Что такое симметрия и где она встречается. Что такое симметрия

Сбалансированная композиция кажется правильной. Она смотрится устойчиво и эстетически привлекательно. Хотя какие-то из ее элементов могут особенно выделяться, являясь фокальными точками — ни одна часть не притягивает взгляд настолько, чтобы подавлять остальные. Все элементы сочетаются друг с другом, плавно соединяясь между собой и образуя единое целое.

Несбалансированная композиция вызывает напряжение. Когда дизайн дисгармоничен, отдельные его элементы доминируют над целым, и композиция становится меньше, чем сумма ее частей. Иногда подобная дисгармония может иметь смысл, но чаще всего баланс, упорядоченность и ритм — это лучшее решение.

Несложно понять, что такое баланс с точки зрения физики — мы ощущаем его постоянно: если что-то не сбалансировано, оно неустойчиво. Наверняка в детстве вы качались на качелях-доске — вы на одном конце, ваш друг — на другом. Если вы весили примерно одинаково, вам было легко на них балансировать.

Нижеследующая картинка иллюстрирует баланс: два человека одинакового веса находятся на равном расстоянии от точки опоры, на которой балансируют качели.

Качели в симметричном равновесии

Человек на правом конце доски раскачивает ее по часовой стрелке, а человек на левом — против. Они прикладывают одинаковую силу в противоположных направлениях, так что сумма равна нулю.

Но если бы один человек был намного тяжелее, равновесие бы исчезло.

Отсутствие равновесия

Эта картинка кажется неправильной, потому что мы знаем, что фигура слева слишком мала, чтобы уравновесить фигуру справа, и правый конец доски должен касаться земли.

Но если передвинуть более крупную фигуру в центр доски, картинка приобретет более правдоподобный вид:

Качели в асимметричном равновесии

Вес более крупной фигуры нивелируется тем, что она расположена ближе к точке опоры, на которой балансируют качели. Если вы когда-нибудь качались на таких качелях или, по крайней мере, видели, как это делают другие, то понимаете, что происходит.

Композиционное равновесие в дизайне основано на тех же принципах. Физическая масса заменяется визуальной, и направление, в котором на нее действует сила притяжения, заменяется визуальным направлением:

1. Визуальная масса — это воспринимаемая масса визуального элемента, мера того, насколько данный элемент страницы привлекает внимание.

2. Визуальное направление — это воспринимаемое направление визуальной силы, в котором, как нам кажется, двигался бы объект, если бы он мог двигаться под влиянием физических сил, действующих на него.

Для измерения этих сил нет инструментов и для расчета зрительного баланса нет формул: чтобы определить, сбалансирована ли композиция, вы ориентируетесь только на свои глаза.

Почему визуальное равновесие важно?

Визуальное равновесие так же значимо, как и физическое: несбалансированная композиция вызывает у зрителя дискомфорт. Посмотрите на вторую иллюстрацию с качелями: она кажется неправильной, потому что мы знаем, что качели должны касаться земли.

С точки зрения маркетинга, визуальная масса — это мера визуального интереса, который вызывает какая-либо область или элемент страницы. Когда лендинг визуально сбалансирован, каждая его часть вызывает некоторый интерес, а сбалансированный дизайн удерживает внимание зрителя.

При отсутствии визуального равновесия посетитель может не увидеть некоторые элементы дизайна — скорее всего, он не станет рассматривать области, уступающие другим по визуальному интересу, так что информация, связанная с ними, останется незамеченной.

Если вы хотите, чтобы пользователи узнали все, что вы намерены им сообщить — подумайте о разработке сбалансированного дизайна.

Четыре типа равновесия

Есть несколько способов добиться композиционного равновесия. Картинки из раздела выше иллюстрируют два из них: первая — пример симметричного баланса, а вторая — асимметричного. Два других типа — радиальный и мозаичный.

Симметричное равновесие достигается, когда объекты, равные по визуальной массе, размещаются на равном расстоянии от точки опоры или оси в центре. Симметричное равновесие вызывает ощущение формальности (поэтому иногда оно называется формальным равновесием) и элегантности. Приглашение на свадьбу — пример композиции, которую вы, скорее всего, захотите сделать симметричной.

Недостаток симметричного равновесия в том, что оно статично и иногда кажется скучным: если половина композиции — это зеркальное отражение другой половины, то как минимум одна половина будет достаточно предсказуема.

2. Асимметричное равновесие

Асимметричное равновесие достигается, когда объекты по разные стороны от центра имеют одинаковую визуальную массу. При этом на одной половине может находиться доминирующий элемент, уравновешенный несколькими менее важными фокальными точками на другой половине. Так, визуально тяжелый элемент (красный круг) на одной стороне уравновешен рядом более легких элементов на другой (синие полосы).

Асимметричное равновесие более динамично и интересно. Оно вызывает ощущение современности, движения, жизни и энергии. Асимметричного равновесия сложнее достичь, потому что отношения между элементами более сложны, но, с другой стороны, оно оставляет больше простора для творчества.

Радиальное равновесие достигается, когда элементы расходятся лучами из общего центра. Лучи солнца или круги на воде после того, как в нее упал камень — это примеры радиального равновесия. Удерживать фокальную точку (точка опоры) легко, поскольку она всегда в центре.

Лучи расходятся из центра и ведут к нему же, делая его самой заметной частью композиции.

Мозаичное равновесие (или кристаллографический баланс) — это сбалансированный хаос, как на картинах Джексона Поллока. У такой композиции нет выраженных фокальных точек, и все элементы одинаково важны. Отсутствие иерархии, на первый взгляд, создает визуальный шум, но, тем не менее, каким-то образом все элементы сочетаются и образуют единое целое.

Симметрия и асимметрия

И симметрия, и асимметрия может применяться в композиции вне зависимости от того, каков тип ее равновесия: вы можете использовать объекты симметричной формы для создания асимметричной композиции, и наоборот.

Симметрия, как правило, считается красивой и гармоничной. Впрочем, она также может показаться статичной и скучной. Асимметрия обычно представляется более интересной и динамичной, хотя и не всегда красивой.

Симметрия

Зеркальная симметрия (или двусторонняя симметрия) возникает, когда две половины композиции, расположенные по разные стороны от центральной оси, являются зеркальными отражениями друг друга. Скорее всего, услышав слово «симметрия», вы представляете себе именно это.

Направление и ориентация оси могут быть какими угодно, хотя зачастую она или вертикальная, или горизонтальная. Многие естественные формы, растущие или движущиеся параллельно поверхности земли, отличаются зеркальной симметрией. Ее примеры — крылья бабочки и человеческие лица.

Если две половины композиции отражают друг друга абсолютно точно, такая симметрия называется чистой. В большинстве случаев отражения не полностью идентичны, и половины немного отличаются друг от друга. Это неполная симметрия — в жизни она встречается гораздо чаще, чем чистая симметрия.

Круговая симметрия (или радиальная симметрия) возникает, когда объекты располагаются вокруг общего центра. Их количество и угол, под которым они расположены относительно центра, могут быть любыми — симметрия сохраняется, пока присутствует общий центр. Естественные формы, растущие или движущиеся перпендикулярно поверхности земли, отличаются круговой симметрией — например, лепестки подсолнуха. Чередование без отражения может быть использовано, чтобы продемонстрировать мотивацию, скорость или динамичное действие: представьте крутящиеся колеса движущегося автомобиля.

Трансляционная симметрия (или кристаллографическая симметрия) возникает, когда элементы повторяются через определенные промежутки. Пример такой симметрии — повторяющиеся планки забора. Трансляционная симметрия может возникнуть в любом направлении и на любом расстоянии, если направление совпадает. Естественные формы обретают такую симметрию через репродукцию. При помощи трансляционной симметрии вы можете создать ритм, движение, скорость или динамичное действие.

Бабочка — пример зеркальной симметрии, планки забора — трансляционной, подсолнух — круговой.

Симметричные формы чаще всего воспринимаются как фигуры на фоне. Визуальная масса симметричной фигуры будет больше, чем масса асимметричной фигуры подобного размера и формы. Симметрия создает баланс сама по себе, но она может оказаться слишком стабильной и слишком спокойной, неинтересной.

У асимметричных форм нет такой сбалансированности, как у симметричных, но вы можете и асимметрично уравновесить всю композицию. Асимметрия часто встречается в естественных формах: вы правша или левша, ветки деревьев растут в разных направлениях, облака принимают случайные формы.

Асимметрия приводит к более сложным отношениям между элементами пространства и поэтому считается более интересной, чем симметрия, а значит — ее можно использовать, чтобы привлечь внимание.

Пространство вокруг асимметричных форм более активно: узоры часто непредсказуемы, и в целом у вас больше свободы самовыражения. Обратная сторона асимметрии в том, что ее сложнее сделать сбалансированной.

Вы можете совмещать симметрию и асимметрию и добиваться хороших результатов — создавайте симметричное равновесие асимметричных форм и наоборот, разбивайте симметричную форму случайной меткой, чтобы сделать ее интереснее. Сталкивайте симметрию и асимметрию в композиции, чтобы ее элементы привлекали больше внимания.

Принципы гештальт-психологии

Принципы дизайна не возникают из ничего: они следуют из психологии нашего восприятия визуальной среды. Многие принципы дизайна вырастают из принципов гештальт-психологии, а также основываются друг на друге.

Так, один из принципов гештальт-психологии касается именно симметрии и порядка и может применяться к композиционному равновесию. Впрочем, это едва ли не единственный принцип, применимый к нему.

Другие принципы гештальт-психологии, такие как фокальные точки и простота — складываются в визуальную массу, а фактор хорошего продолжения, фактор общей судьбы и параллелизм, задают визуальное направление. Симметричные формы чаще всего воспринимаются как фигуры на фоне.

Примеры различных подходов к веб-дизайну

Настало время реальных примеров. Лендинги, представленные ниже, сгруппированы по четырем типам равновесия. Возможно, вы воспримите дизайн этих страниц по-другому, и это хорошо: критическое мышление важнее, чем безоговорочное принятие.

Примеры симметричного равновесия

Дизайн сайта Helen & Hard симметричен. Страница «О нас» на скриншоте снизу и все остальные страницы этого сайта сбалансированы похожим образом:

Скриншот страницы «О нас» сайта Helen & Hard

Все элементы, находящиеся по разные стороны вертикальной оси, расположенной в центре страницы, зеркально отражают друг друга. Логотип, навигационная панель, круглые фотографии, заголовок, три колонки текста — центрированы.

Впрочем, симметрия не идеальна: например, колонки содержат разное количество текста. Кстати, обратите внимание на верх страницы. И логотип, и навигационная панель расположены по центру, но визуально они не кажутся центрированными. Возможно, логотип стоило центрировать по амперсанду или, по крайней мере, по области рядом с ним.

В трех текстовых ссылках меню, расположенных в правой части навигационной панели, больше букв, чем в ссылках левой части — кажется, что центр должен располагаться между About и People. Может быть, если расположить эти элементы в действительности не по центру, но так, чтобы визуально они казались центрированными, композиция в целом выглядела бы более сбалансированной.

Домашняя страница Tilde — еще один пример дизайна с симметричным равновесием. Как и на Helen & Hard, все располагается вокруг вертикальной оси, проходящей по центру страницы: навигация, текст, люди на фотографиях.

Скриншот домашней страницы Tilde

Как и в случае с Helen & Hard, симметрия не идеальна: во-первых, центрированные строчки текста не могут быть отражением фотографии снизу, а во-вторых, пара элементов выбивается из общего ряда — стрелка «Meet the Team» указывает вправо, и текст внизу страницы заканчивается еще одной стрелкой вправо. Обе стрелки являются призывами к действию и обе нарушают симметрию, привлекая к себе дополнительное внимание. Кроме того, по цвету обе стрелки контрастируют с фоном, что тоже притягивает взгляд.

Примеры асимметричного равновесия

Домашняя страница Carrie Voldengen демонстрирует асимметричное равновесие вокруг доминирующей симметричной формы. Глядя на композицию в целом, можно увидеть несколько отдельных друг от друга форм:

Скриншот веб-сайта Carrie Voldengen

Большую часть страницы занимает прямоугольник, состоящий из решетки меньших прямоугольных изображений. Сама по себе решетка симметрична и по вертикальной, и по горизонтальной оси и выглядит очень прочной и стабильной — можно даже сказать, что она слишком сбалансирована и выглядит неподвижной.

Блок текста справа нарушает симметрию. Решетке противопоставлен текст и круглый логотип в левом верхнем углу страницы. Эти два элемента имеют примерно равную визуальную массу, воздействующую на решетку с разных сторон. Расстояние до воображаемой точки опоры примерно такое же, как и масса. Блок текста справа больше и темнее, но круглый голубой логотип добавляет веса своей области и даже совпадает с верхним левым углом решетки по цвету. Текст внизу решетки, кажется, свисает с нее, но он достаточно легкий, чтобы не нарушать композиционного равновесия.

Обратите внимание, что пустое пространство тоже кажется сбалансированным. Пустоты слева, сверху и снизу, а также справа под текстом — уравновешивают друг друга. В левой части страницы больше пустого пространства, чем справа, но в правой части есть дополнительное пространство вверху и внизу.

Изображения в шапке страницы Hirondelle USA сменяют друг друга. Скриншот, представленный ниже, был сделан специально для того, чтобы продемонстрировать асимметричное композиционное равновесие.

Скриншот Hirondelle USA

Колонна на фотографии смещена чуть вправо от центра и создает заметную вертикальную линию, поскольку мы знаем, что колонна — это очень тяжелый объект. Перила слева создают прочную связь с левым краем экрана и тоже представляются достаточно надежными.

Текст над перилами как будто опирается на них; к тому же, справа он визуально сбалансирован фотографией мальчика. Может показаться, что перила как бы свисают с колонны, нарушая баланс, но наличие мальчика и более темный фон за ним уравновешивают композицию, а светлый текст восстанавливает баланс в целом.

Примеры радиального равновесия

Домашняя страница Vlog.it демонстрирует радиальное равновесие, что заметно на скриншоте. Все, кроме объекта в правом верхнем углу, организовано вокруг центра, и три кольца изображений вращаются вокруг центрального круга.

Скриншот домашней страницы Vlog.it

Впрочем, на скриншоте не видно, как страница загружается: линия рисуется из нижнего левого угла экрана к его центру — и с этого момента все, что появляется на странице, вращается вокруг центра или расходится из него лучами, как круги по воде.

Маленький круг в правом верхнем углу добавляет трансляционной симметрии и асимметрии, повышая визуальный интерес к композиции.

На домашней странице Opera’s Shiny Demos нет кругов, но все текстовые ссылки расходятся из общего центра, и легко представить, как вся эта конструкция вращается вокруг одного из центральных квадратов или, может быть, одного из углов:

Скриншот домашней страницы Opera’s Shiny Demos

Название Shiny Demos в левом верхнем углу и логотип Opera в правом нижнем — уравновешивают друг друга и тоже как будто исходят из того же центра, что и текстовые ссылки.

Это хороший пример того, что для достижения радиального равновесия не обязательно использовать круги.

Примеры мозаичного равновесия

Вы можете подумать, что мозаичный баланс используется на сайтах реже всего, особенно после того, как в качестве примера были названы картины Джексона Поллока. Но мозаичное равновесие встречается гораздо чаще, чем кажется.

Яркий пример — домашняя страница Rabbit’s Tale. Разбросанные по экрану буквы определенно создают ощущение хаоса, но композиционное равновесие присутствует.

Скриншот домашней страницы Rabbit’s Tale

Почти равные по величине области цвета и пространства, расположенные с двух сторон, справа и слева — уравновешивают друг друга. Кролик в центре служит точкой опоры. Каждый элемент не привлекает внимания сам по себе.

Сложно разобраться, какие конкретные элементы уравновешивают друг друга, но в целом баланс присутствует. Может быть, визуальная масса правой стороны немного больше, но не настолько, чтобы нарушить равновесие.

Сайты с большим количеством контента, например, новостные порталы или сайты журналов, тоже демонстрируют мозаичное равновесие. Вот скриншот домашней страницы The Onion:

Скриншот домашней страницы The Onion

Здесь множество элементов, их расположение не симметрично, размер текстовых колонок не одинаков, и сложно понять, что уравновешивает что. Блоки содержат разное количество контента, и, следовательно, их размеры различаются. Объекты не располагаются вокруг какого-нибудь общего центра.

Блоки разных размеров и плотности создают некоторое ощущение беспорядка. Поскольку сайт обновляется каждый день, структура этого хаоса постоянно меняется. Но в целом равновесие сохраняется.

Заключение

Принципы дизайна во многом берут начало из гештальт-психологии и теории восприятия и опираются на то, как мы воспринимаем и интерпретируем окружающую визуальную среду. Например, одна из причин, по которым мы замечаем фокальные точки, заключается в том, что они контрастируют с элементами вокруг них.

Понятие симметрии

Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. некий элемент гармонии.

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения. Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили этуупорядоченность в своей практической деятельности, мышлении и искусстве.

Понятие «симметрия» употреблялось в двух значениях. В одном смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки.

На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью. Неживой мир очень симметричен. Нередко нарушения симметрии в квантовой физике элементарных частиц - это проявление еще более глубокой симметрии. Ассиметрия является структурообразующим и созидающим принципом жизни. В живых клетках функционально-значимые биомолекулы асимметричны.: белки состоят из левовращающих аминокислот (L-форма) , а нуклеиновые кислоты содержат в своем составе, помимо гетероциклических оснований, правовращающие углеводы - сахара (Д-форма) , кроме того сама ДНК - основа наследственности является правой двойной спиралью.

Принципы симметрии

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Аспекты,без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д. 2) некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами. 3)изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии; 4) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с этим выделяют разные типы симметрии.

Типы симметрии

1)ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2?/n, где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется ось осью n-го порядка.

2)ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решеток, которые могут быть и плоскими, и пространственными.

3)ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. Трехмерный объект преобразуется сам в себя при отражении в зеркальной плоскости, которую называют плоскостью симметрии. Достаточно взглянуть на окружающий нас реальный мир, чтобы убедиться в первостепенном значении именно зеркальной симметрии с соответствующим симметричным элементом --плоскостью симметрии. В самом деле, форма всех объектов, которые двигаются по земной поверхности или возле нее шагают, плывут, летят, катятся, обладает, как правило, одной более или менее хорошо выраженной плоскостью симметрии. Все то, что развивается или движется лишь в вертикальном направлении, характеризуется симметрией конуса, то есть имеет множество плоскостей симметрии, пересекающихся вдоль вертикальной оси. И то и другое объясняется действием силы земного тяготения, симметрия которого моделируется конусом.

4)СИММЕТРИИ ПОДОБИЯ представляют собой своеобразные аналоги предыдущих симметрий с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрешки. Иногда фигуры могут обладать разными типами симметрии. Например, поворотной и зеркальной симметрией обладают некоторые буквы: Ж, Н, Ф, О, Х. Выше перечислены так называемые геометрические симметрии.

Существует много других видов симметрий, имеющих абстрактный характер. Например, ПЕРЕСТАНОВОЧНАЯ СИММЕТРИЯ, которая состоит в том, что если тождественные частицы поменять местами, то никаких изменений не происходит; НАСЛЕДСТВЕННОСТЬ - это тоже определенная симметрия. КАЛИБРОВОЧНЫЕ СИММЕТРИИ связаны с изменением масштаба.В неживой природе симметрия прежде всего возникает в таком явлении природы, как кристаллы, из которых состоят практически все твердые тела. Именно она и определяет их свойства. Самый очевидный пример красоты и совершенства кристаллов - это известная всем снежинка.

Симметрия ассоциируется с гармонией и порядком. И не зря. Потому что на вопрос, что такое симметрия, есть ответ в виде дословного перевода с древнегреческого. И получается, что она означает соразмерность и неизменность. А что может быть упорядоченней, чем строгое определение местоположения? И что можно назвать более гармоничным, чем то, что строго соответствует размерам?

Что означает симметрия в разных науках?

Биология. В ней важной составляющей симметрии является то, что животные и растения имеют закономерно расположенные части. Причем в этой науке не существует строгой симметрии. Всегда наблюдается некоторая асимметрия. Она допускает то, что части целого не совпадают с абсолютной точностью.

Химия. Молекулы вещества имеют определенную закономерность в расположении. Именно их симметрией объясняются многие свойства материалов в кристаллографии и других разделах химии.

Физика. Система тел и изменения в ней описываются с помощью уравнений. В них оказываются симметричные составляющие, что позволяет упростить все решение. Это выполняется благодаря поиску сохраняющихся величин.

Математика. Именно в ней в основном и дается разъяснение, что такое симметрия. Причем большее значение ей уделяется в геометрии. Здесь симметрия — это способность к отображению у фигур и тел. В узком смысле она сводится просто к зеркальному отображению.

Как определяют симметрию разные словари?

В какой бы из них мы ни заглянули, везде встретится слово «соразмерность». У Даля можно увидеть еще и такое толкование, как равномерие и равнообразие. Другими словами, симметричное - значит одинаковое. Здесь же говорится о том, что она скучна, интереснее смотрится то, в чем ее нет.

На вопрос, что такое симметрия, словарь Ожегова уже говорит об одинаковости в положении частей относительно точки, прямой или плоскости.

В словаре Ушакова упоминается еще и пропорциональность, а также полное соответствие двух частей целого друг другу.

Когда говорят об асимметрии?

Приставка «а» отрицает смысл основного существительного. Поэтому асимметрия означает то, что расположение элементов не поддается определенной закономерности. В ней отсутствует всякая неизменность.

Этот термин используется в ситуациях, когда две половины предмета не являются полностью совпадающими. Чаще всего они совсем не похожи.

В живой природе асимметрия играет важную роль. Причем она может быть как полезной, так и вредной. К примеру, сердце помещается в левую половину груди. За счет этого левое легкое существенно меньшего размера. Но это необходимо.

О центральной и осевой симметрии

В математике выделяют такие ее виды:

  • центральная, то есть выполненная относительно одной точки;
  • осевая, которая наблюдается около прямой;
  • зеркальная, она основывается на отражениях;
  • симметрия переноса.

Что такое ось и центр симметрии? Это точка или прямая, относительно которой любой точке тела найдется другая. Причем такая, чтобы расстояние от исходной до получившейся делилось пополам осью или центром симметрии. Во время движения этих точек они описывают одинаковые траектории.


Понять, что такое симметрия относительно оси, проще всего на примере. Тетрадный лист нужно сложить пополам. Линия сгиба и будет осью симметрии. Если провести к ней перпендикулярную прямую, то все точки на ней будут иметь лежащие на таком же расстоянии по другую сторону оси точки.

В ситуациях, когда необходимо найти центр симметрии, нужно поступать следующим образом. Если фигур две, то найти у них одинаковые точки и соединить их отрезком. Потом разделить пополам. Когда фигура одна, то помочь может знание ее свойств. Часто этот центр совпадает с точкой пересечения диагоналей или высот.

Какие фигуры являются симметричными?

Геометрические фигуры могут обладать осевой или центральной симметрией. Но это не обязательное условие, существует множество объектов, которые не обладают ею вовсе. К примеру, параллелограмм обладает центральной, но у него нет осевой. А неравнобедренные трапеции и треугольники не имеют симметрии совсем.

Если рассматривается центральная симметрия, фигур, обладающих ею, оказывается довольно много. Это отрезок и круг, параллелограмм и все правильные многоугольники с числом сторон, которое делится на два.

Центром симметрии отрезка (также круга) является его центр, а у параллелограмма он совпадает с пересечением диагоналей. В то время как у правильных многоугольников эта точка тоже совпадает с центром фигуры.

Если в фигуре можно провести прямую, вдоль которой ее можно сложить, и две половинки совпадут, то она (прямая) будет являться осью симметрии. Интересно то, сколько осей симметрии имеют разные фигуры.

К примеру, острый или тупой угол имеет только одну ось, которой является его биссектриса.

Если нужно найти ось в равнобедренном треугольнике, то нужно провести высоту к его основанию. Линия и будет осью симметрии. И всего одной. А в равностороннем их будет сразу три. К тому же, треугольник обладает еще и центральной симметрией относительно точки пересечения высот.

У круга может быть бесконечное число осей симметрии. Любая прямая, которая проходит через его центр, может исполнить эту роль.

Прямоугольник и ромб обладают двумя осями симметрии. У первого они проходят через середины сторон, а у второго совпадают с диагоналями.

Квадрат же объединяет предыдущие две фигуры и имеет сразу 4 оси симметрии. Они у него такие же, как у ромба и прямоугольника.

разнообразие красит и тешит вкус .

Определение слова «Симметрия» по БСЭ:

Симметрия — Симметрия (от греч. symmetria — соразмерность)
в математике,
1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости &alpha. в пространстве (относительно прямой а на плоскости), — преобразование пространства (плоскости), при котором каждая точка М переходит в точку M такую, что отрезок MM перпендикулярен плоскости &alpha. (прямой а) и делится ею пополам.
Плоскость &alpha. (прямая а) называется плоскостью (осью) С.
Отражение — пример ортогонального преобразования, изменяющего ориентацию (в отличие от собственного движения) . Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений — этот факт играет существенную роль в исследовании С. геометрических фигур.
2) Симметрия (в широком смысле) — свойство геометрической фигуры Ф, характеризующее некоторую правильность формы Ф, неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой, называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).
Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой — оси С. (рис. 1). группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, n — целое число &ge. 2, переводят её в себя, то Ф обладает С. n-го порядка относительно точки O — центра С.
Примером таких фигур являются правильные многоугольники (рис. 2). группа С. здесь — т. н. циклическая группа n-го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).
Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.
а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О — середина отрезка, соединяющего симметричные точки Ф (рис. 3). б) В случае осевой симметрии, или С. относительно прямой n-го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n. Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD — осью С. четвёртого порядка (рис. 3). вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых.
Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB, называется зеркально-поворотной осью С. порядка 2k, является осью С. порядка k (рис. 4). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток.
В искусстве С. получила распространение как один из видов гармоничной композиции . Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей — плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется в качестве основного приёма построения бордюров и Орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6, 7).
Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания . Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже) . Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы. обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).
3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований. Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.
Поскольку такой объект можно представить элементами некоторого пространства P, наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями P. Т. о. получается представление группы G в группе преобразований P (или просто в P), а исследование С. объекта сводится к исследованию действия G на P и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства P, определяется действием G на такие уравнения.
Так, например, если некоторое уравнение линейно на линейном же пространстве P и остаётся инвариантным при преобразованиях некоторой группы G, то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g
&rarr. T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения . Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.
Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. — Л., 1940. Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966. Вейль Г., Симметрия, пер. с англ., М., 1968. Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
М. И. Войцеховский.
Рис. 1. Плоская фигура, симметричная относительно прямой АВ. точка М преобразуется в М&rsquo. при отражении (зеркальном) относительно АВ.
Рис. 2. Звездчатый правильный многоугольник, обладающий симметрией восьмого порядка относительно своего центра.
Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD — осью симметрии четвёртого порядка, точку О — центром симметрии. Точки М и M куба симметричны как относительно осей AB и CD, так и относительно центра О.
Рис. 4. Многогранник, обладающий зеркально-осевой симметрией. прямая AB — зеркально-поворотная ось четвёртого порядка.
Рис. 5. Фигуры, обладающие симметрией переноса: верхняя фигура имеет также бесконечное множество вертикальных осей симметрии (второго порядка), т. е. плоскостей отражения
Рис. 6. Бордюр, накладывающийся на себя или переносом на некоторый отрезок вдоль горизонтальной оси, или отражением (зеркальным) относительно той же оси и переносом вдоль неё на отрезок, вдвое меньший.
Рис. 7. Орнамент. осью переноса является любая прямая, соединяющая центры двух каких-либо завитков.
Рис. 8. Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Симметрия — в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу.
Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.
Непрерывные преобразования
1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование — реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование — параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).
2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).
3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.
4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью . С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория).
5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом, барионным зарядом, лептонным зарядом, гиперзарядом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:


&psi. j &rarr. e iz j &beta. &psi. j , &psi. * j &rarr. e &minus.iz j &beta. &psi. * j ,
(1)

где &psi. j — волновая функция частицы j, &psi. * j — комплексно сопряжённая ей функция, z j — соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда e), &beta. — произвольный числовой множитель.
Наряду с этим Электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля (A, &phi.):
A &rarr. А + grad f, 23/2302744.tif, (2)
где &fnof.(x, y, z, t) — произвольная функция координат (x, y, z) и времени (t), c — скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной &beta., являющейся произвольной функцией координат и времени: 23/2302745.tif, где &eta. — Планка постоянная.
Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой — он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.
Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины &beta. являются произвольными функциями координат и времени (и даже операторами, преобразующими состояния внутренней С.).
Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга — Милса теория).
6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил, заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий — SU (3)-C. (см. Сильные взаимодействия).
Дискретные преобразования
Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот — тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.
1) Пространственная инверсия (P). Относительно этого преобразования симметричны процессы, вызванные сильным и электромагнитным взаимодействиями. Указанные процессы одинаково описываются в двух различных декартовых системах координат, получаемых одна из другой изменением направлений осей координат на противоположные (т. н. переход от «правой» к «левой» системе координат).
Это преобразование может быть получено также зеркальным отражением относительно трёх взаимно перпендикулярных плоскостей. поэтому С. по отношению к пространственной инверсии называемой обычно зеркальной С. Наличие зеркальной С. означает, что если в природе осуществляется какой-либо процесс, обусловленный сильным или электромагнитным взаимодействием, то может осуществиться и другой процесс, протекающий с той же вероятностью и являющийся как бы
«зеркальным изображением» первого. При этом физические величины, характеризующие оба процесса, будут связаны определённым образом. Например, скорости частиц и напряжённости электрического поля изменят направления на противоположные, а направления напряжённости магнитного поля и момента количества движения не изменятся.
Нарушением такой С. представляются явления (например, правое или левое вращение плоскости поляризации света), происходящие в веществах-изомерах (оптическая Изомерия). В действительности, однако, зеркальная С. в таких явлениях не нарушена: она проявляется в том, что для любого, например левовращающего, вещества существует аналогичное по химическому составу вещество, молекулы которого являются
«зеркальным изображением» молекул первого и которое будет правовращающим.
Нарушение зеркальной С. наблюдается в процессах, вызванных слабым взаимодействием.
2) Преобразование замены всех частиц на античастицы (Зарядовое сопряжение, С). С. относительно этого преобразования также имеет место для процессов, происходящих в результате сильного и электромагнитного взаимодействий, и нарушается в процессах слабого взаимодействия. При преобразовании зарядового сопряжения меняются на противоположные значения заряды частиц, напряжённости электрического и магнитного полей.
3) Последовательное проведение (произведение) преобразований инверсии и зарядового сопряжения (Комбинированная инверсия, СР). Поскольку сильные и электромагнитные взаимодействия симметричны относительно каждого из этих преобразований, они симметричны и относительно комбинированной инверсии. Однако относительно этого преобразования оказываются симметричными и слабые взаимодействия, которые не обладают С. по отношению к преобразованию инверсии и зарядовому сопряжению в отдельности . С. процессов слабого взаимодействия относительно комбинированной инверсии может быть указанием на то, что отсутствие зеркальной С. в них связано со структурой элементарных частиц и что античастицы по своей структуре являются как бы
«зеркальным изображением» соответствующих частиц. В этом смысле процессы слабого взаимодействия, происходящие с какими-либо частицами, и соответствующие процессы с их античастицами связаны между собой так же, как явления в оптических изомерах.
Открытие распадов долгоживущих K 0 L -мезонов на 2 &pi.-мезона и наличие зарядовой асимметрии в распадах K 0 L &rarr. &pi. + + e &minus. + &nu. e (&pi. + + &mu. &minus. + &nu. &mu.) и K 0 L &rarr. &pi. &minus. + е + + &nu. е (&pi. &minus. + &mu. + + &nu. &mu.) (см. К-мезоны) указывают на существование сил, несимметричных относительно комбинированной инверсии.
Пока не установлено, являются ли эти силы малыми добавками к известным фундаментальным взаимодействиям (сильному, электромагнитному, слабому) или же имеют особую природу. Нельзя также исключить возможность того, что нарушение СР-С. связано с особыми геометрическими свойствами пространства-времени на малых интервалах.
4) Преобразование изменения знака времени (Обращение времени, T). По отношению к этому преобразованию симметричны все элементарные процессы, протекающие в результате сильного, электромагнитного и слабого взаимодействий (за исключением распадов K 0 L -meзонов).
5) Произведение трёх преобразований: зарядового сопряжения С, инверсии Р и обращения времени Т (СРТ-симметрия. см. СРТ-теорема) . СРТ-С. вытекает из общих принципов квантовой теории поля. Она связана главным образом с С. относительно Лоренца преобразований и локальностью взаимодействия (т. е. с взаимодействием полей в одной точке). Эта С. должна была бы выполняться, даже если бы взаимодействия были несимметричны относительно каждого из преобразований C, P и T в отдельности. Следствием СРТ-инвариантности является т. н. перекрёстная (кроссинг) С. в описании процессов, происходящих с частицами и античастицами. Так, например, три реакции — упругое рассеяние какой-либо частицы a на частице b: a + b
&rarr. a + b, упругое рассеяние античастицы a на частице b: a + b &rarr. a + b и аннигиляция частицы а и её античастицы a в пару частиц b, b: а + a &rarr. b + b описываются единой аналитической функцией (зависящей от квадрата полной энергии системы и квадрата переданного импульса), которая в различных областях изменения этих переменных даёт амплитуду каждого из указанных процессов.
6) Преобразование перестановки одинаковых частиц. Волновая функция системы, содержащей одинаковые частицы, симметрична относительно перестановки любой пары одинаковых частиц (т. е. их координат и Спинов) с целым, в частности нулевым, спином и антисимметрична относительно такой перестановки для частиц с полуцелым спином (см. Квантовая механика).
Симметрия и законы сохранения
Согласно Нётер теореме, каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода — законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности — сохранение изотопического спина в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип, из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности, сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть
&psi. 1 — волновая функция, описывающая какое-либо состояние системы, а &psi. 2 — волновая функция системы, получающаяся в результате пространств. инверсии (символически: &psi. 2 = P&psi. 1 , где P — оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии,
&psi. 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции &psi. 1 и &psi. 2: симметричная комбинация &psi. s = &psi. 1 +
&psi. 2 и антисимметричная &psi. а = &psi. 1 — &psi. 2 . При преобразованиях инверсии состояние &psi. 2 не меняется (т. к. P&psi. s = P&psi. 1 + P&psi. 2 = &psi. 2 + &psi. 1 = &psi. s),
а состояние &psi. a меняет знак (P&psi. a = P&psi. 1 — P&psi. 2 = &psi. 2 — &psi. 1 = — &psi. a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором — отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).
Аналогично, из С. относительно зарядового сопряжения и комбинированной инверсии следует существование зарядовой чётности (C-чётности) и комбинированной чётности (СР-чётности). Эти величины, однако, могут служить характеристикой только для абсолютно нейтральных (обладающих нулевыми значениями всех зарядов) частиц или систем. Действительно, система с отличным от нуля зарядом при зарядовом сопряжении переходит в систему с противоположным знаком заряда, и поэтому невозможно составить суперпозицию этих двух состояний, не нарушая закона сохранения заряда. Вместе с тем для характеристики системы сильно взаимодействующих частиц (адронов) с нулевыми барионным зарядом и Странностью (или гиперзарядом), но отличным от нуля электрическим зарядом, можно ввести т. н. G-чётность. Эта характеристика возникает из изотопической инвариантности сильных взаимодействий (которую можно трактовать как С. относительно преобразования поворота в «изотопическом пространстве»)
и зарядового сопряжения. Примером такой системы может служить пи-мезон. См. также ст. Сохранения законы.
Симметрия квантово-механических систем и стационарные состояния. Вырождение
Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика, Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.
Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению . Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа) . Это обусловливает плодотворность применения методов теории групп в квантовой механике.
Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятора.
Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием
«несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия,
«включающего» возмущающее поле.
Наличие в системе вырожденных по энергии состояний, в свою указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C. сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.
Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).
Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
С. С. Герштейн . Симметрия — в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.
Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 — симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии — группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.
Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре, либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии. у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спином этих состояний.
У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g-фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса, тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.
В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные
(&sigma.) и антисимметричные (&pi.) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются &pi.-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.
Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.
В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда — Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.
Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.
Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968.

В геометрии - свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно этой плоскости (или прямой). Фигура (плоская или пространственная) симметрична относительно прямой (оси симметрии) или плоскости (плоскости симметрии), если ее точки попарно обладают указанным свойством. Фигура симметрична относительно точки (центр симметрии), если ее точки попарно лежат на прямых, проходящих через центр симметрии, по разные стороны и на равных расстояниях от него.

Определение симметрии

Понятие "симметрия" (греч. symmetria - соразмерность), по словам одного из крупнейших математиков ХХ в. Германа Вейля (1885 - 1955), "является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство". Обычно под словом "симметрия" понимается гармония пропорций - нечто уравновешенное, не ограниченное пространственными объектами (например, в музыке, поэзии и т.п.). С другой стороны, это понятие имеет и чисто геометрический смысл, заключающийся в закономерной повторяемости в пространстве равных фигур или их частей. Как писал Е.С.Федоров (1901), "симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением".

Однако, говоря о симметричных фигурах, следует различать два вида равенства: конгруэнтное (греч. congruens - совмещающийся) и энантиоморфное - зеркально равное (греч. enantios - противоположный, morphe - форма). В первом случае подразумеваются фигуры или их части, равенство которых можно выявить простым совмещением - наложением друг на друга, т.е. "собственным" движением, переводящим левую (Л) фигуру (например, левый винт, руку) в левую, правую (П) - в правую, при котором все точки одной фигуры совпадают с соответствующими точками другой. Во втором случае - равенство выявляется с помощью отражения - движения, переводящего объект в его зеркальное изображение (левое - в правое и наоборот).

При этом все точки пространственной фигуры становятся попарно симметричными относительно плоскости. В результате таких преобразований (движений) объект совмещается сам с собой, т.е. преобразуется в себя. Иными словами, он инвариантен по отношению к этому преобразованию, а следовательно, симметричен. Само преобразование, выявляющее симметричность объекта, называемое преобразованием симметрии, сохраняет неизменными метрические свойства частей объекта, а значит, и расстояния между любой парой их точек. Таким образом, объекты можно считать симметрично равными, если все точки одного из них переводятся в соответствующие точки другого по единому правилу.