Основные внешнеполитические мероприятия александра 3. Внешняя политика Александра III

Определение магнитного поля. Его источники

Определение

Магнитное поле - одна из форм электромагнитного поля, которое действует только на движущиеся тела, которые имеют электрический заряд или намагниченные тела не зависимо от их движения.

Источниками этого поля являются постоянные электрические токи, движущиеся электрические заряды (телами и частицами), намагниченные тела, переменные электрические поля. Источниками постоянного магнитного поля являются постоянные токи.

Свойства магнитного поля

Во времена, когда изучение магнитных явлений только началось, исследователи особенное внимание уделяли тому, что существуют полюса в намагниченных брусках. В них магнитные свойства проявлялись особенно ярко. При этом четко было видно, что полюса магнита различны. Разноименные полюса притягивались, а одноименные отталкивались. Гильберт высказал идею о существовании «магнитных зарядов». Эти представление подержал и развил Кулон. На основе опытов Кулона силовой характеристикой магнитного поля стала сила, с которой магнитное поле действует на магнитный заряд, равный единице. Кулон же обратил внимание на существенные различия между явлениями в электричестве и магнетизме. Различие проявляется уже в том, что электрические заряды можно разделить и получить тела с избытком положительного или отрицательного заряда, тогда как невозможно разделить северный и южный полюса магнита и получить тело только с одним полюсом. Из невозможности деления магнита на исключительно «северный» или «южный» Кулон решил, что два эти вида зарядов неразрывны в каждой элементарной частице намагничивающего вещества. Так, было признано, что каждая частица вещества - атом, молекула или их группа -- есть нечто вроде микро магнита с двумя полюсами. Намагничивание тела при этом -- процесс ориентации его элементарных магнитов под влиянием внешнего магнитного поля (аналог поляризации диэлектриков).

Взаимодействие токов реализуется посредством магнитных полей. Эрстед обнаружил, что магнитное поле возбуждается током и оказывает ориентирующее действие на магнитную стрелку. У Эрстеда проводник с током был расположен над магнитной стрелкой, которая могла вращаться. Когда ток шел в проводнике, стрелка поворачивалась перпендикулярно проволоке. Смена направления тока вызывало переориентацию стрелки. Из опыта Эрстеда следовало, что магнитное поле имеет направление и должно характеризоваться векторной величиной. Эту величину назвали магнитной индукцией и обозначили: $\overrightarrow{B}.$ $\overrightarrow{B}$ аналогичен вектору напряженности для электрического поля ($\overrightarrow{E}$). Аналогом вектора смещения $\overrightarrow{D}\ $для магнитного поля стал вектор $\overrightarrow{H}$- называемый вектором напряжённости магнитного поля.

Магнитное поле воздействует только на движущийся электрический заряд. Магнитное поле рождается движущимися электрическими зарядами.

Магнитное поле движущегося заряда. Магнитное поле витка с током. Принцип суперпозиции

Магнитное поле электрического заряда, который движется с постоянной скоростью, имеет вид:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1\right),\]

где ${\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м}(в\ СИ)$ -- магнитная постоянная, $\overrightarrow{v}$ -- скорость движения заряда, $\overrightarrow{r}$ -- радиус вектор, определяющий местоположение заряда, q -- величина заряда, $\left[\overrightarrow{v}\overrightarrow{r}\right]$- векторное произведение.

Магнитная индукция элемента с током в системе СИ:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Направление вектора $\overrightarrow{dB}$ -- перпендикулярно к плоскости, в которой лежат $\overrightarrow{dl}$ и $\overrightarrow{r}$. Определяется правилом правого винта.

Для магнитного поля выполняется принцип суперпозиции :

\[\overrightarrow{B}=\sum{{\overrightarrow{B}}_i\left(3\right),}\]

где ${\overrightarrow{B}}_i$ -- отдельные поля, которые порождаются движущимися зарядами, $\overrightarrow{B}$ -- суммарная индукция магнитного поля.

Пример 1

Задание: Найдите отношение сил магнитного и кулоновского взаимодействия двух электронов, которые движутся с одинаковыми скоростями $v$ параллельно. Расстояние между частицами постоянно.

\[\overrightarrow{F_m}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\left(1.1\right).\]

Поле, которое создает второй движущийся электрон равно:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1.2\right).\]

Пусть расстояние между электронами равно $a=r\ (постоянно)$. Используем алгебраическое свойство векторного произведения (тождество Лагража ($\left[\overrightarrow{a}\left[\overrightarrow{b}\overrightarrow{c}\right]\right]=\overrightarrow{b}\left(\overrightarrow{a}\overrightarrow{c}\right)-\overrightarrow{c}\left(\overrightarrow{a}\overrightarrow{b}\right)$))

\[{\overrightarrow{F}}_m=\frac{{\mu }_0}{4\pi }\frac{q^2}{a^3}\left[\overrightarrow{v}\left[\overrightarrow{v}\overrightarrow{a}\right]\right]=\left(\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)-\overrightarrow{a}\left(\overrightarrow{v}\overrightarrow{v}\right)\right)=-\frac{{\mu }_0}{4\pi }\frac{q^2\overrightarrow{a}v^2}{a^3}\ ,\]

$\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)=0$, так как $\overrightarrow{v\bot }\overrightarrow{a}$.

Модуль силы $F_m=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2},\ $где $q=q_e=1,6\cdot 10^{-19}Кл$.

Модуль силы Кулона, которая действует на электрон, в поле равна:

Найдем отношение сил $\frac{F_m}{F_q}$:

\[\frac{F_m}{F_q}=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2}:\frac{q^2}{{4\pi {\varepsilon }_0a}^2}={\mu }_0{{\varepsilon }_0v}^2.\]

Ответ: $\frac{F_m}{F_q}={\mu }_0{{\varepsilon }_0v}^2.$

Пример 2

Задание: По витку с током в виде окружности радиуса R циркулирует постоянный ток силы I. Найдите магнитную индукцию в центре окружности.

Выберем на проводнике с током элементарный участок (рис.1), в качестве основы для решения задачи используем формулу индукции элемента витка с током:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Исходя из рис. 1 $\vartheta=90{}^\circ $, следовательно (2.1) упростится, кроме того расстояние от центра окружности (точки, где мы ищем магнитное поле) элемента проводника с током постоянно и равно радиусу витка (R), следовательно имеем:

От всех элементов тока будет образовываться магнитные поля, которые направлены по оси x. Это значит, что результирующий вектор индукции магнитного поля можно найти как сумму проекций отдельных векторов$\ \ \overrightarrow{dB}.$ Тогда по принципу суперпозиции полную индукцию магнитного поля можно получить, если перейти к интегралу:

Подставим (2.2) в (2.3), получим:

Ответ: $B$=$\frac{{\mu }_0}{2}\frac{I}{R}.$


Магнитное поле Земли

Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.

Источниками макроскопического магнитного поля являются намагниченные тела, проводники с током и движущиеся электрически заряженные тела. Природа этих источников едина: магнитное поле возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента.

Переменное магнитное поле возникает также при изменении во времени электрического поля. В свою очередь, при изменении во времени магнитного поля возникает электрическое поле. Полное описание электрического и магнитного полей в их взаимосвязи дают Максвелла уравнения. Для характеристики магнитного поля часто вводят понятие силовых линий поля (линий магнитной индукции).

Для измерения характеристик магнитного поля и магнитных свойств веществ применяют различного типа магнитометры. Единицей индукции магнитного поля в системе единиц СГС является Гаусс (Гс), в Международной системе единиц (СИ) - Тесла (Тл), 1 Тл = 104 Гс. Напряжённость измеряется, соответственно, в эрстедах (Э) и амперах на метр (А/м, 1 А/м = 0,01256 Э; энергия магнитного поля - в Эрг/см 2 или Дж/м 2 , 1 Дж/м 2 = 10 эрг/см 2 .


Компас реагирует
на магнитное поле Земли

Магнитные поля в природе чрезвычайно разнообразны как по своим масштабам, так и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается до расстояния в 70-80 тысяч км в направлении к Солнцу и на многие миллионы км в противоположном направлении. У поверхности Земли магнитное поле равно в среднем 50 мкТл, на границе магнитосферы ~ 10 -3 Гс. Геомагнитное поле экранирует поверхность Земли и биосферу от потока заряженных частиц солнечного ветра и частично космических лучей. Влияние самого геомагнитного поля на жизнедеятельность организмов изучает магнитобиология. В околоземном пространстве магнитное поле образует магнитную ловушку для заряженных частиц высоких энергий - радиационный пояс Земли. Содержащиеся в радиационном поясе частицы представляют значительную опасность при полётах в космос. Происхождение магнитного поля Земли связывают с конвективными движениями проводящего жидкого вещества в земном ядре.

Непосредственные измерения при помощи космических аппаратов показали, что ближайшие к Земле космические тела - Луна, планеты Венера и Марс не имеют собственного магнитного поля, подобного земному. Из других планет Солнечной системы лишь Юпитер и, по-видимому, Сатурн обладают собственными магнитными полями, достаточными для создания планетарных магнитных ловушек. На Юпитере обнаружены магнитные поля до 10 Гс и ряд характерных явлений (магнитные бури, синхротронное радиоизлучение и другие), указывающих на значительную роль магнитного поля в планетарных процессах.


© Фото: http://www.tesis.lebedev.ru
Фотография Солнца
в узком спектре

Межпланетное магнитное поле - это главным образом поле солнечного ветра (непрерывно расширяющейся плазмы солнечной короны). Вблизи орбиты Земли межпланетное поле ~ 10 -4 -10 -5 Гс. Регулярность межпланетного магнитного поля может нарушаться из-за развития различных видов плазменной неустойчивости, прохождения ударных волн и распространения потоков быстрых частиц, рожденных солнечными вспышками.

Во всех процессах на Солнце - вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей магнитное поле играет важнейшую роль. Измерения, основанные на эффекте Зеемана, показали, что магнитное поле солнечных пятен достигает нескольких тысяч Гс, протуберанцы удерживаются полями ~ 10-100 Гс (при среднем значении общего магнитного поля Солнца ~ 1 Гс).

Магнитные бури

Магнитные бури — сильные возмущения магнитного поля Земли, резко нарушающие плавный суточный ход элементов земного магнетизма. Магнитные бури длятся от нескольких часов до нескольких суток и наблюдаются одновременно на всей Земле.

Как правило, магнитные бури состоят из предварительной, начальной и главной фаз, а также фазы восстановления. В предварительной фазе наблюдаются незначительные изменения геомагнитного поля (в основном в высоких широтах), а также возбуждение характерных короткопериодических колебаний поля. Начальная фаза характеризуется внезапным изменением отдельных составляющих поля на всей Земле, а главная - большими колебаниями поля и сильным уменьшением горизонтальной составляющей. В фазе восстановления магнитной бури поле возвращается к своему нормальному значению.



Влияние солнечного ветра
на магнитосферу Земли

Магнитные бури вызываются потоками солнечной плазмы из активных областей Солнца, накладывающимися на спокойный солнечный ветер. Поэтому магнитные бури чаще наблюдаются вблизи максимумов 11-летнего цикла солнечной активности. Достигая Земли, потоки солнечной плазмы увеличивают сжатие магнитосферы, вызывая начальную фазу магнитной бури, и частично проникают внутрь магнитосферы Земли. Попадание частиц высоких энергий в верхнюю атмосферу Земли и их воздействие на магнитосферу приводят к генерации и усилению в ней электрических токов, достигающих наибольшей интенсивности в полярных областях ионосферы, с чем связано наличие высокоширотной зоны магнитной активности. Изменения магнитосферно-ионосферных токовых систем проявляются на поверхности Земли в виде иррегулярных магнитных возмущений.

В явлениях микромира роль магнитного поля столь же существенна, как и в космических масштабах. Это объясняется существованием у всех частиц - структурных элементов вещества (электронов, протонов, нейтронов), магнитного момента, а также действием магнитного поля на движущиеся электрические заряды.

Применение магнитных полей в науке и технике. Магнитные поля обычно подразделяют на слабые (до 500 Гс), средние (500 Гс - 40 кГс), сильные (40 кГс - 1 МГс) и сверхсильные (свыше 1 МГс). На использовании слабых и средних магнитных полей основана практически вся электротехника, радиотехника и электроника. Слабые и средние магнитные поля получают при помощи постоянных магнитов, электромагнитов, неохлаждаемых соленоидов, сверхпроводящих магнитов.

Источники магнитного поля

Все источники магнитных полей можно разделить на искусственные и естественные. Основными естественными источниками магнитного поля являются собственное магнитное поле планеты Земля и солнечный ветер. К искусственным источникам можно отнести все электромагнитные поля, которыми так изобилует наш современный мир, и наши дома в частности. Более подробно об , и читайте на нашем .

Транспорт на электроприводе является мощным источником магнитного поля в диапазоне от 0 до 1000 Гц. Железнодорожный транспорт использует переменный ток. Городской транспорт - постоянный. Максимальные значения индукции магнитного поля в пригородном электротранспорте достигают 75 мкТл, средние значения - около 20 мкТл. Средние значения на транспорте с приводом от постоянного тока зафиксированы на уровне 29 мкТл. У трамваев, где обратный провод - рельсы, магнитные поля компенсируют друг друга на гораздо большем расстоянии, чем у проводов троллейбуса, а внутри троллейбуса колебания магнитного поля невелики даже при разгоне. Но самые большие колебания магнитного поля - в метро. При отправлении состава величина магнитного поля на платформе составляет 50-100 мкТл и больше, превышая геомагнитное поле. Даже когда поезд давно исчез в туннеле, магнитное поле не возвращается к прежнему значению. Лишь после того, как состав минует следующую точку подключения к контактному рельсу, магнитное поле вернется к старому значению. Правда, иногда не успевает: к платформе уже приближается следующий поезд и при его торможении магнитное поле снова меняется. В самом вагоне магнитное поле еще сильнее - 150-200 мкТл, то есть в десять раз больше, чем в обычной электричке.


Значения индукции магнитных полей, наиболее часто встречаемых нами в повседневной жизни приведены на диаграмме ниже. Глядя на эту диаграмму становится ясно, что мы подвергаемся воздействию магнитных полей постоянно и повсеместно. По мнению некоторых ученых, вредными считаются магнитные поля с индукцией свыше 0,2 мкТл. Ествественно, что следует предпринимать определенные меры предосторожности, чтобы обезопасить себя от пагубного воздействия окружающих нас полей. Просто выполняя несколько несложных правил Вы можете в значительной мере снизить воздействие магнитных полей на свой организм.

В действующих СанПиН 2.1.2.2801-10 «Изменения и дополнения №1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» сказано следующее: "Предельно допустимый уровень ослабления геомагнитного поля в помещениях жилых зданий устанавливается равным 1,5". Также установлены предельно допустимые значения интенсивности и напряжённости магнитного поля частотой 50 Гц:

  • в жилых помещениях — 5 мкТл или 4 А/м ;
  • в нежилых помещениях жилых зданий, на селитебной территории, в том числе на территории садовых участков — 10 мкТл или 8 А/м .

Исходя из указанных нормативов каждый может рассчитать какое количество электрических приборов может находиться во включённом состоянии и в состоянии ожидания в каждом конкретном помещении или же , на основании которого будут выданы рекомендации по нормализации жилого пространства.

Видеоматериалы по теме



Небольшой научный фильм о магнитном поле Земли


Использованная литература

1. Большая Советская Энциклопедия.

К такому предмету, как магнит, все давно привыкли. Мы не видим в нём ничего особенного. Ассоциируется у нас он обычно с уроками физики или демонстрацией в виде фокусов свойств магнита для дошкольников. И редко кто задумывается, сколько магнитов окружает нас в повседневной жизни. В любой квартире их десятки. Магнит присутствует в устройстве каждого динамика, магнитофона, электробритвы, часов. Даже банка с гвоздями является таковым.

А еще?

Мы - люди - не исключение. Благодаря протекающим в организме биотокам вокруг нас существует невидимый узор его силовых линий. Огромным магнитом является планета Земля. А еще более грандиозным - плазменный шар солнца. Непостижимые человеческому разуму размеры галактик и туманностей редко допускают мысль о том, что всё это - тоже магниты.

Современной науке требуется создание новых больших и сверхмощных магнитов, области применения которых связаны с термоядерным синтезом, генерированием электрической энергии, ускорением в синхротронах заряженных частиц, подъемом затонувших судов. Создать сверхсильное поле, используя - одна из задач современной физики.

Уточним понятия

Магнитным полем называется сила, действующая на обладающие зарядом тела, находящиеся в движении. Она "не работает" с неподвижными объектами (либо лишенными заряда) и служит одной из форм электромагнитного поля, которое существует как более общее понятие.

Если тела могут создавать вокруг себя магнитное поле и сами испытывать силу его воздействия, их называют магнитами. То есть данные предметы - намагничены (обладают соответствующим моментом).

Разные материалы неодинаково реагируют на внешнее поле. Ослабляющие его действие внутри себя именуются парамагнетиками, усиливающие - диамагнетиками. Отдельные материалы обладают свойством тысячекратно усиливать в себе внешнее магнитное поле. Это - ферромагнетики (кобальт, никель с железом, гадолиний, а также соединения и сплавы упомянутых металлов). Те из них, которые, попав под воздействие сильного внешнего поля, сами приобретают магнитные свойства, именуются магнитотвердыми. Другие, способные вести себя как магниты лишь под непосредственным воздействием поля и перестающие быть таковыми с его исчезновением, - магнитомягкими.

Чуть-чуть истории

Изучением свойств постоянных магнитов люди занимаются с очень и очень давних времен. Упоминается о них в трудах ученых Древней Греции ещё за 600 лет до нашей эры. Природные (естественного происхождения) магниты можно обнаружить в залежах магнитной руды. Наиболее известный из крупных естественных магнитов хранится в Тартуском университете. Весит он 13 килограммов, а груз, который может быть поднят при его помощи, - 40 кг.

Человечество научилось создавать искусственные магниты, используя различные ферромагнетики. Ценность порошковых (из кобальта, железа и т. п.) заключается в способности удерживать груз весом в 5000 раз более собственной массы. Искусственные экземпляры могут быть постоянными (полученными из или электромагнитами, имеющими сердечник, материал которого - магнитомягкое железо. Поле напряжения в них возникает благодаря прохождению электрического тока по проводам обмотки, которой окружён сердечник.

Первая серьезная книга, содержащая попытки научного исследования свойств магнита, - труд лондонского врача Гильберта, вышедший в 1600 году. Данная работа содержит всю совокупность имеющихся на тот момент сведений, касающихся магнетизма и электричества, а также авторские эксперименты.

Любое из существующих явлений человек пытается приспособить к практической жизни. Разумеется, и магнит не стал исключением.

Как используют магниты

Какие свойства магнита человечество взяло на вооружение? Сфера применения его настолько широка, что мы имеем возможность лишь вкратце коснуться основных, самых известных устройств и областей применения данного замечательного предмета.

Компас является всем известным прибором для определения на местности направлений. Благодаря ему прокладывают пути воздушных и морских судов, наземного транспорта, цели пешеходного движения. Эти приборы могут быть магнитными (стрелочного типа), используемыми туристами и топографами, либо немагнитными (радио- и гидрокомпасы).

Первые компасы из были изготовлены в XI веке и использовались в навигации. Основано их действие на свободном повороте в горизонтальной плоскости длинной иглы из магнитного материала, уравновешенной на оси. Один её конец всегда обращен к югу, другой - к северу. Таким образом можно всегда точно узнать основные направления касательно сторон света.

Главные сферы

Области, где свойства магнита нашли основное применение - радио- и электротехника, приборостроение, автоматика и телемеханика. Из получают реле, магнитопроводы и т. п. В 1820 году было обнаружено свойство проводника с током воздействовать на стрелку магнита, принуждая ее к повороту. В это же время было сделано и другое открытие - пара параллельных проводников, сквозь которые проходит ток одного направления, обладают свойством взаимного притяжения.

Благодаря этому было сделано предположение о причине свойств магнита. Все подобные явления возникают в связи с токами, в том числе циркулирующими внутри магнитных материалов. Современные представления в науке полностью совпадают с данным предположением.

О двигателях и генераторах

На основе его создано множество разновидностей электродвигателей и электрогенераторов, то есть машин вращательного типа, принцип действия которых основан на преобразовании механической энергии в электрическую (речь идёт о генераторах) или же электрической в механическую (о двигателях). Любой генератор действует по принципу электромагнитной индукции, то есть ЭДС (электродвижущая сила) возникает в проводе, который движется в магнитном поле. Электродвигатель работает на основе явления возникновения силы в проводе с током, помещенном в поперечное поле.

Используя силу взаимодействия поля с током, который проходит через витки обмотки их подвижных частей, работают приборы, именуемые магнитоэлектрическими. В качестве нового мощного электродвигателя переменного тока, имеющего две обмотки, выступает индукционный счетчик электроэнергии. Расположенный между обмоток проводящий диск подвержен вращению крутящим моментом, сила которого пропорциональна потребляемой мощности.

А в быту?

Снабженные миниатюрной батарейкой электрические наручные часы знакомы всем. Устройство их благодаря использованию пары магнитов, пары катушек индуктивности и транзистора намного проще по числу имеющихся деталей, чем у механических часов.

Всё большее применение находят замки электромагнитного типа или такие цилиндровые замки, которые снабжены магнитными элементами. В них как ключ, так и замок оснащены кодовым набором. При попадании в скважину замка правильного ключа в нужное положение притягиваются внутренние элементы магнитного замка, что позволяет его открыть.

На действии магнитов основано устройство динамометров и гальванометра (высокочувствительного прибора, с помощью которого измеряют слабые токи). Свойства магнита нашли применение в производстве абразивов. Так именуют острые мелкие и очень твердые частицы, которые нужны для механической обработки (шлифовки, полирования, обдирки) самых разных предметов и материалов. При производстве их необходимый в составе смеси ферросилиций частично оседает на дно печей, частично внедряется в состав абразива. Для удаления его оттуда и требуются магниты.

Наука и связь

Благодаря магнитным свойствам веществ наука имеет возможность изучать структуру самых разных тел. Можно лишь упомянуть о магнитохимии или (методе обнаружения дефектов путем исследования искажения магнитного поля в определенных зонах изделий).

Применяют их и в производстве техники сверхвысокого частотного диапазона, радиосистемах связи (военного назначения и на коммерческих линиях), при термообработке, как в домашних условиях, так и в пищевой промышленности продуктов (всем хорошо знакомы микроволновые печи). Практически невозможно в рамках одной статьи перечислить все те сложнейшие технические устройства и области применения, где используются в наши дни магнитные свойства веществ.

Сфера медицины

Не стала исключением и сфера диагностики и медицинской терапии. Благодаря генерирующим рентгеновское излучение электронным линейным ускорителям осуществляется опухолевая терапия, в циклотронах или синхротронах генерируются пучки протонов, имеющие преимущества перед рентгеновскими лучами в локальной направленности и повышенной эффективности при лечении опухолей глаз и мозга.

Что касается биологической науки, то еще до середины прошлого века жизненные функции организма никак не связывались с существованием магнитных полей. Научная литература изредка пополнялась единичными сообщениями о том или ином их медицинском эффекте. Но с шестидесятых годов лавиной потекли публикации о биологических свойствах магнита.

Раньше и сейчас

Впрочем, попытки лечить им людей предпринимались алхимиками еще в XVI веке. Зафиксировано много успешных попыток излечения зубной боли, нервных расстройств, бессонницы и множества неполадок внутренних органов. Думается, что в медицине свое применение магнит нашел ничуть не позже, чем в мореплавании.

Последние полвека широко используются магнитные браслеты, популярные среди больных с нарушенным давлением крови. Ученые серьезно поверили в способность магнита повышать сопротивляемость человеческого организма. С помощью электромагнитных приборов научились измерять скорость кровеносного потока, брать пробы или вводить нужные медикаменты из капсул.

Магнитом удаляют попавшие в глаз мелкие металлические частицы. На его действии основана работа электродатчиков (любому из нас знакома процедура снятия электрокардиограммы). В наше время сотрудничество физиков с биологами для изучения глубинных механизмов воздействия на человеческий организм магнитного поля становится все более тесным и необходимым.

Неодимовый магнит: свойства и применение

Неодимовые магниты считаются обладающими максимальным влиянием на человеческое здоровье. Состоят они из неодима, железа и бора. Химическая формула их - NdFeB. Главным преимуществом такого магнита считается сильное воздействие его поля при относительно небольшом размере. Так, вес магнита силой в 200 гаусс составляет около 1 гр. Для сравнения, равный ему по силе железный магнит имеет вес, больший примерно в 10 раз.

Другое несомненное достоинство упомянутых магнитов - хорошая устойчивость и способность к сохранности нужных качеств на протяжении сотен лет. В течение века магнит теряет свои свойства лишь на 1 %.

Как именно лечатся неодимовым магнитом?

С его помощью улучшают кровообращение, стабилизируют давление, борются с мигренью.

Свойства неодимовых магнитов начали использовать для лечения порядка 2000 лет назад. Упоминания о таком виде терапии встречаются в манускриптах Древнего Китая. Лечили тогда прикладыванием намагниченных камней к человеческому телу.

Терапия существовала и в форме прикрепления их на теле. Легенда утверждает, что отличным здоровьем и неземной красотой Клеопатра обязана была постоянному ношению на голове магнитной повязки. В X веке персидскими учеными подробно описывалось благотворное влияние свойств неодимовых магнитов на человеческий организм в случае ликвидации воспалений и мышечных спазмов. По сохранившимся свидетельствам того времени можно судить о применении их для увеличения силы мышц, прочности костных тканей и снижения боли в суставах.

От всех недугов...

Доказательства эффективности такого воздействия были опубликованы в 1530 году знаменитым доктором из Швейцарии Парацельсом. В своих трудах врач описывал волшебные свойства магнита, могущего стимулировать силы организма и вызывать самоизлечение. Огромное множество болезней в те времена начали одолевать, используя магнит.

Широкое распространение получило самолечение при помощи данного средства в США в послевоенные годы (1861-1865), когда медикаментов категорически не хватало. Использовали его и как лекарство, и как обезболивающее.

Начиная с XX века лечебные свойства магнита получили научное обоснование. В 1976 году японским врачом Никагавой было введено понятие синдрома дефицита магнитного поля. Исследованиями установлены точные его симптомы. Заключаются они в слабости, утомляемости, пониженной работоспособности и нарушениях процесса сна. Также имеют место мигрени, суставные и позвоночные боли, неполадки с пищеварительной и сердечно-сосудистой системами в виде гипотонии или гипертонии. Касается синдром и области гинекологии, и кожных изменений. Применением магнитотерапии данные состояния довольно успешно удается нормализовать.

Наука не стоит на месте

Ученые продолжают экспериментировать с магнитными полями. Опыты проводятся как на животных и птицах, так и на бактериях. Условия ослабленного магнитного поля снижают успешность обменных процессов у подопытных птиц и мышей, бактерии резко прекращают размножаться. При длительном дефиците поля живые ткани подвергаются необратимым изменениям.

Именно для борьбы со всеми подобными явлениями и вызванными ими многочисленными негативными последствиями применяется магнитотерапия как таковая. Думается, что в настоящее время все полезные свойства магнитов еще не изучены в должной степени. Впереди у врачей множество интереснейших открытий и новых разработок.

См. также: Портал:Физика

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения - векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

  • С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В системе единиц СИ сила Лоренца выражается так:

в системе единиц СГС:

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах в СГС . Эрстеды и гауссы являются тождественными величинами, их разделение является чисто терминологическим.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля , B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

- компоненты тензора магнитной проницаемости , - тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости, - магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

- диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

- относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток , I - ток, L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопическая структура и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

  • Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.
  • Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.
  • Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.
  • Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов
  • Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.
  • К перечисленным выше группы веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами» по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта «De Magnete» , заложила основы магнетизма как науки.

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поля, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика» для описания взаимосвязи между электричеством и магнетизмом.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

См. также

  • Магнитная плёнка визуализатор

Примечания

  1. БСЭ. 1973, «Советская энциклопедия».
  2. В частных случаях магнитное поле может существовать и в отсутствие электрического поля, но вообще говоря магнитное поле глубоко взаимосвязано с электрическим как динамически (взаимное порождение переменными электрическим и магнитным полем друг друга), так и в том смысле, что при переходе в новую систему отсчёта магнитное и электрическое поле выражаются друг через друга, то есть вообще говоря не могут быть безусловно разделены.
  3. Яворский Б. М., Детлаф А. А. Справочник по физике: 2-е изд., перераб. - М .: Наука , Главная редакция физико-математической литературы, 1985, - 512 с.
  4. В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах .
  5. Точно совпадают в системе единиц СГС , в СИ - отличаются постоянным коэффициентом, что, конечно, не меняет факта их практического физического тождества.
  6. Самым важным и лежащим на поверхности отличием тут является то, что сила, действующая на движущуюся частицу (или на магнитный диполь) вычисляются именно через а не через . Любой другой физически корректный и осмысленный метод измерения также даст возможность измерить именно хотя для формального расчета иногда оказывается более удобным - в чём, собственно, и состоит смысл введения этой вспомогательной величины (иначе без неё вообще обходились бы, используя только
  7. Однако надо хорошо понимать, что ряд фундаментальных свойств этой «материи» в корне отличается от свойств того обычного вида «материи», который можно было бы обозначить термином «вещество».
  8. См. Теорема Ампера .
  9. Для однородного поля это выражение даёт нулевую силу, поскольку равны нулю все производные B по координатам.
  10. Сивухин Д. В. Общий курс физики. - Изд. 4-е, стереотипное. - М .: Физматлит ; Изд-во МФТИ, 2004. - Т. III. Электричество. - 656 с. - ISBN 5-9221-0227-3 ; ISBN 5-89155-086-5 .

ПОСТОЯННЫЕ МАГНИТНЫЕ ПОЛЯ. Источниками постоянных магнитных полей (ПМП) на рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электролитные ванны и др. электротехнические устройства). Постоянные магниты и электромагниты широко используются в приборостроении, в магнитных шайбах подъемных кранов и др. фиксирующих устройствах, в магнитных сепараторах, устройствах для магнитной обработки воды, магнитогидродинамических генераторах (МГД), установках ядерного магнитного резонанса (ЯМР) и электронного парамагнитного резонанса (ЭПР), а также в физиотерапевтической практике.

Основные физические параметры, характеризующие ПМП:

2,0 Тл (кратковременное воздействие на тело);

5,0 Тл (кратковременное воздействие на руки);

для населения –

0,01 Тл (непрерывная экспозиция).

Контроль ПМП на рабочих местах осуществляется в порядке предупредительного и текущего санитарного надзора путем измерения напряженности поля и магнитной индукции (плотности магнитного потока). Измерения проводят на постоянных рабочих местах возможного нахождения персонала. В случае отсутствия постоянного рабочего места в пределах рабочей зоны выбирается несколько точек, расположенных на различных расстояниях от источника. При выполнении ручных операций в зоне действия ПМП и при работах с намагниченными материалами (порошками) и постоянными магнитами, когда контакт с ПМП ограничен локальным воздействием (кисти рук, плечевой пояс), измерения следует проводить на уровне конечных фаланг пальцев кистей, середины предплечья, середины плеча.

Измерения магнитной индукции постоянных магнитов проводят путем непосредственного контакта датчика прибора с поверхностью магнита. В гигиенической практике используются приборы, основанные на законах индукции, эффекте Холла. Флюксметры (веберметры) или баллистические гальванометры непосредственно измеряют изменения магнитного потока, который замыкается на калиброванной измерительной катушке; наиболее часто используются баллистические гальванометры типа М-197/1 и М-197/2, флюксметры типа М-119 и М-119т, тесламетры.

Могут использоваться эрстедметры для измерений напряженности ПМП по степени отклонения намагниченной стрелки, т. е. по величине момента сил, поворачивающих стрелку в определенной точке пространства.

Участки производственной зоны с уровнями, превышающими ПДУ, следует обозначать специальными предупреждающими знаками с дополнительной поясняющей надписью «Осторожно! Магнитное поле!». Необходимо уменьшать воздействие ПМП на работников путем выбора рационального режима труда и отдыха, сокращения времени нахождения в условиях действия ПМП, определения маршрута, ограничивающего контакт с ПМП в рабочей зоне.

Профилактика воздействия ПМП. При проведении ремонтных работ систем шинопроводов следует предусматривать шунтирование. Лица, обслуживающие технологические установки постоянного тока, системы шинопроводов или контактирующие с источниками ПМП, должны проходить предварительный и периодические в установленном порядке.

На предприятиях электронной промышленности при сборке полупроводниковых приборов используют сквозные технологические кассеты, ограничивающие контакт кистей рук с ПМП. На предприятиях по производству постоянных магнитов автоматизируют процесс измерения магнитных параметров изделий посредством устройств, исключающих контакт с ПМП. Целесообразно применение дистанционных приспособлений (щипцы из немагнитных материалов, пинцеты, захваты), которые предупреждают возможность локального действия ПМП на работника. Должны применяться блокирующие устройства, отключающие электромагнитную установку при попадании кистей рук в зону действия ПМП.