Основные группы глинистых минералов. Строение глин и конструкция глинистых минералов

  • 5. Химическое выветривание. В чем оно выражается? Какие химические и структурные превращения происходят в ряду мусковит - гидромусковит- каолинит.
  • 6. Галогенез - понятие. Обстановка развития процесса. Основные этапы солеотложения. Соли- минеральный состав.
  • 7.Структуры биогенных пород. Минеральный состав биогенных пород.
  • 8. Вулканический тип литогенеза; характеристика, распространение на
  • 9. Как действует механизм физической дифференциации осадочного вещества, к образованию каких групп пород он приводит?
  • 10. Гумидный тип литогенеза, его характеристика. Какие генетические типы пород при этом возникают?
  • 11. Как действует механизм химической дифференциации осадочного вещества? к образованию каких пород она приводит?
  • 12. Диагенез. Характеристика. Диагенетические минералы, причины их возникновения.
  • 13. Как действует механизм биологической дифференциации осадочного вещества? Какие минералы и породы при этом образуются?
  • 14. Реликтовые минералы осадочных пород (перечень, условия сохранения на разных ступенях литогенеза, роль в осадочных породах).
  • 15. Генетическая классификация осадочных пород. По какому признаку классифицируются осадочные породы м.С. Швецовым? Какие классы осадочных пород при этом выделяются?
  • 16. Осадочная горная порода - определение. Формы геологических тел осадочных пород.
  • 17. По каким признакам систематизируются обломочные породы? Какие группы их выделяются?
  • 18. Какие виды осадочных пород используются в строительной индустрии (для производства каких стройматериалов?)?
  • 19. По каким признакам систематизируются хемогенные породы? Какие группы хемогенных пород выделяются?
  • 20. Какие осадочные породы используются для нужд агропромышленного комплекса? Где именно?
  • 21. По каким признакам систематизируются биогенные породы? Привести примеры.
  • Составные части осадочных пород
  • 23. Что такое полимиктовые обломочные породы? Какие среди них образуются группы? Какова геологическая обстановка их образования?
  • 24. Текстуры осадочных пород.
  • 27. Структурные признаки обломочных пород, примеры структур обломочных пород.
  • 28. Формы локализации полезных компонентов в осадках и осадочных породах.
  • 29. В какой последовательности изучаются и описываются обломочные породы?
  • 30. Бокситы. Минеральный состав. Условия образования. Формы залегания. Практическое использование.
  • 31. Кремнистые биогенные породы. Какими породообразующими организмами они формируются? Какие при этом образуются породы?
  • 32. Сульфатные породы. Минеральный состав. Условия образования. Формы залегания. Практическое использование.
  • 33. Условия растворения и выпадения в осадок карбонатных минералов (кальцита, доломита)? Структурные признаки карбонатных первично-осадочных пород.
  • 35. Биогенные карбонатные породы. Какими организмами они образуются? По каким признакам определяются скелеты этих организмов? Структурные разновидности.
  • 36. Соли. Минеральный состав. Условия образования соляных месторождений. Практическое использование.
  • 37. Какие осадочные породы являются полезными ископаемыми? Где они используются?
  • 38. Литология. Краткая история возникновения науки. Ее цели и задачи.
  • 39. Глинистые минералы (общие свойства). Чем объясняется влагоемкость глин? Их сорбционные свойства.
  • 40.Формы транспортирования продуктов физического выветривания.
  • 41. Глины. Минеральный состав. Генетические группы. Структуры и текстуры глин.
  • 42. Слойчатость и сланцеватость осадочных пород.
  • 43. Известняки. Минеральный состав. Генетические группы. Структуры известняков.
  • 44. Текстуры осадочных пород. Понятие. Группа текстур.
  • 45. Аридный тип литогенеза, его характеристика. Какие при этом возникают осадки? Распространение зон аридного литогенеза на земной поверхности.
  • 46. Структуры осадочных пород. Группы структур.
  • 47. Нивальный (ледовый) тип литогенеза, его характеристика. Какие при этом возникают осадки. Распространение на земной поверхности?
  • 48. Структуры осадочных пород. Группы структур.
  • 49. Принципы, подходы и виды классификаций осадочных пород.
  • 55.Стадиальный анализ. Его значение для изучения осадочных пород.
  • 56. Классификация структур карбонатных пород.
  • 57. Методы петрографического изучения осадочных пород, порядок их описания и наименования.
  • 58.Смешанные породы. Распространение в литосфере. Принципы классификации.
  • 39. Глинистые минералы (общие свойства). Чем объясняется влагоемкость глин? Их сорбционные свойства.

    Глинистые минералы. В осадочных породах глининстые минералы распространены широко. Они составляют большую и сложную группу слоистых и слоисто-ленточных силикатов и алюмосиликатов. Структура их слоистая или слоисто-ленточная. Отдельные слои образованы связанными между собой тетраэдрами и октаэдрами. В вершинах тетраэдров располагаются ионы кислорода, в центре - кремния (иногда алюминия в четверной координации). В вершинах октаэдров располагаются ионы кислорода и гидроксила, в центре -

    алюминия, железа, магния (шестерная координация). Октаэдрические слои могут быть полностью заселены (триоктаэдрические) и частично - из каждых трех заселены два (диоктаэдрические). Эти слои образуют двухслойные (один слой тетраэдров и один слой октаэдров) и трехслойные (два слоя тетраэдров с заключенным между ними слоем октаэдров) пакеты. Связь между слоями осуществляется через кислород и гидроксил, являющиеся общими вершинами тетраэдров и октаэдров. Пространственная решетка каолинита представляет собой набор двухслойных пакетов толщи­ной (межплоскостное расстояние) 0,71-0,72 нм. Базальные отра­жения 001 первого порядка 0,71 --0,72, второго - 0,355-0,360, четвертого - 0,1775-0,1800 нм.

    У гидрослюды решетка состоит из набора трехслойных пакетов толщиной 1,0-1,02 нм. Базальные отражения ОО1 первого порядка 1,00-1,02, второго - 0,50-0,51, четвертого - 0,250-0,255 нм.

    Пространственная решетка монтмориллонита образована трех­слойными пакетами, между которыми заключены слои воды и об­менных катионов. Содержание последних может сильно изменяться, поэтому и межплоскостное расстояние у монтмориллонита изме­няется в широких пределах - от 0,96-1,001 нм при отсутствии воды и обменных катионов до 1,7-1,8 нм и более при высоком содержании воды и обменных катионов (среднее значение при нормальной влажности примерно равно 1,40-1,50 нм).

    Наряду с обычными глинистыми минералами существуют более сложные образования - смешанно-слойные сростки минералов. Пространственная решетка таких сростков состоит из пакетов, принадлежащих различным минералам: монтмориллониту и хлориту (У=2,80 нм), гидрослюде и каолиниту (й=1,70 нм), монтморилло­ниту и каолиниту (с1 = 2,10-2,30 нм) и др. Эти минеральные образо­вания представляют собой своеобразные «гибриды» и рядом ученых рассматриваются как эпитаксические срастания. В изучении их особенно большое значение имеет рентгеновский анализ - един­ственный метод, позволяющий выявлять эти сростки.

    По происхождению глинистые минералы могут быть как аутиген-ными, так и аллотигенными образованиями. Из-за высокой степени ■ дисперсности диагностика их затруднительна обычными методами кристаллооптического и химического анализа. Изучение глинистых минералов при массовой работе петрографа должно быть комплекс­ным с применением оптического, хроматического и капельного ана­лизов. Параллельно некоторая часть образцов должна изучаться точными методами: рентгеновским, термическим и электронномик-роскопическим. Сводка оптических и некоторых других свойств глинистых минералов дана в табл. 72-74.

    Общими чертами всех глинистых ми­нералов являются: 1) незначительные раз­меры их кристалликов; 2) химический со­став (АI2О3, SiO2, Н2О, иногда К, причем АI и Si в некоторых минералах замеща­ются другими элементами, особенно Мg, Fе); 3) пластинчатая или чешуйчатая фор­ма, обусловленная строением решетки, и 4) некоторые оптические свойства - не­высокие показатели преломления, боль­шей частью немного более высокие, реже немного более низкие, чем у канадского бальзама; у кристаллических-моноклин­ная сингония.

    Твердость (2,5) и уд. вес (2,40-2,59) определены точно только для каолинита. Цвет у каолинита и галлуазита белый (бесцветный), у других минералов этой группы иногда наблюдается желтоватая, красноватая, синеватая или зеленоватая окраска.

    СВОЙСТВА ГЛИНИСТЫХ ПОРОД

    Зная факторы, определяющие свойства глинистых пород, и методы оценки минерального состава и микроструктуры, попытаемся объяснить природу некоторых важных и весьма специфических свойств глин, имеющих большое значение в жизни людей.

    Набухаемость

    Под набухаемостью понимают способность глинистых пород увеличивать объем в процессе взаимодействия с водой или водными растворами. Процесс набухания сопровождается увеличением влажности, объема породы и возникновением давления набухания.

    Набухаемость глинистых пород является их важным свойством, которое необходимо учитывать при проведении строительных работ и эксплуатации инженерных сооружений. Недооценка набухающей способности глин может привести к серьезным последствиям и авариям. Объясняя природу набухания глин, следует отметить, что этот процесс проходит в две стадии: первая стадия - адсорбционное или внутрикристаллическое набухание, вторая - макроскопическое или "осмотическое" набухание. На первой стадии глинистая порода впитывает влагу за счет адсорбции молекул воды поверхностью глинистых частиц и межслоевыми промежутками кристаллической решетки глинистых минералов. Эта стадия практически не влияет на изменение объема породы. На второй стадии набухания поглощение влаги осуществляется с помощью осмотического давления. Оно возникает вблизи поверхности глинистых частиц за счет избыточной концентрации многочисленных обменных катионов отдиссоциированных (отошедших) с поверхности глинистых частиц в раствор. Основное увеличение объема набухающей глины происходит именно на этой макроскопической стадии.

    Величина и характер набухания глинистых пород определяются многими факторами, основными из которых являются минеральный состав, дисперсность и структура. Наибольшим набуханием обладают глинистые породы, в составе которых имеются глинистые минералы с подвижной кристаллической структурой (например, монтмориллонит), наименьшим - минералы с более жесткой кристаллической структурой (каолинит). Сильное влияние на набухание глин оказывает и их структура, при этом определяющее значение имеет характер структурных связей.

    Глинистые породы, обладающие преимущественной ориентацией структурных элементов, характеризуются ярко выраженной анизотропией набухания. Наибольшее набухание отмечается в направлении, перпендикулярном ориентации частиц. В ходе процесса набухания происходит существенная перестройка исходной микроструктуры глинистой породы.

    Особую трудность представляет рассмотрение прочностных свойств глинистых пород в связи с их специфическим поведением при взаимодействии с водой. Хорошо известна потеря прочности при увлажнении глин, когда они из плотных и высокопрочных пород превращаются в пластичные или жидкотекучие тела.

    Глинистые минералы представляют собой водные филлосиликаты алюминия, иногда с различными примесями железа, магния, щелочных и щелочноземельных металлов, а также других катионов, обнаруженных на некоторых планетарных поверхностях или вблизи них.

    Они образуются в присутствии воды, и когда-то они были важны для появления жизни, потому многие теории абиогенеза учитывают их в роль в этом процессе. Они являются важными составляющими почв и были полезны для человека с древних времен в сельском хозяйстве и производстве.

    Образование

    Глины образуют плоские шестиугольные листы, похожие на слюды. Глинистые минералы являются распространенными продуктами выветривания (в том числе, выветривания полевого шпата) и низкотемпературными продуктами гидротермального изменения. Они очень распространены в почвах, в мелкозернистых осадочных породах таких, как сланцы, аргиллиты и алевролиты, а также в мелкозернистых метаморфических сланцах и филлитах.

    Характеристики

    Глинистые минералы, как правило (но не обязательно), имеют ультрамелкозернистый размер. Обычно считается, что они имеют размер менее 2 микрометров при стандартной классификации размеров частиц, поэтому для их идентификации и изучения могут потребоваться специальные аналитические методы. К ним относится дифракция рентгеновских лучей, методы дифракции электронов, различные спектроскопические методы, такие как мессбауэровская спектроскопия, инфракрасная спектроскопия, рамановская спектроскопия и SEM-EDS, или же автоматизированные процессы минералогии. Эти методы могут быть дополнены микроскопией поляризованного света, традиционной техникой, устанавливающей фундаментальные явления или петрологические отношения.

    Распространение

    Учитывая потребность в воде, глинистые минералы относительно редки в Солнечной системе, хотя они широко распространены на Земле, где вода взаимодействует с другими минералами и органическим веществом. Они также были обнаружены в нескольких местах на Марсе. Спектрография подтвердила их присутствие на астероидах и планетоидах, включая карликовую планету Церера и Темпель 1, а также луну Юпитера Европу.

    Классификация

    Основные глинистые минералы входят в следующие кластеры:

    • Каолиновая группа, которая включает минералы каолинит, диккит, галлуазит и накрит (полиморфы Al2Si2O5 (OH) 4). Некоторые источники включают группу каолинит-серпентин из-за структурного сходства (Bailey 1980).
    • Смектитовая группа, которая включает такие как монтмориллонит, нонтронит и бейделлит, и триоктаэдрические смектиты, например, сапонит. В 2013 году аналитические испытания марсоходом Curiosity обнаружили результаты, согласующиеся с присутствием минералов смектитовой глины на планете Марс.
    • Иллитовая группа, в которую входят глинистые слюды. Иллит - единственный распространенный минерал этой группы.
    • Хлоритная группа включает в себя широкий спектр аналогичных минералов со значительной химической вариацией.

    Другие виды

    Существуют другие типы этих минералов такие, как сепиолит или аттапульгит, глины с длинными водяными каналами, внутренними по своей структуре. Вариации глины смешанного слоя актуальны для большинства вышеупомянутых групп. Упорядочение описывается как случайное или регулярное упорядочение и далее описывается термином «рейхвайт», что в переводе с немецкого означает «диапазон» или «охват». Литературные статьи ссылаются, например, на упорядоченный иллит-смектит R1. Этот тип включается в категорию ISISIS. R0, с другой стороны, описывает случайное упорядочение. Помимо них, также можно найти другие расширенные типы упорядочения (R3 и т. д.). Глинистые минералы смешанного слоя, которые являются совершенными типами R1, часто получают свои собственные названия. R1-упорядоченный хлорит-смектит известен, как корренсит, R1 - иллит-смектит - ректорит.

    История изучения

    Знания о природе глины, стали более понятными в 1930-х годах с развитием технологий дифракции рентгеновских лучей, необходимых для анализа молекулярной природы глинистых частиц. Стандартизация терминологии возникла и в этот период с особым вниманием к подобным словам, которые привели к путанице, такой как лист и плоскость.

    Как и все филлосиликаты, глинистые минералы характеризуются двумерными пластами угловых тетраэдров SiO4 и / или октаэдров AlO4. Листовые блоки имеют химический состав (Al, Si) 3O4. Каждый кремниевый тетраэдр делит 3 своих вершинных атома кислорода с другими тетраэдрами, образуя гексагональную решетку в двух измерениях. Четвертая вершина не является общей с другим тетраэдром, и все тетраэдры «указывают» в одном направлении. Все неразделенные вершины находятся на одной стороне листа.

    Структура

    В глинах тетраэдрические листы всегда связаны с октаэдрическими, сформированными из небольших катионов, таких как алюминий или магний, и координированы шестью атомами кислорода. Неподеленная вершина из тетраэдрического листа также образует часть одной стороны октаэдрического, но дополнительный атом кислорода расположен над зазором в тетраэдрическом листе в центре шести тетраэдров. Этот атом кислорода связан с атомом водорода, образующим группу ОН в структуре глины.

    Глины можно разделить на категории в зависимости от способа упаковки тетраэдрических и октаэдрических листов в слои. Если в каждом слое есть только одна тетраэдрическая и одна октаэдрическая группа, то то она относится к категории 1:1. Альтернатива, известная как глина 2: 1, имеет два тетраэдрических листа с неразделенной вершиной каждого из них, направленной друг к другу и образующей каждую сторону восьмигранного листа.

    Соединение между тетраэдрическим и октаэдрическим листами требует, чтобы тетраэдрический лист становился гофрированным или скрученным, вызывая дитригональное искажение гексагональной матрицы, и октаэдрический лист выравнивался. Это минимизирует общие валентные искажения кристаллита.

    В зависимости от состава тетраэдрических и октаэдрических листов слой не будет иметь заряда или будет иметь отрицательный. Если слои заряжены, этот заряд уравновешивается межслоевыми катионами, такими как Na + или K +. В каждом случае промежуточный слой также может содержать воду. Кристаллическая структура сформирована из пакета слоев, расположенных между другими слоями.

    "Глиняная химия"

    Поскольку большинство глин изготовлены из минералов, они обладают высокой биосовместимостью и интересными биологическими свойствами. Из-за формы диска и заряженных поверхностей глина взаимодействует с целым рядом макромолекул таких субстанций, как белок, полимеры, ДНК и т. д. Некоторые из областей применения глин включают доставку лекарств, тканевую инженерию и биопечать.

    Глиняная химия является прикладной дисциплиной химии, которая изучает химические структуры, свойства и реакции глины, а также строение и свойства глинистых минералов. Это междисциплинарная область, включающая концепции и знания из неорганической и структурной химии, физической химии, химии материалов, аналитической химии, органической химии, минералогии, геологии и других.

    Изучение химии (и физики) глин и строения глинистых минералов имеет большое академическое и промышленное значение, поскольку они относятся к числу наиболее широко используемых промышленных минералов, используемых в качестве сырья (керамика и т. д.), адсорбентов, катализаторов и др.

    Важность науки

    Уникальные свойства глинистых минералов почв такие, как слоистое строение нанометрового масштаба, наличие фиксированных и взаимозаменяемых зарядов, возможность адсорбирования и удержания (интеркалирования) молекул, способность образовывать стабильные коллоидные дисперсии, возможность индивидуальной модификации поверхности и межслойной химической модификации и другие делают изучение химии глины очень важной и чрезвычайно разнообразной областью исследований.

    На многие различные области знаний влияет физико-химическое поведение глинистых минералов, от наук об окружающей среде до химической технологии, от керамики до обращения с ядерными отходами.

    Их катионообменная емкость (CEC) имеет большое значение в балансе наиболее распространенных катионов в почве (Na +, K +, NH4 +, Ca2 +, Mg2 +) и контроле pH, что напрямую влияет на плодородие почвы. Изучение глин (и минералов) также играет важную роль в работе с Са2 +, обычно поступающего с суши (речной воды) в моря. Возможность изменять и контролировать состав и содержание минералов предлагает ценный инструмент в разработке селективных адсорбентов с различными применениями такими, как, например, создание химических датчиков или чистящих веществ для загрязненной воды. Эта наука также играет огромную роль в классификации групп глинистых минералов.

    построенные из слоев атомов в тетраэдрической и октаэдрической координации, известных как тетраэдрические и октаэдрические сетки.

    Тетраэдрические сетки представляют собой слои тетраэдров SiО4 , которые имеют три общих кислорода с соседними тетраэдрами. Эти базальные кислороды образуют гексагональный рисунок. Четвертый (апикальный) кислород каждого тетраэдра располагается на перпендикуляре, проходящем через центр базального кислородного треугольника.

    Октаэдрическая сетка построена из катионов, обычно алюминия, железа или магния, расположенных на равных расстояниях от шести анионов кислорода, в связи с чем сетка несет отрицательный заряд. Алюминий является распространенным катионом, и идеальный октаэдрический слой имеет состав гидроксида алюминия (Аl(OН)3 ) - минерала гиббсита. Если октаэдрические позиции заполняются трехвалентным алюминием, для достижения электронейтральности занимаются только две из каждых трех позиций и сетка классифицируется как диоктаэдрическая. Если двухвалентные катионы заполняют октаэдрические позиции, все доступные позиции заняты и сетка классифицируется как триоктаэдрическая. В результате сочетания этих трех сеток образуется основная структура глинистых минералов. Такое сочетание позволяет обобщить апикальный кислород тетраэдрической сетки и группы ОН, помещающиеся в центре гексагональных пустот основания тетраэдрической сетки, с октаэдрической сеткой. Различные группы глинистых минералов являются результатом различного рода расположений и взаимного обобщения ионов в тетраэдрической и октаэдрической сетках.

    Структура глинистых минералов 1: 1. Простейшим расположением тет-

    раэдрических и октаэдрических сеток являются слои 1: 1. В состав таких 1: 1 минералов входит серпентин-каолинитовая группа глинистых минералов, из которых каолинит является, вероятно, наиболее известным. В каолините пакеты 1: 1 удерживаются вместе водородными связями, образующимися между ОН-группами верхнего слоя октаэдрической сетки и базальными кислородными атомами вышележащей тетраэдрической сетки. Водородные связи достаточно сильны, чтобы удерживать пакеты 1: 1 вместе, не позволяя катионам проникать между слоями.

    3. Условия образования глинистых минералов

    В обычном гранодиорите верхней коры в основном выветриваются с образованием глинистых минералов именно полевые шпаты. Поскольку они являются каркасными силикатами, образование слоистых силикатов должно включать промежуточную ступень. В эту ступень входит высвобождение кремния, алюминия и других катионов с последующей их перестройкой в структуру слоистых силикатов. Поскольку в промежуточной ступени участвуют ионы почвенных растворов, на тип образующегося глинистого минерала будут влиять рН почвенной влаги и степень выщелачивания (скорость потока воды).

    Алюминий и кремний осаждаются в виде нерастворимых оксидов или оксигидроксидов в пределах обычных для почв значений рН. Другие почвенные

    катионы и H2 SiO4 достаточно растворимы и поэтому могут выноситься с выветривающегося участка. Различие в поведении катионов количественно выра-

    жается химическим показателем изменения (ХПИ), используя молекулярные соотношения

    Al2 O3

    ХПИ =

    Al2 O3

    Na2 O+ K2 O

    где СаО- это СаО силикатов (т. е. исключаются Са-содержащие карбонаты и фосфаты).

    В табл. 10 представлены показатели ХПИ для различных минералов и пород. Очевидно, что значения ХПИ, приближающиеся к 100, типичны для веществ, образующихся в условиях сильного выщелачивания, когда удаляются растворимые кальций, натрий и калий.

    Таблица 10. Значения химического показателя изменения для различных материалов коры

    Материал

    Глинистые минералы

    Каолинит

    Другие силикаты

    Плагиоклазовый полевой шпат

    Калиевый полевой шпат

    Слюда мусковит

    Отложения

    Баренцево море (алеврит)

    Ил дельты Амазонки

    Глинистые сланцы

    Значения ХПИ, близкие к 100, типичны для каолинитовых глин, тогда как иллиты и смектиты имеют значения ХПИ около 75–85. В отличие от них, невыщелоченные полевые шпаты имеют значения ХПИ около 50.

    На основании ХПИ можно предсказать, что каолинит будет образовываться в условиях сильного выщелачивания, что подтверждается наблюдениями в тропических режимах выветривания. На устойчивых земных поверхностях, где выветривание и выщелачивание продолжительны, на хорошо дренированных участках формируется каолинитовый, а в крайних случаях гиббситовый минералогический состав глин. Такие участки покрыты поверхностными отложениями, богатыми железом (латерит) и алюминием (боксит). Эти поверхностные отложения могут быть достаточно мощными и предотвращать последующее взаимодействие между поверхностными водами и подстилающей породой, снижая скорость ее дальнейшего выветривания.

    Смектитовые глины, наоборот, образуются на слабодренированных участках. На базальтовом острове Гавайи тип почвенных глинистых минералов изменяется в последовательности «смектит - каолинит - гиббсит» с увеличением количества дождевых осадков. Подобная обобщенная зональность, основанная на степени выщелачивания, была предложена для распределения глинистых минералов по глубине в почвах.

    Интенсивное выщелачивание благоприятствует образованию каолинита, поскольку катионы и H4 SiО4 выносятся и понижается отношение «кремний: алюминий», что способствует структурной организации 1: 1. При менее интенсивном выщелачивании отношение «кремний: алюминий» выше, что способствует образованию различных 2: 1-минералов в зависимости от поступающих катионов. Например, при выветривании базальта образуется много магния, формируются магниевые смектиты. В большинстве тропических сред с интенсивным выветриванием выносится весь кремний, что способствует образованию гиббсита, который можно рассматривать как структуру 0: 1 (т. е. присутствует только октаэдрическая сетка.

    Силикаты состоят в основном из кремния (Si) и кислорода (О), обычно в сочетании с другими металлами. Основной структурной единицей силикатов

    является тетраэдр SiО4 , в котором кремний расположен в середине тетраэдра из четырех ионов кислорода.

    Силикаты классифицируются по степени сложности кремнийкислородных решеток. Мономерные силикаты построены из отдельных тетра-

    эдров SiO4 , связанных с металлами. Цепочечные силикаты имеют два немостиковых атома кислорода, общее отношение Si: О равно 1: 3, что приводит к об-

    щей формуле SiO3 . В каркасных силикатах каждый атом кислорода тетраэдрической группы обобщается между двумя тетраэдрами, образуется наполовину ковалентная трехмерная решетка.

    Глинистые минералы - это слоистые силикаты, состоящие в основном из атомов кислорода, кремния и алюминия и построенные из слоев атомов в тетраэдрической и октаэдрической координации. Октаэдрическая сетка построена из катионов, обычно алюминия, железа или магния, расположенных на равных расстояниях от шести анионов кислорода (или ОН).

    Простейшим расположением тетраэдрических и октаэдрических сеток являются слои 1: 1. Наиболее известным минералом типа 1: 1 является каолинит.

    Контрольные вопросы

    1. Из каких элементов состоят силикаты?

    2. Какая структурная единица лежит в основе силикатов?

    3. Как осуществляется связь отдельных тетраэдров в оливине?

    4. Чему равно соотношение Si: О в цепочечных силикатах?

    5. В чем отличие между глинистыми минералами и силикатами?

    6. Как располагаются тетраэдрические и октаэдрические сетки в каолините?

    7. Как называется минерал, химический состав которого отвечает формуле Al(OH) 3 и имеет только октаэдрическую сетку?

    Подробности Создано 10.08.2011 21:00 Обновлено 30.05.2012 04:39 Автор: Admin

    Минералогический состав глин характеризуется наличием некоторых специфических глинистых минералов.

    К ним относятся каолинит, галлуазит, монотермит, гидрослюды, монтмориллонит, бейделлит и др. Наряду с ними в глинах содержатся и другие высокодисперсные минералы, присутствующие в них как примеси. Минералы, составляющие глины, принято группировать по характерным свойствам:

    Основные свойства некоторых из них представлены в таблице ниже.

    Каолинит - широко распространенный глинистый минерал, по составу водный алюмосиликат (моноклинный), имеет слоистое строение, в природе встречается в виде гексагональных или неправильной формы чешуек размером около 1 мк. Блеск чешуек и пластинок перламутровый, жирный на ощупь, объемный вес 1,8-2,2 г/см 3 , теплота смачивания 1-2 ккал/г, обладает гидрофильными свойствами, с водой образует пластичное тесто, но слабо набухает и мало адсорбирует воду и растворимые в ней вещества; в кислой среде устойчив; входит в состав различных глин.

    Монотермит - в настоящее время не выделяется как самостоятельный глинистый минерал. По данным Ю. А. Русько и В. П. Ананьева, он представляет собой тонкую механическую смесь гидрослюды и каолинита. Набухаемость и емкость поглощения у монотермитов выражены сильнее, чем у каолинитов.

    Этот минерал открыт Г. К. Куманиным в Часов-Ярской огнеупорной глине. Является составной частью весьма пластичных огнеупорных глин (Часов-Яр на Украине, Бускуль на Урале и пр.).

    Гидрослюда - одна из разновидностей гидрослюд, наиболее распространенная в глинах. Характеризуется формой изометричных слюдоподобных пластинок или чешуек различной толщины, иногда со следами расщепления и скалывания; обладает гидрофильными свойствами. Минералы гидрослюдистой группы в легкоплавких глинах в основном содержатся во фракции с размером частиц менее микрона.

    Монтмориллонит - широко распространенный глинистый минерал, имеющий несколько разновидностей по составу, строению и свойствам: тонкочешуйчатый, удлиненночешуйчатый, крупночешуйчатый. Отличаются друг от друга по степени набухания - первый сильно набухает (может увеличиваться в объеме до 20 раз), второй не набухает или плохо набухает, а третий занимает промежуточное положение между ними по степени набухания
    монтмориллонита. Является составной частью отбеливающих (флоридиновых и бентонитовых) глин и глин, обладающих высокой пластичностью Чистые монтмориллонитовые глины добываются на Кавказе, в Крыму и других местах. Легкоплавкие глины содержат железистые разновидности монтмориллонита. Монтмориллонит более богат кремневой кислотой, чем каолинит. Минералы монтмориллонитовой группы, так же как и гидрослюдистые минералы в легкоплавких глинах, в основном содержатся во фракции с размером частиц менее одного микрона.

    В настоящее время нет общепринятой классификации глинистых минералов. Отдельные исследователи подходят к их классификации с различных позиций и придают тем или иным особенностям структуры минералов неодинаковое значение. Поэтому удобнее всего рассмотреть, как это делается во многих руководствах, строение наиболее распространенных глинистых минералов и их основных разновидностей.
    По характеру соединения и чередования гетра- и октаэдрических сеток в структуре глинистых минералов они могут быть разчелены на следующие основные группы, представленные в природе наиболее распространенными типами глинистых минералов;
    - группа каолинита,
    - группа смектитов (монтмориллониты),
    - группа иллита (гидрослюды),
    - группа хлоритов.
    Минералы последней группы не являются глинистыми, но они присутствуют в глинистых породах и по структуре имеют много общего с глинистыми минералами.
    Группа каолинита. Структура каолинита представляет собой бесконечное чередование пакетов, напоминающих страницы толстой книги, каждый из которых состоит из двух слоев; тетраэдрического и октаэдрического. Слои соединяются в пакеты за счет общих катионов кислорода, принадлежащих одновременно тетраэдру и октаэдру соответствующих слоев (рис. 10.3). Центры двух из каждых трех октаэдров заняты катионами Al3+. Таким образом, октаэдрическая сетка каолинита является диоктаэдрической. Между соседними пакетами в структуре каолинита нет ионных связей и они удерживаются в единой, бесконечно чередующейся слоистой структуре кристалла водородными связями, действующими между группами (ОН) свободной поверхности октаэдрических сеток и прилегающими к ним атомами кислорода свободной поверхности тетраэдрических сеток соседнего пакета. Структурная формула каолинита - Al4Si4O10(OH)8. Это соответствует следующему соотношению окислов; SiO2 - 46,56%; Аl2О3 - 39,50 и Н2О - 13,94%. Химические анализы каолинитов показывают, что изоморфные замещения в их структуре крайне незначительны. Расстояние между соответствующими поверхностями тетраэдрических или октаэдрических сеток двух соседних пакетов, т. е. межплоскостное расстояние, у каолинита равно 7,1-7,2 А.

    В табл. 10.1 приведены характерные межплоскостные расстояния и интенсивности рентгеновских отражений каолинита.
    В тех случаях когда каолинит присутствует в образцах в виде смеси с хлоритом, межплоскостное расстояние которого d001 = 14,3A, он может быть незаметен, так как для хлорита d002 = 7,15A, т. е. практически равно d001 каолинита. Поэтому при наличии хлорита кроме естественного образца снимается дифрактограмма образца, обработанного теплой 10% соляной кислотой. При обработке кислотой хлориты растворяются, а каолинит остается без изменений и может быть определен по характерным отражениям. В табл. 10.2 приведены данные влияния на глинистые минералы различных обработок образца, позволяющих определять глинистые минералы в смесях.
    Детальное исследование характера элементарной ячейки каолинита показало, что он относится к триклинной сингонии.
    Каолинит при термографическом анализе дает очень характерную термограмму. На дифференциальной кривой нагревания выделяется четкая эндотермическая реакция, соответствующая потере гидроксильной воды, начинающаяся после 400°С и достигающая максимума при 600°С (рис. 10.4), а также экзотермическая реакция, связанная, по-видимому, с формированием кристаллического глинозема (Аl2О3), максимум которой приходится на 950°С.
    Изучение частиц каолинита в просвечивающем и сканирующем электронных микроскопах показывает, что каолинит представлен обычно более или менее хорошо образованными шестиугольными (псевдогексагональными) пластинчатыми кристаллами, часто с преобладающим удлинением в одном направлении (см. рис. 10.5).
    Полиморфными модификациями каолинита являются диккит и накрит, имеющие тот же состав, что и каолинит, - Al4Si4O10(OH)8. По данным Дж. Грюнера, диккит является моноклинным минералом. Накрит, согласно С. Хендриксу, может быть отнесен к ромбической сингонии.
    Образование диккита является характерным для цементов обломочных пород, находящихся на стадии позднего катагенеза-метагенеза. Он может встречаться вместе с каолинитом в глинистых породах и, обладая, так же как каолинит, пластинчатым псевдогексагональным габитусом (электронная микроскопия), по форме частиц практически неотличим от каолинита. Однако по результатам рентгенофазового (табл. 10.3) и термографического (см. рис. 10.4) анализов диккит диагностируется достаточно уверенно.

    Накрит является редким минералом. Oн присутствует в породах. подвергавшихся воздействию низкотемпературных гидротермальных растворов.
    Близким по структуре к каолиниту является галлуазит, формула которого Al4Si4O10*(OН)8*4Н2О указывает на наличие в минерале межпакетной воды. Галлуазит обладает характерной термограммой (CM. рис. 10.4), на которой четко выделяется эндотермическая реакция в интервале 60-100°С, указывающая на потерю межпакетной воды. Присутствие молекул воды в межпакетных пустотах приводит к увеличению межплоскостного расстояния у галлуазита до 10-10,1 А (см. табл. 10.3). В отличие от каолинита и диккита частицы галлуазита имеют удлиненную, трубчатую форму (см. рис. 10.5). В глинистых породах галлуазит может встречаться вместе с каолинитом и монтмориллонитом, а в корах выветривания образовывать самостоятельные скопления.
    Совместно с каолинитом и галлуазитом может встречаться аллофан - рентгеноаморфный глинистый минерал коллоидной природы, представляющий собой аморфную коллоидную смесь или твердый раствор свободных глинозема и кремнезема, образующийся при их совместной коагуляции. Химическая формула аллофана - mAl20*nSiO2*pH2O. Минерал обнаружен в корах выветривания, каменноугольных толщах, бокситах, бурых железняках и других породах.

    Группа смектитов в (монтмориллонита) . Для обозначения минералов, обладающих сходным строением и образующих одну структурную группу, типичным представителем которой является монтмориллонит, часто используется термин «смектиты». Наряду с этим в качестве группового названия в геологической литературе можно встретить термины «монтмориллонитовые минералы», или «монтмориллониты».
    Структура смектита (монтмориллонита) может быть представлена в виде бесконечного чередования плоских пакетов, каждый из которых имеет трехслойное строение: в середине октаэдрический алюмокислородогидроксильный слой, сверху и снизу - по одному тетраэдрическому кремнекислородному слою (см. рис. 10.3), Тетраэдрические сетки повернуты так, что вершины тетраэдров направлены внутрь к октаэдрическому слою. В вершинах октаэдров, общих с тетраэдрами, располагаются вместо гидроксильных групп (ОН) атомы кислорода. Структура имеет диоктаэдрический характер. В связи с тем что поверхности трехслойных пакетов образованы нейтральными основаниями тетраэдров, связь между пакетами очень слабая; они удерживаются в трехмерной структуре кристалла только вандерваальсовыми силами. Поэтому в межпакетном пространстве располагаются молекулы воды, вызывающие расширение кристаллической решетки в направлении оси с, т. е. приводящие к увеличению межплоскостного расстояния, которое для смектитов (минералов группы монтмориллонита) является переменной величиной, зависящей от степени насыщения межпакетного пространства молекулами воды, некоторых органических соединений или катионами.

    Теоретическая структурная формула идеализированного смектита (без учета изоморфных замещений) довольно проста - Al2Si4O10(OH)2*nH2O. Формулы реальных смектитов всегда отличаются от этой идеализированной формулы, так как в тетраэдрических сетках часть Si4+ (до 15%) замещается на Al3+, реже на Fe3+; а в октаэдрической сетке часть Al3+ (а иногда весь Al3+) замещается на Mg2+ или Fe3+. При полном замещении октаэдрического алюминия на Mg2+ минерал приобретает триоктаэдрическую структуру октаэдрического слоя. При изоморфных замещениях возникает избыточный отрицательный заряд пакетов, который компенсируется обычно катионами Na+ и Ca2+, иногда частично К+ или Mg2+, заполняющими вместе с молекулами воды межпакетное пространство кристаллической решетки.
    Широкое развитие процессов изоморфного замещения Al в октаэдрах и Si в тетраэдрах обусловливает образование большого количества разновидностей глинистых минералов, относящихся к группе смектитов.
    В табл. 10.4 приведен состав основных минералов из группы смектитов.

    Кроме перечисленных в таблице существует много других минералов, относимых к смектитам, среди которых относительно редкие: волконскоит (хромовый смектит), соконит (цинковый смектит) и др.
    Между такими минералами, как монтмориллонит и бейделлит, монтмориллонит и нонтронит, бейделлит и нонтронит и др., могут существовать изоморфные серии минералов переменного состава, общепринятая классификация и номенклатура которых до настоящего времени не разработана.
    Наиболее распространенным в природе минералом группы смектитов является монтмориллонит, по имени которого часто называют и всю группу. В зависимости от катионов и количества молекул воды, заполняющих межпакетные пространства, для структуры монтмориллонита характерны различные межплоскостные расстояния. Так, структура монтмориллонита с катионами Na+ и одним молекулярным слоем воды имеет межплоскостное расстояние, равное примерно 12,5А. Монтмориллонит с катионами Ca2+ содержит обычно два молекулярных слоя поды и имеет межплоскостное расстояние 15,5А (табл. 10.5).

    В образцах часто отмечается присутствие монтмориллонита с межплоскостным расстоянием 001 = 14,0-14,5 А. Для определения монтмориллонита, по данным рентгенофазового анализа, важную роль играет способность решетки этого минерала расширяться по оси с, т. ё. способность увеличивать межплоскостиое расстояние при насыщении межпакетных пространств молекулами таких органических соединений, как этиленгликоль и глицерин. Независимо от первоначального межплоскостного расстояния природного монтмориллонита после его насыщения этиленгликолем межплоскостное расстояние увеличивается до 17,0А. Если же образец насыщен глицерином, оно возрастает до 17,7-17,8 А (табл. 1.0.6). Прокаливание образцов монтмориллонита в течение двух часов при температуре 600°С приводит к уменьшению межплоскостного расстояния до 9,5-10,0 А, что также помогает индентифицировать минерал (см. табл. 10.2).
    При сравнении дифрактограмм природных образцов и образцов, насыщенных этиленгликолем или глицерином, по увеличению межплоскостного расстояния присутствие монтмориллонита легко устанавливается даже в смесях с другими глинистыми минералами. Для более точной диагностики разновидностей смектитовых минералов используются данные химического анализа, по которым рассчитываются структурные формулы минералов.
    Существенную помощь в идентификации смектитовых минералов оказывают результаты их термографического анализа. На термограммах всех смектитов четко выделяется эндотермическая реакция с максимумом между 150° и 200°С, связанная с уходом из решетки минералов межпакетной воды. Характер термограмм отдельных минералов группы смектитов приведен на рис. 10.4.
    Электронно-микроскопическое изучение монтмориллонита показывает, что его частицы не имеют кристаллографических очертаний и представляют собой беспорядочные расплывчатые массы с размытыми, нечеткими краями (см. рис. 10.5), образованные, по-видимому, агрегатами наложенных друг на друга мельчайших чешуйчатых частиц с толщиной, приближающейся к толщине элементарного пакета.
    Близкими по структуре к смектитам являются вермикулиты, часто выделяемые в качестве самостоятельной группы минералов. Структура вермикулитов трехслойная, состоит из двух внешних тетраэдрических сеток и внутренней октаэдрической сетки (структуру монтмориллонита см. на рис. 10.3). В межпакетном пространстве в качестве обменных катионов присутствуют Mg, Ca и некоторые другие, а также молекулы воды. Общая формула вермикулитов

    где х = 0,5/0,7 до 1,0.
    В глинистых породах тонкодисперсные вермикулиты часто присутствуют в виде примеси к другим глинистым минералам или образуют смешанослойные образования типа монтмориллонит - вермикулит, хлорит - вермикулит и др. Межплоскостное расстояние d001 вермикулитов - 28-29 А. На дифрактограммах обычно четко фиксируется отражение 002, равное 14,0-14,5А, в связи с чем определяются вермикулитовые минералы в присутствии монтмориллонитов или хлоритов. От монтмориллонитов вермикулиты отличаются отсутствием увеличения межплоскостного расстояния при обработке глицерином после предварительного насыщения минерала катионами магния; а от хлоритов - уменьшением d001 до 9,4-10,0A после прокаливания при 600°С (см. табл. 10.2).
    Таким образом, вермикулиты глинистых пород обладают структурой иллитов и смектитов, причем связи между пакетами у вермикулитов проявляются слабее, чем у минералов группы иллита (гидрослюды), но сильнее, чем у минералов группы смектитов (монтмориллонита).
    Группа иллита (гидрослюды). Термин «иллит» предложен американскими исследователями Р. Гримом, Р. Бреем и У. Бредли (1937) для обозначения различных слюдоподобных глинистых минералов. В настоящее время в этом понимании он широко используется в зарубежной геологической литературе. В России для обозначения слюдоподобных глинистых минералов чаще употребляется термин «гидрослюда». Под иллитом в этом случае понимается тонкодисперсный глинистый минерал, являющийся гидратированным аналогом мусковита.
    Структура иллитов сходна со структурой смектитов (ср. рис. 10.6 и 10.3). Она образована чередованием трехслойных пакетов, каждый из которых состоит из двух тетраэдрических кремнекислородных сеток, повернутых вершинами тетраэдров навстречу друг другу и заключенного между ними октаэдрического алюмо-кислородогидроксильного слоя. Идеализированная формула иллита, фактически совпадающая с формулой мусковита, KAl2(AlSi3)O10(ОН2 показывает, что в результате изоморфного замещения части Si4+ в кремнекислородных тетраэдрах на Al3+ возникает избыточный отрицательный заряд, который компенсируется катионами К+. Последние располагаются в межпакетных пространствах в гексагональных «впадинах», имеющихся на поверхности, образованной основаниями тетраэдров, и жестко связывают соседние пакеты, препятствуя расширению решетки по оси с. Межплоскостное расстояние, характерное для иллитов, равно 10 А. Оно не изменяется ни при насыщении минерала этиленгликолем или глицерином, ни после его прокаливания при температуре 600°С (см. табл. 10.2).
    Слюдоподобные диоктаэдрические глинистые минералы (иллиты) отличаются от мусковита меньшей степенью замещения Si4+ на Al3+ и соответственно меньшим содержанием калия, компенсирующего избыточный отрицательный заряд пакетов. Так, в мусковите теоретическое содержание К2О составляет 11,8%, в то время как в иллитах оно в большинстве случаев колеблется в пределах от 3-4 до 8%. В иллитах достаточно широко развиты изоморфные замещения алюминия в октаэдрах на Fe3+, Mg2+, Fe2+ и др. Общая формула минералов группы иллита может быть представлена в форме

    где x = 0,5/0,75.
    В межпакетном комплексе наряду с существенно преобладающим к присутствуют молекулы воды и иногда отмечается некоторое количество катионов Na, Ca, Mg. При увеличении степени замещения Al3+ в октаэдрах на Fe3+, Fe2+ и Mg2+ возникает глинистый минерал, известный под названием глауконита. По данным С. Хендрикса и К. Росса, средний состав диоктаэдрического глауконита без учета межпакетной воды выражается формулой

    Слюдоподобные глинистые минералы - иллиты являются основными компонентами абсолютного большинства глинистых пород. Подавляющая масса глинистых пород состоит из минералов группы иллита и смешанослойных образований, в составе которых иллиты играют существенную роль. Установлено, что в глинистых породах присутствуют три политипных разновидности иллитовых минералов, отличающихся друг от друга по характеру наложения слоев, образующих их кристаллическую решетку;
    - политип 1М - иллиты с межплоскостным расстоянием 10A, обладающие моноклинной кристаллической решеткой, дающей на дифрактограммах четкие острые симметричные пики. Сюда же относятся 10-ангстремные иллиты с неупорядоченной решеткой, т. е. плохо окристаллизованные (подтип 1Md). На дифрактограммах для них характерны низкие диффузные рефлексы, «расплывающиеся» в сторону больших углов 20;
    - политип 2M1 (M1 означает одну из двух теоретически возможных разновидностей) - иллиты мо1юклинной сингонии, элементарная ячейка которых охватывает два пакета, обладающих межплоскостным расстоянием d001 = 20A;
    - политип 3Т - иллиты тригональной сингонии с элементарной ячейкой, включающей три пакета с межплоскостным расстоянием d001 = 30А. Политип ЗТ встречается значительно реже, чем 1М, (1Md) и 2М1.
    Отличить различные политbпы иллbтов по данным рентгенофазового анализа тонкодисперсных фракций удается не всегда. Дело в том, что чистые, мономинеральные скопления иллитовых минералов представляют собой большую редкость. В большинстве глинистых пород иллиты присутствуют в смеси с другими глинистыми минералами, хлоритами и в виде смешанослойных образований.
    Г.В. Карпова приводит данные раздельного рентгеновского анализа иллитов политипа 1M (1Md) и 2M1 (табл. 10.7).

    На термограммах иллита (см. рис. 10.4) в интервале температур 100-200°С фиксируется эндотермическая реакция, связанная с уходом межпакетной воды. Вторая эндотермическая реакция, соответствующая потере минералом гидроксильной воды, начинается около 450-500 °С и имеет максимум между 550-650°С. Интенсивность и температурный интервал этой реакции колеблются у различных иллитов. Третья эндотермическая реакция, связанная, по-видимому, с разрушением структуры иллитов, проявляется между 850° и 950°С. Наконец, около 1000°С намечается слабая экзотермическая реакция образования глинозема и шпинели.
    Изучение формы иллитовых частиц с помощью электронного микроскопа показывает, что в глинистых породах присутствуют частицы иллита двух типов:
    - субизометрично-пластинчатые частицы, относящиеся к политипам 2М1 и 1М, по мнению ряда исследователей, поступающие в осадок за счет размыва более древних осадочных и метаморфических пород;
    - удлиненно-пластинчатые, «щеповидные», частицы (рис. 10.5) политипа 1M (1Md), имеющие аутигенное происхождение.

    Группа хлоритов . Минералы группы хлоритов имеют четырехслойное строение (рис. 10.6), причем элементарный пакет состоит как бы из двух частей: трехслойной части, аналогичной пакетам иллитов, и еще одного слоя магний-гидроксильных октаэдров (бруситовый слой). Межплоскостное расстояние тонкодисперсных хлоритов глинистых пород равно 14,0-14,ЗА. Состав хлоритов существенно различен из-за широко развитых явления изоморфных замещений в пределах тетра- и октаэдрических сеток. Общая формула хлоритов имеет вид

    В глинистых породах тонкодисперсные хлориты всегда пpиcyтствуют в смеси с глинистыми минералами или в виде смешанослойных образований типа хлорит-монтмориллонит, иллит-хлорит и др. Присутствие хлоритов в глинистых фракциях фиксируется по характерным рентгеновским отражениям, главными из которых являются отражения от базальной плоскости 001, особенно отражения от плоскости 001 = 14,0-14,3 А (табл. 10.8).

    В тех случаях, когда в породе присутствует смесь глинистых минералов и хлоритов, последние трудно отличить от монтмориллонитов, имеющих doo1 = 14,0-14,5А или даже каолинитов (d001 = 7,15 А), если отражение хлорита 14,3 А нечеткое. Для контроля проводят обработку образцов теплой соляной кислотой HCl, в которой хлориты растворяются и их отражения на дифрактограммах соответственно исчезают, а также насыщение образцов глицерином, после чего при наличии в образцах монтмориллонитов появляются отражения 001 = 17,8А (см. табл. 10.2).
    Группа смешанослойных образований. Как показали исследования различных глинистых пород, широким распространением в них пользуются глинистые минералы, кристаллическая решетка которых представляет собой чередование пакетов иллитовой, монтмориллонитовой и вермикулитовой структур друг с другом или с пакетами хлоритового строения. Такие глинистые минералы получили название смешанослойных. В них чередуются обычно пакеты двух типов; иллит-монтмориллонитовые, иллит-хлоритовые, хлорит-вермикулитовые и др. Смешанослойиые минералы с чередованием двухслойных пакетов пока достоверно не установлены.
    Выделяются два основных типа смешанослойных образований.
    Упорядоченные образования. Пакеты различного состава в них чередуются закономерно: АБАБАБ или АББАББАБб и т. п. Упорядоченные смешанослойные образования представляют собой минералы определенного состава. Их межплоскостиое расстояние равно сумме межплоскостных расстояний чередующихся пакетов. На дифрактограммах фиксируются серии соответствующих базальных рефлексов 001, 002. 003 и т. д. Некоторые смешано-слойные минералы получили специальные названия. Например, корренсит представляет собой закономерное чередование пакетов хлорита и монтмориллонита, браваизит - иллита и монтмориллонита, ректорит - вермикулита и пирофиллита.
    Неупорядоченные образования. Пакеты различного типа чередуются беспорядочно, незакономерно: АБААБАААБАБББ и т. д., что значительно затрудняет изучение деталей строения таких минералов. Расшифровка дифрактограмм, получаемых or неупорядоченных смешанослойных структур, часто представляет собой очень сложную задачу. Неупорядоченные смешанослойные образования, особенно иллит-монтмориллонитового типа, чрезвычайно широко распространены в разрезах глинистых толщ.
    На рис. 10.7 приведена схема, предложенная Ж. Люка, Т. Kaмец и Ж. Милло, показывающая межплоскостное расстояние основных глинистых минералов, смешанослойных образований и изменения этих межплоскостных расстояний после различной обработки образцов.