Солнечный парус был изобретен русским ученым фридрихом. Солнечный парус

Так уж сложилось, что когда мы слышим о космических исследованиях, то представляем себе ракеты, межпланетные зонды, марсианские роверы NASA и советские луноходы. Но уже сейчас мы стоим на пороге нового этапа исследования космического пространства и небесных тел, когда к далеким мирам отправятся корабли на солнечных парусах, а в очень дальнее плавание по морям далеких планет отправятся автономные субмарины.

С чем подошли к этому этапу и что хотим получить, мы и рассмотрим в статье.

Космические парусники

На заре мореплавания, когда до создания пароходов и теплоходов оставалось ещё долгое время, люди использовали энергию ветра для путешествия по бескрайним морским просторам. Запрягая ветер в паруса можно было достичь дальних неизвестных берегов и вернуться с богатством и славой. В эпоху Великих географических открытий благодаря парусу, европейские путешественники достигли самых отдалённых уголков нашей планеты.

Мы только мечтаем о взрыволетах, двигателях на антиматерии, варп-двигателях и других фантастических решениях которые позволят нам путешествовать в космосе. А если так, то почему бы не воспользоваться проверенными решениями – использовать для передвижения в космосе паруса. Тем более что «ветры» которые можно оседлать в космосе есть, а паруса уже придуманы.

Солнечный парус

Ещё в 17 веке немецкий астроном, математик, механик и оптик Иоганн Кеплер, наблюдая развевающиеся хвосты комет при движении по околосолнечной орбите, высказал идею о том, что свет может оказывать давление. До конца прошлого века полёты на солнечных парусах были уделом мечтателей и фантастов. Но сейчас мы подошли вплотную к возможности практического использования этой идеи.

Технология солнечного паруса проста - фотон солнечного света отдаёт свой импульс парусу, тем самым оказывает на него давление и заставляет двигаться космический аппарат, на котором парус установлен.

Не стоит думать, что солнечный свет оказывает давление только на паруса. Любой космический аппарат, отправленный с Земли в дальнее путешествие, будет «сдуваться» со своего пути давлением солнечного света. Например, на маршруте Земля-Марс такое отклонение от маршрута составит несколько тысяч километров.

На сегодняшний день пока нет аппаратов отправившихся на исследование космоса под солнечными парусами. Пока изучают сами паруса и их возможности. Проведённые запуски спутников, на которых были установлены солнечные паруса: IKAROS (JAXA), NanoSail-D2 (NASA) и LightSail-1 (The Planetary Society) были совершены для отработки процессов разворачивания парусов и совершения манёвров.

Первое преимущество космических путешествий под парусом в том, что корабль, использующий солнечные паруса не требует топлива, так же как и парусники прошлого. Второе - солнечные парусники могут перемещаться в космическом пространстве куда быстрее, чем используемые сейчас космические аппараты.

Так, космический зонд весом в две тонны, оснащённый солнечным парусом, достигнет Марса всего за четыре месяца, а Юпитера за два года. Космические миссии станут быстрее и дешевле. Мы сможем более подробно исследовать Солнечную систему, и в частности астероиды, что имеет решающее значение для добычи полезных ископаемых в космосе.

Зонды, оснащённые солнечными парусами, конечно, могут совершить революцию в изучении Солнечной системы, но такой парус теряет свою эффективность по мере удаления от Солнца. Наибольшую эффективность он имеет при путешествиях в пределах Главного пояса астероидов. А как дальше? А дальше нам на помощь придёт электрический парус.

Электрический парус

Когда мы говорим о солнечном парусе, надо понимать что он движется не за счёт солнечного ветра, а именно за счёт солнечного света - фотонов. А вот солнечный ветер - поток мегаионизированных частиц, ловит электрический парус.

Такой парус не является парусом в прямом смысле этого слова. Концепт электрического паруса от NASA, Heliopause Electrostatic Rapid Transit System (HERTS) представляет собой массив из тонких заряженных алюминиевых тросов длиной около 20 километров. Центробежная сила, возникающая в результате вращения аппарата, позволяет раскрыть парус.

Растянувшиеся в пространстве положительно заряженные тросы будут отталкивать протоны солнечного ветра, получать импульс и в результате этого двигаться.

Первым аппаратом, на котором был установлен электрический парус, стал эстонский спутник ESTCube-1, запущенный 7 мая 2013 года с космодрома в Куру. Целью запуска было тестирование электрического паруса, но он так и не раскрылся на орбите. Что впрочем не останавливает его создателей.

Благодаря электрическому парусу за какие-то 5 лет мы сможем долететь до Плутона, а за 10 лет сможем достигнуть гелиопаузы – условной границы нашей Солнечной системы. Для сравнения, автоматической межпланетной станции Voyager 1 потребовалось почти 35 лет чтобы достигнуть этой границы.

Лазерный парус

Вы наверное уже слышали о проекте Стивена Хокинга и Юрия Мильнера Breakthrough Starshot. Известный предприниматель и знаменитый физик планируют создать целый флот космических парусников и отправить их к ближайшей к нам звезде Альфа Центавра.

Для того что бы выйти за пределы Солнечной системы и достигнуть ближайшей звезды, солнечные паруса надуют «лазерным ветром». Миниатюрные нанозонды размером всего в несколько сантиметров будут снабжены солнечными парусами размером 4 на 4 метра каждый.

Всего будет около 1000 таких микрокорабликов, ведь есть высокая вероятность, что не каждый из них долетит к цели. Разгоняться они будут наземными лазерами, мощностью до 100 гигаватт. Для ускорения каждого такого аппарата до необходимой скорости потребуется порядка 10 минут.

До звезды соседки кораблики долетят приблизительно за 20 лет, еще 4 года мы будем ждать от них фотографий самой звезды и её планет. В 2012 году европейские астрономы уже сообщали об обнаружении планеты на орбите вокруг Альфа Центавра-Б, одной из звёзд в системе Альфа Центавра. Миссию планируется спланировать так, чтобы удалось получить максимально возможное количество информации о звезде и её планетах, вплоть до изображения рельефа планет.

Если эта миссия будет удачной, то наверняка мы полетим и к другим ближайшим звёздам. На расстоянии 12 световых лет от нас находятся 24 звёзды. А это значит, что при желании, в течение примерно 100 лет мы сможем все их изучить. И даже дать найденным планетам около этих звёзд имена, если конечно мы не встретим там братьев по разуму, которые уже назвали планеты по-своему.

Дирижабли на Венере

Меньше чем даже сто лет назад небо на нашей планете бороздили дирижабли. Имеющие небольшой удельный расход топлива и способные находиться в воздухе продолжительное время они и сейчас иногда находят применение на Земле. Будучи легче воздуха они поднимаются в атмосферу за счёт выталкивающей (подъёмной) силы, если средняя плотность газа, которым наполнена оболочка дирижабля, равна или меньше плотности атмосферы.

В такой ситуации, почему бы не использовать дирижабли на тех планетах, где есть достаточно плотная атмосфера. Правда, в Солнечной системе такая планета одна – Венера. Если вспомним, её атмосферу наблюдал ещё Михайло Ломоносов.

Вот об этом и задумались исследователи из NASA, предложив в результате концепцию исследовательской миссии к Венере, которая получила название High Altitude Venus Operational Concept (HAVOC).

Идея основывается на том, что в верхних слоях венерианской атмосферы условия подобны земным. На высоте 50 километров атмосферное давление составляет всего 1 земную атмосферу, а температура составляет 75 градусов Цельсия, что по сравнению с другими местами на этой горячей планете совсем не много. Радиационный фон так же сравним с земным. В этом отношении Венера куда более предпочтительнее для освоения, чем Марс.

Миссия предполагает доставку к Венере вначале небольшого (длинной 31 метр) роботизированного дирижабля, а затем уже и большого пилотируемого дирижабля длина которого составит 129 метров, а высота 34 метра. По сравнению с земными аналогами, эпохи небесных гигантов, пилотируемый венерианский дирижабль меньше, чем печально известный Гинденбург, длина которого составляла 245 метров и последний из гигантов Граф Цеппелин (236,6 м), и примерно равен первым цеппелинам, длина которых составляла 128 – 148 метров.

В атмосферу планеты дирижабль планируют доставить в специальной капсуле. В нужный момент она раскроется, освободив гондолу с экипажем и сам аэростат, который сразу же начнет наполняться газом. После чего дирижабль начнет своё «плавание» по венерианской атмосфере.

Поверхность дирижабля будет покрыта солнечными батареями, и учитывая, что Венера получает солнечного света гораздо больше чем Земля, дефицита энергии астронавты испытывать не будут.

В космос на воздушном шаре

Стоит сразу сказать, что в космос на воздушном шаре не улетишь. Но это формальности. Компания World View Enterprises позиционирует себя именно как космический туроператор. Незабываемые впечатления от околокосмического путешествия должна подарить туристам капсула поднимаемая воздушным шаром на высоту 32 километра. В капсуле поместятся шесть пассажиров и два пилота.

Полет будет продолжаться около двух часов, невесомости пассажиры не почувствуют, но зато смогут насладиться, поистине завораживающим видом. На борту капсулы можно будет совершенно свободно перемещаться, пассажиры смогут воспользоваться баром и загрузить сделанные на борту фотографии в социальные сети.

Отметим, что самолеты не поднимаются на высоту более 20 километров, а Линия Кармана (ударение на первый слог) являющаяся условной границей между атмосферой планеты и космосом проходит на высоте 100 километров над уровнем моря.

Марсианский дрон-разведчик

Как вы наверное помните на Марсе тоже есть атмосфера. Пусть не такая плотная, как на Земле и тем более на Венере, но использовать парашюты для мягкой посадки она позволяет. А если атмосфера есть, то почему бы в ней и не полетать.

Такой целью задались специалисты Лаборатории реактивного движения NASA. Да и практическая потребность в этом уже назрела.

Снимки с поверхности Красной планеты мы получаем в основном благодаря камерам установленным на борту марсоходов. Но «глаза» которыми оснащены роверы не дают нам необходимого обзора. Вот для такой цели в NASA и разрабатывают марсианский дрон–разведчик.

Небольшой винтокрылый робот, летящий на малых высотах, будет сопровождать марсоход в пути. С его помощью можно будет выбрать оптимальный маршрут движения, а так же интересные цели для исследований. Для самого ровера, аппарат может выступать также и в качестве селфи-дрона. Ведь с его помощью можно будет осмотреть марсоход в случае неисправности. Да и фотографии ровера на фоне марсианских пейзажей обещают быть весьма эффектными.

Вес дрона составит один килограмм, а длина лопастей чуть более метра. Энергией его будут снабжать солнечные батареи. А помимо фотосъемки он сможет переносить и небольшие грузы.

В NASA не исключают, что на Марс дрон-разведчик отправиться вместе с новым марсоходом уже в 2020 году.

Подводная лодка для Титана

Как правило, моря и океаны на небесных объектах в Солнечной системе ассоциируются с чем-то пустынным и абсолютно сухим. Например, американские астронавты, высадившиеся в лунном Море Спокойствия, не то, что не утонули, даже ноги не замочили. Но даже в нашей системе так не везде.

Море Кракена, находящееся на Титане, спутнике Сатурна, вполне себе «мокрое» и жидкое. Причём этот водоём, получивший название по имени мифического морского чудовища, не единственный водоём на этой луне Сатурна.

Моря, озера, проливы и каналы на этой маленькой планетке заполнены жидкими углеводородами, в основном метаном и этаном, так что, наверное, даже правильнее их называть не водоёмами, а углеводоёмами. Кроме этого, учёные предполагают, что возможно на Титане есть подповерхностный океан, содержащий жидкую воду со значительным содержанием аммиака и экстремально высокой солёностью.

При таких условиях идея поплавать в морях Титана выглядит весьма заманчиво. Вот об этом и задумались в NASA.

Внешне субмарина будет напоминать подводные лодки используемые в земных морях и океанах, единственное существенное отличие большая фазированная антенна напоминающая спинной плавник.

Вес аппарата должен составить одну тонну, и это позволит ему поместиться в грузовом отсеке автоматического челнока, прообразом которого выступит Boeing Х-37. К спутнику Сатурна субмарину с челноком доставит космический корабль. Челнок обеспечит бережный спуск и точное «приводнение» в нужном месте, а сам после этого утонет в метановом море.

Обеспечивать энергией лодку будет 1-киловаттный термогенератор Стирлинга, который также и убережет расположенную на борту электронику от замерзания. Двигаясь с небольшой скоростью, около 1 метра в секунду (3,6 км/ч), субмарина за 90 дней плавания должна преодолеть расстояние в 2000 километров по периметру моря Кракена.

Примечательно, что для передачи на Землю собранных данных не планируется оставлять на орбите Титана спутник-ретранслятор. Данные будут передаваться напрямую на Землю. Но это накладывает временные ограничения на реализацию миссии. Земля поднимется над горизонтом в северных широтах Титана, где и расположено море Кракена, только к 2040 году, на это время и запланирована исследовательская миссия.

Электрический солнечный парус, разработанный два года назад в Финнском метеорологическом институте, быстро движется от изобретения к практическому внедрению. Электрическая парусная тяга может оказать огромное влияние на космические исследования и путешествия по всей солнечной системе.

Изобретенный д-ром Пеккой Януненом (Pekka Janhunen) электрический парус, работающий на силе солнечного ветра, может привести к революции в космических путешествиях. В качестве источника тяги парус использует...

Пресс-служба NASA сообщила о том, что на орбиту Земли успешно выведен уникальный наноспутник, оснащенный солнечным парусом.

Для реализации проекта был запущен миниатюрный аппарат FASTSAT. Внутри него скрыта система P-POD, при помощи которой в космос был выброшен еще более компактный спутник NanoSail-D. Впервые в истории подобный аппарат был доставлен на орбиту более крупным спутником, а не ракетой.

Японское космическое агентство (JAXA) планирует 18 мая 2010 года запустить в космос спутник, движущийся за счет солнечного паруса.

Аппарат получил название Ikaros (сокращение от Interplanetary Kite-craft Accelerated by Radiation of the Sun - межпланетный парусный аппарат, движущийся за счет солнечного излучения).

Название спутника также является слегка искаженным именем героя античных мифов Икара (по-английски он пишется Icarus), который, надев сделанные его отцом крылья, попытался...

Японский экспериментальный космический парусник «Икар» за шесть последних месяцев набрал благодаря своему парусу, «работающему» за счет давления солнечного света, дополнительно 100 метров в секунду, или 360 километров в час, сообщает японское космическое агентство JAXA. Аппарат был запущен 21 мая 2010 года одновременно с исследовательским зондом «Акацуки», и они вдвоем отправились к Венере. В начале лета «Икар» начал раскручиваться и разворачивать свой парус: 14-метровое квадратное мембранное...

Запуск японской ракеты-носителя, на борту которой находятся спутник с солнечным парусом, движущийся за счет солнечного ветра, и аппарат для изучения Венеры, перенесен на 21 мая.

Изначально планировалось, что старт ракеты-носителя H-IIA состоится 18 числа, однако он был отменен из-за плохой погоды на космодроме Танегасима (Tanegashima). Новое время запуска - 21 мая, 01:58 по московскому времени.

Аппарат для изучения Венеры получил название "Акацуки" (в переводе с японского этого слово...

Группа космических аппаратов теоретически способна заставить астероид изменить направление движения, заслонив его от Солнца, считают специалисты из французского Национального центра космических исследований (CNES). Их идея, предполагающая запуск аппаратов, работающих по принципу «солнечного паруса» к астероиду Апофис, была озвучена на симпозиуме, прошедшем в Нью-Йоркском технологическом колледже.

Астероид Апофис был обнаружен в 2004 году. По расчётам астрономов, в 2029 году он должен пройти...

Солнечное затмение - это нечастое явление, которое в астрологии считается негативным. Ограничений и предостережений в эти дни значительно больше, чем обычно.

Новолуние, которое всегда сопровождает это событие, тоже произойдет в Знаке Рака, что добавит проблем. Еще этот день - пятница 13, что также не сулит нам ничего хорошего. Таким образом, позитивных моментов грядущего затмения почти не будет, зато опасностей...

Солнечные и лунные затмения играют значительную роль в астрологических прогнозах. Дни затмений нередко отмечены в исторических хрониках событиями, которые перевернули ход истории. 2019 год начнется с затмения Солнца. Астрологи расскажут, как провести этот день и не столкнуться с неприятностями.

2019 год, с точки зрения астрологов, будет богат на события, причем долго ждать их не придется. Например, с 1 января начинается звездопад Квадрантиды, пик которого придется на 4 число, а 6 января...

Солнечный парус представляет собой способ передвижения космического корабля с использованием давления световых и высокоскоростных газов (также называемого давлением солнечного света), излучаемого звездой. Рассмотрим подробнее его устройство.

Использование паруса предполагает недорогие космические путешествия в сочетании с увеличенным сроком использования. Из-за отсутствия множества движущихся частей, а также необходимости использовать пропеллент, потенциально становится возможным многоразовое использование такого корабля для доставки полезных грузов. Также иногда используются названия световой или фотонный парус.

История концепции

Йоханес Кеплер как-то заметил, что хвост кометы смотрит по направлению от Солнца, и предположил, что именно звезда производит такой эффект. В письме Галилею в 1610 году он писал: "Обеспечьте корабль парусом, приспособленным к солнечному бризу, и найдутся те, кто отважится исследовать и эту пустоту". Возможно, при этих словах он ссылался именно на феномен "хвоста кометы", хотя публикации на эту тему появились несколько лет спустя.

Джеймс К. Максвелл в 60-х годах XIX века опубликовал теорию электромагнитного поля и излучений, в которой показал, что свет имеет импульс и таким образом может оказывать давление на объекты. Уравнения Максвелла дают теоретическую основу для передвижения при помощи светового давления. Поэтому уже в 1864 году в сообществе физиков и вне его было известно, что солнечный свет несет импульс, оказывающий давление на объекты.

Сначала Петр Лебедев в 1899 году экспериментально продемонстрировал а затем Эрнест Николс и Гордон Халл провели аналогичный независимый эксперимент в 1901 году с использованием радиометра Николса.

Альберт Эйнштейн представил другую формулировку, признав эквивалентность массы и энергии. Теперь мы можем написать просто p = E/c как соотношение между импульсом, энергией и скоростью света.

Предсказал в 1908 году возможность давления солнечной радиации, переносящей живые споры на межзвездные расстояния, и, как следствие, понятие панспермии. Он был первым ученым, заявившим, что свет может перемещать объекты между звездами.

Первые официальные проекты по разработке этой технологии начались в 1976 году в Лаборатории реактивного движения для предлагаемой миссии по «рандеву» с кометой Галлея.

Принцип работы солнечного паруса

Свет оказывает влияние на все аппараты на орбите планеты или в К примеру, обычный космический корабль, следующий на Марс, будет смещен более чем на 1000 км по направлению от Солнца. Эти эффекты учитываются при планировании траектории космического путешествия со времен самого первого межпланетного космического корабля 1960-х годов. Излучение также влияет на позицию аппарата, и этот фактор должен учитываться в проекте судна. Сила, воздействующая на солнечный парус, составляет 1 ньютон и меньше.

Использование этой технологии удобно на межзвездных орбитах, где любые действия выполняются низкими темпами. Вектор силы светового паруса ориентирован вдоль солнечной линии, что увеличивает энергию орбиты и момент импульса, в результате чего корабль движется дальше от Солнца. Для изменения наклона орбиты вектор силы оказывается вне плоскости вектора скорости.

Контроль позиции

Система управления ориентацией (ACS) космического корабля необходима для достижения и изменения желаемой позиции при путешествии по Вселенной. Заданное положение аппарата меняется очень медленно, часто меньше одного градуса в день на межпланетном пространстве. Этот процесс происходит гораздо быстрее на орбитах планет. Система управления аппаратом, использующим солнечный парус, должна удовлетворять всем требованиям к ориентации.

Контроль достигается путем относительного сдвига между центром давления судна и его центром масс. Этого можно достичь с помощью управляющих лопаток, движения отдельных парусов, перемещения контрольной массы или изменения отражательной способности.

Неизменная позиция требует, чтобы ACS поддерживал чистый крутящий момент на нуле. Момент силы паруса не постоянен вдоль траектории. Изменения с расстоянием от Солнца и углом, который корректирует вал паруса и отклоняет некоторые элементы опорной конструкции, что приводит к изменениям силы и крутящего момента.

Ограничения

Солнечный парус не сможет работать на высоте ниже, чем 800 км от Земли, так как до этого расстояния сила сопротивления воздуха превышает силу светового давления. То есть влияние солнечного давления слабо ощутимо, и он просто не будет работать. Скорость поворота должна быть совместима с орбитой, что обычно является проблемой только для конфигурации вращающихся дисков.

Рабочая температура зависит от солнечного расстояния, угла, отражательной способности, а также передних и задних излучателей. Парус можно использовать только там, где температура поддерживается в его материальных пределах. Как правило, он может использоваться довольно близко к солнцу, около 0,25 астрономических единиц, если корабль тщательно спроектирован для этих условий.

Конфигурация

Эрик Дрекслер изготовил прототип солнечного паруса из специального материала. Он представляет собой каркас с панелью из тонкой алюминиевой пленки толщиной от 30 до 100 нанометров. Парус вращается и должен постоянно находиться под давлением. Конструкция такого типа обладает высокой площадью на единицу массы и, следовательно, получает ускорение «в пятьдесят раз выше», чем основанные на развертываемых пластиковых пленках. Она представляет собой квадратные паруса с мачтами и парными линиями на темной стороне паруса. Четыре пересекающиеся мачты и одна - перпендикулярно центру, чтобы удерживать провода.

Электронная конструкция

Пекка Янхунен изобрел электрический парус. Механически он имеет мало общего с традиционным дизайном светового. Паруса заменяются выпрямленными проводящими тросами (проводами), расположенными радиально вокруг корабля. Они создают электрическое поле. Оно простирается на несколько десятков метров в плазму окружающего солнечного ветра. Солнечные электроны отражаются электрическим полем (как фотоны на традиционном солнечном парусе). Корабль может управляться путем регулирования электрического заряда проводов. Электрический парус имеет 50-100 выпрямленных проводов длиной около 20 км.

Из чего изготовлен?

Материал, разработанный для солнечного паруса Дрекслера, представляет собой тонкую алюминиевую пленку толщиной 0,1 микрометра. Как и ожидалось, она продемонстрировала достаточную прочность и надежность для использования в космосе, но не для складывания, запуска и развертывания.

Наиболее распространенным материалом в современных конструкциях является алюминиевая пленка "Каптон" размером 2 мкм. Она сопротивляется высоким температурам рядом с Солнцем и достаточно крепкая.

Были некоторые теоретические предположения о применении методов молекулярного производства для создания продвинутого, сильного, сверхлегкого паруса, основанного на тканевых сетках из нанотрубок, где плетеные «промежутки» меньше половины длины волны света. Такой материал был создан только в лабораторных условиях, а средства для изготовления в промышленном масштабе пока недоступны.

Световой парус открывает огромные перспективы для межзвездных передвижений. Конечно, есть еще много вопросов и проблем, с которыми придется столкнуться, прежде чем путешествие по Вселенной при помощи такой конструкции космического корабля станет привычным делом для человечества.

» (поток фотонов , именно он используется солнечным парусом) и «солнечный ветер » (поток элементарных частиц и ионов, который предполагается использовать для полётов на электрическом парусе - другой разновидности космического паруса).

Давление солнечного света чрезвычайно мало (на Земной орбите - около 5·10 −6 Н/м 2 ) и уменьшается пропорционально квадрату расстояния от Солнца . Однако солнечный парус совсем не требует ракетного топлива , и может действовать в течение почти неограниченного периода времени, поэтому в некоторых случаях его использование может быть привлекательно. Эффект солнечного паруса использовался несколько раз для проведения малых коррекций орбиты космических аппаратов, в роли паруса использовались солнечные батареи или радиаторы системы терморегуляции. Однако на сегодня ни один из космических аппаратов не использовал солнечный парус в качестве основного двигателя .

Солнечный парус в проектах звездолётов

Солнечный парус - самый перспективный и реалистичный на сегодня вариант звездолёта .

Преимуществом солнечного парусника является отсутствие топлива на борту, что позволит увеличить полезную нагрузку по сравнению с космическим кораблем на реактивном движении.

Недостатком солнечного парусника является тот факт, что за пределами Солнечной системы давление солнечного света приблизится к нулю. Поэтому существует проект разгона солнечного парусника лазерными установками с какого-нибудь астероида. Данный проект ставит проблему точного наведения лазеров на сверхдальних расстояниях и создания лазерных генераторов соответствующей мощности.

Уже сейчас можно построить межзвёздный зонд, использующий давление солнечного ветра.

Существует 2 варианта солнечных парусников: на давлении электромагнитных волн и на потоке частиц.

Космическая регата

Солнечный парус диаметром 20 метров, разработанный в НАСА

Толщина солнечного паруса

В 1989 году юбилейной комиссией Конгресса США в честь 500-летия открытия Америки был объявлен конкурс. Его идея заключалась в выведении на орбиту нескольких солнечных парусных кораблей, разработанных в разных странах, и проведении гонки под парусами к Марсу. Весь путь планировалось пройти за 500 дней. Свои заявки на участие в конкурсе подали США, Канада, Великобритания, Италия, Китай, Япония и Советский Союз. Старт должен был состояться в 1992 году.

Претенденты на участие стали выбывать почти сразу, столкнувшись с рядом проблем технического и экономического плана. Распад Советского Союза, однако, не привёл к прекращению работы над отечественным проектом, который по мнению разработчиков, имел все шансы на победу. Но регата была отменена ввиду финансовых трудностей у юбилейной комиссии (а возможно, ввиду всей совокупности причин). Грандиозное шоу не состоялось. Однако, солнечный парус российского производства был создан (единственный из всех) совместно НПО «Энергия» и ДКБА , и получил первую премию конкурса .

Космические аппараты, использующие солнечный парус

Схема стабилизации космического аппарата

Советскими учёными была изобретена схема радиационно-гравитационной стабилизации космического аппарата, основанная на применении солнечного паруса .

Первое развёртывание солнечного паруса

Первое развёртывание солнечного паруса в космосе было произведено на российском корабле «Прогресс» 4 февраля 1993 года в рамках проекта «Знамя» .

См. также

  • Космический парус
    • Магнитный парус

Примечания

Ссылки

  • Консорциум «Космическая регата» - Проекты - Солнечные паруса и рефлекторы

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Солнечный парус" в других словарях:

    Устройство (напр., в виде металлизированной пленки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Большой Энциклопедический словарь

    Устройство (например, в виде металлизированной плёнки паруса) для движения космического аппарата с помощью давления солнечного излучения. Применялось в качестве исполнительного органа системы ориентации и стабилизации автоматических межпланетных… … Энциклопедический словарь

    Солнечный парус - (тент) использовался летом в амфитеатрах для защиты от солнца во время многочасовых представлений. Надписи на стенах в Помпее, возвещающие о таких представлениях, снабжались особой пометкой: vela erunt имеется С. п. Археологами обнаружены … Словарь античности

    солнечный парус - Light Sailor Световой (солнечный) парус Система приведения в движение космического корабля, которая получает толчок от давления света, падающего на тонкую металлическую плёнку … Толковый англо-русский словарь по нанотехнологии. - М.

    Один из возможных движителей космического летательного аппарата (КЛА); представляет собой устанавливаемую на КЛА и развёртываемую в полёте непрозрачную плёнку (например, металлизированная полимерная) большой площади, способную сообщить… … Большая советская энциклопедия

    Солнечный парус - тент, использов. летом в амфитеатрах для защиты от солнца во время многочас. представл. Надписи на стенах в Помпее, возвещ. о таких представл., снабжались особой пометкой: имеется С. п. Археологами обнаруж. спец. конструкции для натягив … Древний мир. Энциклопедический словарь

    солнечный парус - Устройство в виде, например, металлизированной плёнки большой площади, служащее для перемещения в космосе объекта (тела) под действием светового давления солнечных лучей. В современной космонавтике это пока единственный нереактивный двигатель. E … Толковый уфологический словарь с эквивалентами на английском и немецком языках

    Космос 1 Cosmos 1 Космос 1 (компьютерная модель) Производитель … Википедия

    У этого термина существуют и другие значения, см. Парус (значения). Парусное судно Парус ткань или пластина, прикрепляемая к средству передвижения и преобразующая энергию ветра в энергию поступательного движения … Википедия

    Форма двигателя для космического аппарата, использующая в качестве источника тяги импульс ионов солнечного ветра. Придуман в 2006 году доктором финского метеорологического института Пекка Янхуненым Власти Евросоюза проявляют повышеный интерес … Википедия

Книги

  • Солнечный парус. Фантастика или реальность космоплавания? С дополнениями. Solar Sail Motion in Near-Sun Regions. Русско-английский путеводитель по современной терминологии , Е. Н. Поляхова, В. В. Коблик. В настоящей книге отражены основные динамические принципы современной теории космоплавания, т. е. полета в космосе под солнечным парусом, движущимся под действием светового давления солнечных…

На смену романтики путешествий морских пришла романтика путешествий космических. Но, как ни странно, парусам – неизменному атрибуту и символу первооткрывателей, найдётся место и в космосе. Сегодня мы поговорим о космическом парусе.

Начиная с середины 18го века учёные всего мира (Эйлер, Френель, Бессель и др.) пытались измерить силу давления света. Впервые осуществить такие измерения удалось П. Лебедеву в 1899 году. Всем сразу стало ясно, что и солнечный свет давит на космические тела. Вскоре советскому учёному Ф. Цандеру пришла в голову идея солнечного паруса.

Солнечный парус – это приспособление, использующее давление света Солнца для перемещения в космическом пространстве.

История изучения природы света и светового давления. Старый, но очень понятный фильм.

Если поместить в космосе зеркальную металлическую пластинку, то поток света от Солнца будет «давить» на её поверхность. Подуйте с силой на свою ладонь - чувствуете, как воздух давит на кожу? Давление солнечного света будет действовать на металлическую пластинку в миллиард раз слабее того, что вы чувствуете. Вам кажется этого мало? Вовсе нет. Ведь в космосе нет силы сопротивления воздуха, какая есть на Земле.

Как работает солнечный парус

Если на орбите Земли поместить квадрат из фольги размерами всего лишь 100 на 100 метров, то каждые 10 секунд такой «парус» будет увеличивать свою скорость на сантиметр в секунду! Всего за 40 дней такой парус разгонится от первой до второй космической скорости, за полгода – до третьей космической скорости – скорости, достаточной для того, чтобы навсегда покинуть Солнечную систему. Но главное, что это произойдёт без расхода топлива двигателей, то есть даром. Воистину это бесценный подарок природы!


Макет космического аппарата «Икар» - типичный вид космического корабля с солнечным парусом

Почему это важно? Приведём только один пример. В разгонном блоке марсохода «Сuriosity» вес топлива составлял 21 тонну, что строго ограничивало массу самого марсохода – не более 900 килограмм. Вес научного оборудования на марсоходе вообще смешная цифра: 80 килограмм. А больше взять было нельзя: не хватит топлива долететь до Марса. Использование солнечного паруса наравне с обычными двигателями позволит взять чуть меньше топлива, а значит – увеличить вес приборов на марсоходе. Каждый сэкономленный килограмм в космосе – это ещё один научный прибор, ещё одна крупица бесценной информации об окружающем нас мире, ещё один шаг на пути прогресса. Подобных примеров множество.

Какие космические аппараты использовали солнечный парус?
На сегодняшний день было проведено всего лишь несколько успешных испытаний солнечного паруса. Первое в 1993м году в России. Тогда солнечный парус (20 метров в диаметре) прикрепили к космическому грузовику «Прогресс», отстыковавшемуся от станции «Мир». В эксперименте исследовалась способность освещения темной стороны Земли с помощью этого зеркала.


1993 г. - первый в истории человечества опыт создания солнечного паруса. Эксперимент “Знамя-2”

Затем в 2010м году американский аппарат NanoSail-D успешно раскрыл солнечный парус, находясь на околоземной орбите. Задача солнечного паруса была в том, чтобы столкнуть с орбиты спутник и «похоронить» его в плотных слоях атмосферы. Таки образом проверялась возможность самоликвидации отработавших свой ресурс спутников, чтобы они не болтались бесполезным космическим мусором вокруг Земли.

Видео: как раскрывался парус NanoSail-D

Третьим космическим аппаратом, бороздившим космос под парусами, стал запущенный в 2010м году японский «Икар» (ikaros). Мечтательно прикрывая глаза, учёные скромно надеялись, что аппарат хотя бы сможет раскрыть парус (в который были вшиты солнечные рули и солнечные батареи) без накладок. Зонд не только успешно расправил в космосе крылья 200 квадратных метров сверхтонкого космического паруса, но и отлично справился с регулировкой своей скорости и направления полёта. В январе 2012го года «Икар» отключился из-за недостатка энергии, проработав дольше любых ожиданий учёных.

Кадры движения японского "Икара"

Заключение или планы на будущее

Сделать реально работающий, успешно выполняющий конкретные задачи космический аппарат, использующий солнечный парус, – значит решить множество технических проблем, продумать и воплотить в жизнь новые инженерные решения и идеи. Задача это непростая, как и любая работа, связанная с созданием космических кораблей. Но успешные испытания космических парусников говорят о том, что если хорошенько за это взяться, то всё получится.

Как знать, быть может именно вы, стоя в центре управления полётами, однажды скомандуете: «Поднять паруса!» - и упрямый солнечный ветер погонит космический корабль на встречу неизведанному.

Дорогие друзья! Если вам понравился этот рассказ, и вы хотите быть в курсе новых публикаций о космонавтике и астрономии для детей, то подписывайтесь на новости наших сообществ