию распределения Ферми-Дирака:

, (3.25)

где Е d - энергия активации донорных уровней.

Подстановка в условие электронейтральности (3.24) концентраций электронов (3.17) и дырок (3.19), а также концентрации электронов на донорных уровнях (3.25) приводит к следующему уравнению относительно положения уровня Ферми Е F :

. (3.26)

При подстановке концентрации электронов на донорных уровнях в уравнение (3.24) было сделано предположение, что газ электронов примесных атомов невырожденный, что позволило пренебречь единицей в знаменателе формулы (3.25).

Уравнение (3.26) ввиду его сложности обычно в общем виде не решают, а ограничиваются рассмотрением частных случаев. Например, при низких температурах, когда электроны в зоне проводимости появляются в основном за счет переходов с примесных уровней, а концентрация дырок близка к нулю, решение уравнения (3.26) имеет вид

. (3.27)

Из уравнения (3.27) следует, что при абсолютном нуле температуры энергия Ферми донорного полупроводника находится строго посередине между дном зоны проводимости и донорными уровнями. Температурная зависимость положения уровня Ферми определяется третьим членом в уравнении (3.27), который меняет знак с изменением температуры. Поэтому уровень Ферми с повышением температуры сначала смещается к зоне проводимости, а затем - к валентной зоне (рис. 3.6,а).


Аналогично можно получить выражение для температурной зависимости уровня Ферми в акцепторном полупроводнике. График этой зависимости схематически приведен на рис. 3.6,б.


3.6. Равновесные и неравновесные носители заряда. Квазиуровни Ферми

Положение уровня Ферми в собственных и примесных полупроводниках связано с концентрацией носителей заряда, установившейсяпри данной температуре в состоянии термодинамического равновесия. Переброс электронов в зону проводимости за счет температурного возбуждения и возникновение в результате этого процесса дырок в валентной зоне называется термической генерацией свободных носителей заряда . Одновременно происходит и обратный процесс: электроны возвращаются в валентную зону, в результате чего исчезают электрон и дырка. Этот процесс называется рекомбинацией носителей заряда . Для количественного описания процессов генерации и рекомбинации носителей заряда в полупроводниках используют понятия скорости генерации , скорости рекомбинации и времени жизни носителей заряда.

Скорость генерации носителей - это число носителей, возбуждаемых в единичном объеме полупроводника за единицу времени.

Скорость рекомбинации носителей - это число носителей, рекомбинирующих в единице объема полупроводника за единицу времени.

Время жизни носителeй t - это среднее время от генерации носителя до его рекомбинации.

Из приведенных выше определений непосредственно следуют следующие соотношения между скоростями рекомбинации электронов R n и дырок R p и их временами жизни t n и t p соответственно:

(3.28)

Здесь учтено, что 1/ t - вероятность рекомбинации носителя за единицу времени.

При фиксированной температуре устанавливается термодинамическое равновесие, при котором процессы генерации и рекомбинации взаимно уравновешиваются. Такие носители, находящиеся в тепловом равновесии с кристаллической решеткой, называются равновесными .

Электропроводность полупроводника может быть возбуждена и другими способами, например, облучением светом, действием ионизирующих частиц, электрическим полем, инжекцией носителей через контакт и др. Во всех этих случаях дополнительно к равновесным носителям в полупроводнике возникают носители заряда, которые не будут находиться в состоянии теплового равновесия с кристаллом. Такие носители называются неравновесными .

Общую концентрацию электронов в зоне проводимости n в случае равновесных и неравновесных носителей можно представить в виде

, (3.29)

где n 0 – концентрация равновесных электронов; D n - концентрация неравновесных электронов.

Общая концентрация дырок

, (3.30)

где p 0 и D p - равновесная и неравновесная концентрации дырок соответственно.

Поскольку распределение Ферми-Дирака справедливо только для состояния термодинамического равновесия, то понятно, что статистика неравновесных носителей должна быть иной. В отсутствие термодинамического равновесия принято вводить два новых параметра распределения E Fn для электронов и E Fp для дырок. Эти параметры выбираюттаким образом, чтобы для концентраций электронов и дырок при наличии неравновесныхносителей выполнялись уравнения (3.17) и (3.19) соответственно при условии замены E F на E Fn для электронов и на E Fp для дырок. Величины E Fn и E Fp называют квазиуровнями Ферми электронов и дырок соответственно. Таким образом, в невырожденных полупроводниках справедливы уравнения

, (3.31)

В состоянии термодинамического равновесия квазиуровни Ферми совпадают с равновесным уровнем Ферми E F . Чем выше концентрация неравновесных носителей заряда, тем дальше отстоят квазиуровниФерми от уровня Ферми. Из уравнений (3.31), (3.32), (3.17) и (3.19) следует

. (3.33)

Это соотношение выражает связь между концентрациями электронов и дырок в неравновесном состоянии. Разность энергий характеризует отклонение от состояния термодинамического равновесия. Если np > n 0 · p 0 , то . Это условие соответствует инжекции (вбрасыванию) избыточных носителей. Если np < n 0 p 0 , то говорят об экстракции (обеднении) носителей.

Неравновесные носители играют важную роль в работе полупроводниковых приборов.

Материал из Википедии - свободной энциклопедии

Энергия (уровень) Фе́рми () системы невзаимодействующих фермионов - это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в её основном состоянии при абсолютном нуле температур . Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми - одно из центральных понятий физики твёрдого тела.

Физический смысл уровня Ферми: вероятность обнаружения частицы на уровне Ферми составляет 1/2 при любых температурах, кроме T = 0 {\displaystyle T=0} .

Название дано в честь итальянского физика Энрико Ферми .

Фермионы - частицы с полуцелым спином , обычно 1/2, такие как электроны - подчиняются принципу запрета Паули , согласно которому две одинаковые частицы, образуя квантово-механическую систему (например, атом), не могут принимать одно и то же квантовое состояние. Следовательно, фермионы подчиняются статистике Ферми - Дирака . Основное состояние невзаимодействующих фермионов строится начиная с пустой системы и постепенного добавления частиц по одной, последовательно заполняя состояния в порядке возрастания их энергии (например, заполнение электронами электронных орбиталей атома). Когда необходимое число частиц достигнуто, энергия Ферми равна энергии самого высокого заполненного состояния (или самого низкого незанятого состояния: в случае макроскопической системы различие не важно). Поэтому энергию Ферми называют также уровнем Фе́рми . Частицы с энергией, равной энергии Ферми, двигаются со скоростью, называемой скоростью Фе́рми (только в случае изотропного дисперсионного соотношения в среде).

В свободном электронном газе (квантово-механическая версия идеального газа фермионов) квантовые состояния могут быть помечены согласно их импульсу . Нечто подобное можно сделать для периодических систем типа электронов, движущихся в атомной решётке металла , используя так называемый квазиимпульс (Частица в периодическом потенциале ). В любом случае, состояния с энергией Ферми расположены на поверхности в пространстве импульсов, известной как поверхность Ферми . Для свободного электронного газа, поверхность Ферми - поверхность сферы; для периодических систем она вообще имеет искаженную форму. Объём, заключённый под поверхностью Ферми, определяет число электронов в системе, и её топология непосредственно связана с транспортными свойствами металлов, например, электрической проводимостью . Поверхности Ферми большинства металлов хорошо изучены экспериментально и теоретически.

Уровень Ферми при ненулевых температурах

Для важного случая электронов в металле при всех разумных температурах можно считать k T ≪ μ {\displaystyle kT\ll \mu } . Такую ситуацию называют вырожденным ферми-газом. (В другом предельном случае k T ≫ μ {\displaystyle kT\gg \mu } ферми-газ называют невырожденным, числа заполнения невырожденного ферми-газа малы и его можно описывать классической больцмановской статистикой.)

В качестве уровня Ферми можно выбрать уровень, заполненный ровно наполовину (то есть вероятность находящегося на искомом уровне состояния быть заполненным частицей должна быть равна 1/2).

Энергия Ферми свободного ферми-газа связана с химическим потенциалом уравнением

μ = E F [ 1 − π 2 12 (k T E F) 2 + π 4 80 (k T E F) 4 + … ] , {\displaystyle \mu =E_{F}\left,}

где E F {\displaystyle E_{F}} - энергия Ферми, k {\displaystyle k} - постоянная Больцмана , и T {\displaystyle T} - температура . Следовательно, химический потенциал приблизительно равен энергии Ферми при температурах намного меньше характерной температуры Ферми E F / k {\displaystyle E_{F}/k} . Характерная температура имеет порядок 10 5 для металла, следовательно при комнатной температуре (300 ), энергия Ферми и химический потенциал фактически эквивалентны. Это существенно, потому что химический потенциал не является энергией Ферми, которая входит в распределение Ферми - Дирака [ ] .

Энергия Ферми, Температура Ферми и Скорость Ферми

Элемент Энергия Ферми, эВ Температура Ферми, *10 000 K Скорость Ферми, *1000 км/с
Li 4.74 5.51 1.29
Na 3.24 3.77 1.07
K 2.12 2.46 0.86
Rb 1.85 2.15 0.81
Cs 1.59 1.84 0.75
Cu 7.00 8.16 1.57
Ag 5.49 6.38 1.39
Au 5.53 6.42 1.40
Be 14.3 16.6 2.25
Mg 7.08 8.23 1.58
Ca 4.69 5.44 1.28
Sr 3.93 4.57 1.18
Ba 3.64 4.23 1.13
Nb 5.32 6.18 1.37
Fe 11.1 13.0 1.98
Mn 10.9 12.7 1.96
Zn 9.47 11.0 1.83
Cd 7.47 8.68 1.62
Hg 7.13 8.29 1.58
Al 11.7 13.6 2.03
Ga 10.4 12.1 1.92
In 8.63 10.0 1.74
Tl 8.15 9.46 1.69
Sn 10.2 11.8 1.90
Pb 9.47 11.0 1.83
Bi 9.90 11.5 1.87
Sb 10.9 12.7 1.96
Ni 11.67 2.04
Cr 6.92 1.56

Связь энергии Ферми и концентрации электронов проводимости

Концентрация электронов проводимости в вырожденных полупроводниках связана с расстоянием от края частично заполненной энергетической зоны до уровня Ферми. Эту положительную величину иногда тоже называют энергией Ферми, по аналогии с энергией Ферми свободного электронного газа, которая, как известно, положительна.

Фе́рми-эне́ргия - значение энергии, ниже которой при температуре абсолютного нуля Т=0 К, все энергетические состояния системы частиц, подчиняющихся Ферми - Дирака статистике , заняты, а выше - свободны. Уровень Ферми - некоторый условный уровень, соответствующий энергии Ферми системы фермионов ; в частности электронов твердого тела, играет роль химического потенциала для незаряженных частиц. Статистический смысл уровня Ферми - при любой температуре его заселенность равна 1/2 .

Положение уровня Ферми является одной из основных характеристик состояния электронов (электронного газа) в твердом теле. В квантовой теории вероятность заполнения энергетических состояний электронами, определяется функцией Ферми F(E):

F(E) =1/(e (E-E F)/kT +1) , где

Е - энергия уровня, вероятность заполнения которого определяется,

E F - энергия характеристического уровня, относительно которого кривая вероятности симметрична;

Т - абсолютная температура;

При абсолютном нуле из вида функции следует, что

F(E) = 1 при Е F ;

F(E) = 0 при Е >E F .

То есть все состояния, лежащие ниже уровня Ферми, полностью заняты электронами, а выше него свободны.

Энергия Ферми E F - максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К , то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал j F = E F /е называют электрохимическим потенциалом.

Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядка kT ). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов.

Для электронного газа в металлах при Т = 0 величина энергии Ферми однозначно определяется концентрацией электронов и ее можно выразить через число n частиц электронного газа в единице объема: зависимость энергии Ферми от концентрации электронов нелинейная.

С ростом температуры (а также уменьшением концентрации электронов) уровень Ферми смещается по шкале энергий влево, но его заселенность остается равной 1/2. В реальных условиях изменение E Fс увеличением температуры мало. Например, для Ag, имеющего при Т=0 значение E F равное 5, 5 эВ, изменение энергии Ферми при температуре плавления составляет всего около 0, 03% от исходного значения.

В полупроводниках при очень низких температурах уровень Ферми лежит посередине между дном зоны проводимости и потолком валентной зоны . (Для донорных полупроводников - полупроводников n -типа проводимости - уровень Ферми лежит посередине между дном зоны проводимости и донорным уровнем). С повышением температуры вероятность заполнения донорных состояний уменьшается, и уровень Ферми перемещается вниз. При высоких температурах полупроводник по свойствам близок к собственному, и уровень Ферми устремляется к середине запрещенной зоны. Аналогичные закономерности проявляются и полупроводниках р -типа проводимости.

Существование энергии Ферми является следствием Принципа Паули . Величина энергии Ферми существенно зависит от свойств системы. Понятие об энергии Ферми используется в физике твердого тела, в ядерной физике, в астрофизике и т. д.

В качестве первого приближения рассмотрим решение уравнения Шредингера для частиц в бесконечно глубокой прямоугольной потенциальной яме. В этом случае решение у. Ш. удобно искать в виде произведения трех волновых функций:

() = (x)(y)(z) (6.2)

Решение у. Ш. внутри ямы имеет простой вид:

.
(x) = a sin k x x + b cos k x x,
(x) = 0 b = 0, (L) = 0 k x L = n x .
(6.3)

Здесь n - целое число. Последние условия являются следствием “сшивания” волновой функции внутри и извне ямы. Полная энергия частицы в яме:

Максимальная энергия частицы в яме называется энергией Ферми (см. рис.6.1) :

Число состояний частицы с энергиями E < E F равно интегралу от (6.6), причем лишь по положительным значениям волновых векторов (рис.6.2). Ограничение положительными значениями импульса уменьшит (6.6) в 8 раз. Чтобы получить число возможных состояний нуклона в потенциальной яме, нужно учесть две возможные проекции спина нуклона на ось и две проекции изоспина (т.е. протоны и нейтроны). Тогда число состояний должно равняться числу нуклонов А :

. (6.7)

Объем ямы V равен объему ядра: V = (4/3)R 3 = (4/3)r 0 3 A.
Оценим нуклонную плотность ядра . Используя равенство (6.7), одновременно найдем связь импульса Ферми с экспериментально измеряемым параметром r 0:

. (6.8)
; . (6.9)

Получаем, что нуклонная плотность ядра (6.8) приблизительно постоянна.
Нуклонная плотность ядер экспериментально определена в опытах по рассеянию электронов промежуточных энергий (Е > 100 МэВ) на ядрах. Дополнили эти эксперименты опыты по рассеянию протонов тех же энергий. Результатом этих опытов было представление о распределении плотности ядерной материи в виде распределения Ферми:

Нуклонная плотность ядер, согласно этим измерениям, близка к константе, для средних и тяжелых ядер почти на зависит от А и приближенно составляет 0 0.17 Фм -3 .
Из (6.9) получим значение импульса Ферми:

K F (1.25 - 1.35) Фм -1 (250 - 270) МэВ/c. (6.12)

Отсюда значение максимальной кинетической энергии частиц Ферми-газа (энергии Ферми) составляет E F (35 - 38) МэВ. Следует подчеркнуть, что эта величина в ФГМ не зависит от числа нуклонов в ядре. Отсюда можно получить и приближенную величину глубины ядерной потенциальной ямы. Поскольку средняя энергия отделения нуклона от ядра составляет около 8 МэВ, глубина потенциальной ямы V 0 = E F + (42 - 46) МэВ (cм. рис.6.1).
Оценку этой же величины можно получить из других соображений, например из решения задачи о потенциале дейтрона. Таким образом, простая модель Ферми-газа приводит к разумным оценкам глубины потенциальной ядерной ямы.

Тот факт, что нуклоны ядра находятся в движении, особенно наглядным образом проявляется в реакциях квазиупругого рассеяния электронов. Сечение этого процесса представляет собой широкий максимум, расположенный выше по энергии, чем область возбуждения мультипольных гигантских резонансов в ядрах (см. рис.6.3). Если бы рассеяние электрона происходило на неподвижном нуклоне, максимум находился бы при переданной ядру энергии, связанной с переданным ядру импульсом q простым нерелятивистским соотношением = q 2 /M*, где = 1 - 2 - переданный импульс, M* - “эффективная” масса нуклона в ядре. Но вместо узкого пика при этой энергии на кривой сечения наблюдается широкий максимум. Его ширина обусловлена именно фермиевским движением нуклонов ядра. Рассеяние электрона происходит – в предельных случаях – как на нуклоне, движущемся навстречу электрону, так и параллельно импульсу электрона. Поэтому измерение ширин пиков квазиупругого рассеяния является способом независимого определения величины импульса Ферми. В табл.1 для нескольких ядер приведены значения импульсов Ферми, рассчитанные из данных по квазиупругому рассеянию электронов.

Свободные электроны в металле можно рассматривать как своеобразный электронный газ. Первая попытка описать свойства металлов была предпринята Друде и Лоренцем в классической электронной теории металлов. Согласно этой теории электронный газ ведет себя подобно электронному газу, состоящему из молекул, и поэтому должен подчиняться статистике Максвелла-Больцмана. Но эта теория не смогла объяснить ряд явлений. Так, например, из опыта известно, что молярные теплоемкости всех твердых тел (и металлов, и диэлектриков) приблизительно одинаковы и равны 3R (закон Дюлонга и Пти). Отсюда следует, что теплоемкость электронного газа в металлах настолько мала, что ее вклад в общую теплоемкость не обнаруживается на опыте. По классической же теории теплоемкость электронного газа должна быть равна , а теплоемкость металла, равная сумме теплоемкости решетки и электронного газа, должна быть равна

C = 3R + =4,5 R (3.2.1)

Другим существенным затруднением классической теории является невозможность объяснения температурной зависимости сопротивления металлов. Опытным путем установлено, что удельное сопротивление практически всех металлов в достаточно широком температурном интервале линейно зависит от температуры

r = r 0 (1+at), (3.2.2)

где r- удельное сопротивление при температуре t, r 0 - удельное сопротивление при температуре 0°C, a - температурный коэффициент сопротивления при температуре 0°C.

Из классической же теории следует, что удельное сопротивление должно быть пропорционально корню квадратному из температуры.

Дальнейшее развитие физической науки привело к созданию квантовой механики и квантовой теории металлов, учитывающих волновые свойства электронов. Согласно квантовым представлениям электронный газ в металле подчиняется принципу Паули и описывается квантовой статистикой Ферми – Дирака

, (3.2.3)

где f F - функция распределения Ферми-Дирака, характеризующая вероятность заполнения квантового состояния (уровня) с энергией Е , и равнаясредней степени заселенности электронами квантового состояния, соответствующего энергии Е, m - химический потенциал электронного газа. При абсолютном нуле температуры (Т=0 К) химический потенциал называют также энергией Ферми и обозначают E F .



Найдем вид функции распределения f F при Т=0 К .

Рассмотрим состояния электронов с энергией E < E F . В этом cлучае показатель экспоненты в выражении (3.2.3) отрицателен;

при T → 0 → 0 f(E) → 1.

Для состояний электронов с энергией E > E F показатель экспоненты в выражении (2.4) положителен;

при T → 0 → ∞ f(E) → 0.

Из этого рассмотрения следует, что при Т=0 функция распределения f F принимает значения

(3.3.4)


Согласно зонной теории валентная зона, определяющая свойства металла, заполнена электронами частично. При абсолютном нуле температуры свободные электроны занимают все дозволенные энергетические уровни вплоть до уровня Ферми, при этом вероятность заполнения этих уровней равна 1. На каждом уровне согласно принципу Паули располагаются по 2 электрона с противоположными спинами (рис.3.4).

Уровни, энергия которых выше E F , остаются совершенно свободными (вероятность их заполнения равна 0). Следовательно, энергия Ферми E F представляет собой максимальную энергию, которую могут иметь электроны при абсолютном нуле температуры. Эта энергия не является тепловой (kТ=0 ), она имеет квантовую природу, обусловленную, в частности, принципом Паули, и зависит от концентрации свободных электронов в металле. Расчет дает для энергии Ферми следующее выражение

. (3.2.5)

Здесь h - постоянная Планка; n - концентрация электронов.

Наивысший энергетический уровень, занятый электронами при Т=0, называют уровнем Ферми. Уровень Ферми будет тем выше, чем больше концентрация n электронов. Как показывает расчет, средняя энергия электрона при Т=0 равна