Ярыгин биология 1 том читать онлайн. Учебник по биологии ярыгин ч

В основе разработки практически всех оптических приборов и систем лежат законы распространения света. Некоторые из них учитывают двойственную природу света, некоторые - нет. Наиболее общие законы распространения света, не связанные с его природой, рассматриваются именно в геометрической оптике. С этими законами вам и предстоит познакомиться на этом уроке.

Тема: Оптика

Урок: Законы геометрической оптики

Геометрическая оптика является самой древней частью оптики как науки.

Геометрическая оптика - это раздел оптики, в котором рассматривают вопросы распространения света в различных оптических системах (линзах, призмах и т. д.) без рассмотрения вопроса о природе света.

Одним из основных понятий в оптике и, в частности, в геометрической оптике, является понятие луча.

Световой луч - линия, вдоль которой распространяется световая энергия.

Световой луч - это пучок света, толщина которого много меньше расстояния, на которое он распространяется. Такое определение близко, например, к определению материальной точки, которое дается в кинематике.

Первый закон геометрической оптики (Закон о прямолинейном распространении света): в однородной прозрачной среде свет распространяется прямолинейно.

По теореме Ферма: свет распространяется по такому направлению, время распространения по которому будет минимально.

Второй закон геометрической оптики (Законы отражения):

1. Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром к границе раздела двух сред.

2. Угол падения равен углу отражения (см. Рис. 1).

∟α = ∟β

Рис. 1. Закон отражения

Третий закон геометрической оптики (Закон преломления) (см. Рис. 2)

1. Преломленный луч лежит в одной плоскости с падающим лучом и перпендикуляром, восстановленным в точку падения.

2. Отношение синуса угла падения к синусу угла преломления есть величина, постоянная для данных двух сред, которая называется показателем преломления (n).

Интенсивность отраженного и преломленного луча зависит от того, какова среда и что собой представляет граница раздела.

Рис. 2. Закон преломления

Физический смысл показателя преломления:

Показатель преломления является относительным, так как измерения проводятся относительно двух сред.

В том случае, если одна из сред - это вакуум:

С - скорость света в вакууме,

n - абсолютный показатель преломления, характеризующий среду относительно вакуума.

Если свет переходит из оптически менее плотной среды в оптически более плотную среду, то скорость света уменьшается.

Оптически более плотная среда - среда, в которой скорость света меньше.

Оптически менее плотная среда - среда, в которой скорость света больше.

Существует предельный угол преломления - наибольший угол падения луча, при котором еще имеет место преломление при переходе луча в менее плотную среду. При углах падения больше предельного происходит полное внутреннее отражение (см. Рис. 3).

Рис. 3. Закон полного внутреннего отражения

Границы применимости геометрической оптики заключаются в том, что необходимо учитывать размер препятствий для света.

Свет характеризуется длиной волны, равной примерно 10 -9 метра

Если препятствия больше длины волны, то можно использовать размеры геометрической оптики.

  1. Физика. 11 класс: Учебник для общеобразоват. учреждений и шк. с углубл. изучением физики: профильный уровень / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др. Под ред. А.А. Пинского, О.Ф. Кабардина. Рос. акад. наук, Рос. акад. образования. - М.: Просвещение, 2009.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Санкт-Петербургская Школа ().
  2. AYP.ru ().
  3. Техническая и учебно-методическая документація ().

Рымкевич А.П. Физика. Задачник. 10-11 кл. - М.: Дрофа, 2010. - № 1023, 1024, 1042, 1054.

  1. Зная скорость света в вакууме, найдите скорость света в алмазе.
  2. Почему, сидя у костра, мы видим предметы, расположенные напротив, колеблющимися?
  3. Прокомментируйте опыт: положите монетку на стол и поставьте на нее пустую стеклянную банку (см. Рис. 4). Посмотрите на монетку сбоку сквозь стенку банки (или попросите кого-нибудь смотреть на монетку). Налейте воды полную банку и посмотрите вновь сбоку на дно банки. Куда исчезла монетка?

Глава 3. Оптика

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

  • геометрическая или лучевая оптика , в основе которой лежит представление о световых лучах;
  • волновая оптика , изучающая явления, в которых проявляются волновые свойства света;
  • квантовая оптика , изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.

В настоящей главе рассматриваются две первые части оптики. Корпускулярные свойства света будут рассматриваться в гл. V.

Геометрическая оптика

Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

Зеркала

Простейшим оптическим устройством, способным создавать изображение предмета, является плоское зеркало . Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зеркальной поверхности. Это изображение является мнимым, так как оно образуется пересечением не самих отраженных лучей, а их продолжений в «зазеркалье» (рис 3.2.1).

Вследствие закона отражения света мнимое изображение предмета располагается симметрично относительно зеркальной поверхности. Размер изображения равен размеру самого предмета.

Сферическим зеркалом называют зеркально отражающую поверхность, имеющую форму сферического сегмента. Центр сферы, из которой вырезан сегмент, называют оптическим центром зеркала . Вершину сферического сегмента называют полюсом . Прямая, проходящая через оптический центр и полюс зеркала, называется главной оптической осью сферического зеркала. Главная оптическая ось выделена из всех других прямых, проходящих через оптический центр, только тем, что она является осью симметрии зеркала.

Сферические зеркала бывают вогнутыми и выпуклыми . Если на вогнутое сферическое зеркало падает пучок лучей, параллельный главной оптической оси, то после отражения от зеркала лучи пересекутся в точке, которая называется главным фокусом F зеркала. Расстояние от фокуса до полюса зеркала называютфокусным расстоянием и обозначают той же буквой F . У вогнутого сферического зеркала главный фокус действительный. Он расположен посередине между центром и полюсом зеркала (рис 3.2.2).

Следует иметь в виду, что отраженные лучи пересекаются приблизительно в одной точке только в том случае, если падающий параллельный пучок был достаточно узким (так называемый параксиальный пучок ).

Главный фокус выпуклого зеркала является мнимым. Если на выпуклое зеркало падает пучок лучей, параллельных главной оптической оси, то после отражения в фокусе пересекутся не сами лучи, а их продолжения (рис 3.2.3).

Фокусным расстояниям сферических зеркал приписывается определенный знак: для вогнутого зеркала для выпуклого где R – радиус кривизны зеркала.

Изображение какой-либо точки A предмета в сферическом зеркале можно построить с помощью любой пары стандартных лучей:

  • луч AOC , проходящий через оптический центр зеркала; отраженный луч COA идет по той же прямой;
  • луч AFD , идущий через фокус зеркала; отраженный луч идет параллельно главной оптической оси;
  • луч AP , падающий на зеркало в его полюсе; отраженный луч симметричен с падающим относительно главной оптической оси.
  • луч AE , параллельный главной оптической оси; отраженный луч EFA 1 проходит через фокус зеркала.

На рис 3.2.4 перечисленные выше стандартные лучи изображены для случая вогнутого зеркала. Все эти лучи проходят через точку A" , которая является изображением точки A . Все остальные отраженные лучи также проходят через точку A" . Ход лучей, при котором все лучи, вышедшие из одной точки, собираются в другой точке, называется стигматическим . Отрезок A"B" является изображением предмета AB . Аналогичны построения для случая выпуклого зеркала.

Положение изображения и его размер можно также определить с помощью формулы сферического зеркала :

Здесь d – расстояние от предмета до зеркала, f – расстояние от зеркала до изображения. Величины d и f подчиняются определенному правилу знаков:

  • d > 0 и f > 0 – для действительных предметов и изображений;
  • d < 0 и f < 0 – для мнимых предметов и изображений.

Для случая, изображенного на рис 3.2.4, имеем:

F > 0 (зеркало вогнутое); d = 3F > 0 (действительный предмет).

По формуле сферического зеркала получаем: следовательно, изображение действительное.

Если бы на месте вогнутого зеркала стояло выпуклое зеркало с тем же по модулю фокусным расстоянием, мы получили бы следующий результат:

F < 0, d = –3F > 0, – изображение мнимое.

Линейное увеличение сферического зеркала Γ определяется как отношение линейных размеров изображения h " и предмета h .

Величине h " удобно приписывать определенный знак в зависимости от того, является изображение прямым (h" > 0) или перевернутым (h" < 0). Величина h всегда считается положительной. При таком определении линейное увеличение сферического зеркала выражается формулой, которую можно легко получить из рис 3.2.4:

В первом из рассмотренных выше примеров – следовательно, изображение перевернутое, уменьшенное в 2 раза. Во втором примере – изображение прямое, уменьшенное в 4 раза.

Тонкие линзы

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называютсяпобочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F .

Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми ,увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутыхΓ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, следовательно, – изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, – изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l f 1 , где l – расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 – действительное изображение, f 2 < 0 – мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах – астрономической трубе Кеплера и земной трубе Галилея (см. § 3.5).

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5. Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .


Похожая информация.


Предисловие

Для студентов МГАВТ инженерно- технических факультетов и специальностей.

Москва 2007.

Альтаир МГАВТ

К У Р С Л Е К Ц И Й

МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВОДНОГО ТРАНСПОРТА

Федеральное агентство морского и речного транспорта

Кафедра физики и химии

Пономарева В.А.

Кузьмичева В.А.

по общей физике, ч. III

Оптика, атомная и ядерная физика


Пономарева Вера Андреевна.

Кузьмичева Виктория Александровна

Курс лекций по общей физике, ч. III (Оптика, атомная и ядерная физика)

М.: Альтаир МГАВТ 2007. – 80 с.

Курс лекций по общей физике, ч. III (Оптика, атомная и ядерная физика) представляет собой тексты лекций по оптике, атомной и ядерной физике, составленных в соответствии с действующим Государственным общеобразовательным стандартом Министерства образования Российской Федерации.

Основные задачи курса вытекают из требований, предъявляемых к уровню знаний в области физики будущих специалистов водного транспорта, необходимых для успешного изучения технических дисциплин. Курс адаптирован для студентов МГАВТ технических специальностей.

Рецензент:

Утверждено на заседании кафедры Физики и химии МГАВТ.

Протокол № 5 от 06.02. 2007 г.


Физика принадлежит к числу фундаментальных наук, составляющих основу теоретической подготовки инженеров. Без ее знания невозможна успешная деятельность инженера в любой области современной техники. Стремительное развитие новых поколений техники в современных условиях требует новых качеств от преподавателей и студентов для ее освоения. Это особенно касается нанотехнологий, энергетических машин, материалов и способов их обработки, новых методов проектирования, освоить которые без знаний основ физики невозможно. Высокие требования к инженерным разработкам подкрепляются жесткой конкуренцией идей и проектов, которые также невозможно грамотно сформулировать без знания физики. Важность изучения физики несомненна.

Функционирование морского и речного транспорта переходит на новый уровень (например, лазерная проводка судов и т.п.) и это требует от студентов МГАВТ глубоких знаний по физике. Предлагаемый курс адаптирован к начальному уровню подготовки студентов МГАВТ и доводит этот уровень подготовки до требований образовательного стандарта.

Программа курса (в 3-х частях) учитывает задачи, которые существуют в инженерном образовании в связи с перестройкой учебного процесса в вузах. Авторы пытаются связать классическую физику с современным состоянием этой науки (вводят главы о полупроводниковых приборах, лазерных устройствах и т.п.). Это привело к пересмотру последовательности изложения курса.



Каждая часть курса состоит из 16 лекций (согласно часам, отведенным МГАВТ на изучение физики). В курсе отмечаются трудности и ошибки, которые подчас имеют место до сих пор. Отмечены границы применимости физических теорий и законов. При отборе материала использовался многолетний преподавательский опыт авторов по чтению курса общей физики в Уфимском государственном авиационном техническом университете (УГАТУ), Уфимском высшем военном авиационном училище летчиков (УВВАУЛ).

Авторы выражают глубокую благодарность за представленные конспекты некоторых лекций, полезные советы и замечания доц. Катальниковой Ирине Николаевне. Авторы благодарны заведующему кафедрой общей физики УВВАУЛ доц. Татаринову Льву Николаевичу за помощь при подготовке лекций в первом исходном варианте.


Предисловие 3

Лекция 1 Элементы геометрической оптики. 4

1. Основные законы геометрической оптики. 4

2. Тонкие линзы. Изображение предметов с помощью собирающей линзы. 4

Лекция 2 Волновая оптика. 4

3. Интерференция света. 4

4. Получение когерентных источников. Оптическая разность хода. 4

5. Расчет интерференции в опыте Юнга. 4

Лекция 3. Интерференция света. 4

1. Интерференция в тонких пленках. 4

2. Кольца Ньютона. 4

3. Применение интерференции. 4

Лекция 4. Дифракция света. 4

1. Принцип Гюйгенса – Френеля. 4

2. Дифракция Френеля на круглом отверстии. 4

3. Дифракция Френеля на небольшом диске. 4

Лекция 5 Дифракция Фраунгофера. 4

1. Дифракция от одной прямоугольной щели. 4

2. Дифракционная решетка. 4

3. Голография. 4

Лекция 6 Поляризация света. 4

1. Естественный и поляризованный свет. 4

2. Поляризация света при отражении. Закон Брюстера. 4

3. Явление двойного лучепреломления и его особенности. Дихроизм. 4

4. Природа двойного лучепреломления. 4

5. Применение поляризованного света. 4

Лекция 7 Распространение света в веществе. 4

1. Дисперсия света. 4

2. Поглощение света. 4

3. Рассеяние света. 4

Лекция 8 Тепловое излучение. 4

1. Характеристики теплового излучения. 4

2. Поглощательная и отражательная способности тел. 4

3. 3аконы теплового излучения. 4

4. Оптическая пирометрия. 4

Лекция 9 Фотоэффект. 4

1. Законы внешнего фотоэффекта. 4

2. Уравнение Эйнштейна для фотоэффекта. 4

3. Фотон и его свойства. 4

4. Эффект Комптона. 4

5. Люминесценция, фотолюминесценция и ее основные закономерности. 4

6. Физические принципы устройства приборов ночного видения. 4

Лекция 10 Теория атома водорода по Бору. 4

1. Линейчатый спектр атома водорода. 4

2. Модели атома Томсона и Резерфорда. 4

3. Постулаты Бора. 4

4. Спектр атома водорода по Бору. 4

Лекция 11 Элементы квантовой механики. 4

1. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля. 4

2. Природа волн де Бройля. 4

3. Соотношение неопределенностей Гейзенберга. 4

4. Уравнение Шредингера. Волновая функция. 4

5. Физический смысл волновой функции. 4

Лекция 12 Атом водорода в квантовой механике. 4

1. Уравнение Шредингера для атома водорода. 4

2. Квантовые числа. 4

3. Спин электрона. 4

Лекция 13 Оптические квантовые генераторы.. 4

1. Физические основы работы ОКГ. Спонтанное и индуцированное излучение. 4

2. Термодинамическое равновесие. Нормальная населенность уровней. 4

3. Неравновесное состояние. Инверсия населенности уровней. 4

4. Рубиновый лазер. 4

5. Газовый лазер. 4

Лекция 14 Атомное ядро и основы ядерной энергетики. 4

1. Состав и характеристики ядра. 4

2. Энергия связи и дефект масс. 4

3. Ядерные силы.. 4

4. Радиоактивность. 4

Лекция 15. 4

1. Реакция деления тяжелых ядер. 4

2. Цепная реакция деления. 4

3. Схема устройства ядерной бомбы.. 4

4. Управляемая цепная реакция. Ядерные реакторы. 4

5. Термоядерная реакция синтеза легких ядер. 4

6. Принципиальная схема устройства термоядерной бомбы.. 4

7. Проблемы управления термоядерной реакцией. 4

Лекция 16 Элементарные частицы.. 4

1. Космические лучи. 4

2. Элементарные частицы.. 4

3. Основные свойства. 4

4. Характеристики элементарных частиц. 4

5. Мюоны и их свойства. 4

6. Мезоны и их свойства. 4

7. Частицы и античастицы.. 4

8. Классификация элементарных частиц. Кварки. 4


Лекция 1
Элементы геометрической оптики.

Еще до установления природы света были известны следующие основные законы оптики:

Закон прямолинейного распространения света.

Длины световых волн воспринимаемых глазом очень малы (порядка м). Поэтому рассмотрение видимого света приближенно можно рассматривать отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль некоторых линий, называемых лучами. В этом приближении законы оптики можно сформулировать на языке геометрии. Поэтому раздел оптики, в котором пренебрегают конечностью длин волн () называется геометрической оптикой. Другое название этого раздела лучевая оптика. Свет в оптически однородной среде распространяется прямолинейно. Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их точечными источниками света (источники, размеры которых значительно меньше освещаемого предмета и расстояния от него). Этот закон нарушается при прохождении света через малые отверстия или освещении малых преград.

Закон независимости световых лучей.

Эффект производимый отдельным лучом, не зависит от того действуют ли одновременно остальные лучи или они устранены. Лучи при пересечении не изменяют друг друга. Пересечение лучей не мешает каждому из них распространяться независимо друг от друга. Этот закон справедлив лишь при небольших интенсивностях света. При интенсивностях, достигаемых с помощью лазеров, независимость световых лучей нарушается.

Если свет падает на границу двух оптически прозрачных сред, то падающий луч разделяется на два: отраженный и преломленный, направления которых задаются законами отражения и преломления.

Закон отражения света: отраженный луч лежит в одной плоскости с падающим и перпендикуляром, проведенным к границе раздела сред в точке падения. При этом угол падения равен углу отражения (рис.1)

Рис. 1.

Закон преломления света: преломленный луч лежит в одной плоскости с падающим и перпендикуляром, проведенным к границе раздела сред в точке падения. При этом отношение синуса угла падения к углу преломления есть величина постоянная для данных сред: , где - относительный показатель преломления второй среды относительно первой.

Если луч шел из второй среды в первую, то вследствие обратимости световых лучей относительный показатель преломления первой среды относительно второй записывается в виде: . Следовательно, .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления: .

Абсолютным показателем преломления называется величина равная отношению скорости света в вакууме к фазовой скорости волны в среде : . Фазовая скорость волны в среде определяется величинами магнитной и электрической проницаемости среды и связана со скоростью света по формуле: . Следовательно, абсолютный показатель преломления среды равен: .

Основные законы геометрической оптики

ОПТИКА

Геометрическая оптика

Среда отличается от вакуума тем, что она содержит атомы и молекулы вещества. Наличие среды оказывает влияние на распространение света. Следующие параметры среды оказывают влияние на распространение света в ней: показатель преломления, коэффициенты отражения и поглощения, диэлектрическая и магнитная относительные проницаемости среды. Рассмотрим основные законы распространения света в среде.

  1. Закон прямолинейного распространения света . В оптически однородной среде свет распространяется прямолинейно.
  2. Закон независимости световых пучков. Действие одного пучка не зависит от наличия других пучков.

Рассмотрим падение света на границу раздела двух сред.

При падении света на границу раздела двух прозрачных сред поведение лучей света подчиняется следующим законам:

  1. Закон преломления света . Падающий и преломленный лучи, а также перпендикуляр, восстановленный из точки падения к границе раздела, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления – есть величина постоянная для данных сред.

(2)

где - угол преломления, - относительный показатель преломления. - абсолютный показатель преломления -ой среды. Он равен

(3)

где - скорость света в среде. - относительные диэлектрическая и магнитная проницаемости среды. Соотношение (2) можно записать в виде

Соотношение (4) симметрично. Из него следует, что световые лучи обратимы.

Если свет распространяется из среды оптически более плотной () в среду менее плотную (): , соотношение (2) примет вид:

(5)

При росте угла угол преломления, , растет до тех пор, пока не станет равным . Соответствующий эту значению угол называется предельным углом - . Для углов весь свет остается в первой среде. Это явление называется полным отражением . В этом случае для из (5) получаем:

.

Тонкая линза

Световой луч – направление переноса энергии. Он перпендикулярен волновой поверхности.

Линза – оптический прибор, состоящий из прозрачной среды, ограниченной поверхностями. Линзы бывают собирающими и рассеивающими. Линза называется тонкой, если её толщина значительно меньше радиуса кривизны ограничивающих поверхностей. Оптическая ось – прямая, проходящая через центры кривизны поверхностей линзы. Оптический центр линзы – точка, при переходе через которую луч света не преломляется. Будем считать, что оптический центр совпадает с геометрическим центром линзы. Для вывода формулы линзы используется принцип Ферма или принцип наименьшего действия : Свет распространяется по траектории, для прохождения которой требуется минимальное время. Выпишем формулу тонкой линзы без выводов.

(1)

Где ; - абсолютный показатель линзы; - абсолютный показатель среды. - радиусы кривизны первой и второй поверхностей линзы. - расстояние от центра линзы до точек источника (объекта). - расстояние от центра линзы до точек приемника (изображение).

Формула (1) пригодна для параксиальных лучей . Это лучи, которые образуют малые углы с оптической осью линзы. Радиус кривизны выпуклой поверхности линзы считается положительным, вогнутой поверхности – отрицательным.

Если , т.е. падающие лучи параллельны оптической оси, то Ур. (1)

В этом случае - называется фокусным расстоянием линзы.

Если , то изображение находится на бесконечности, тогда . Точки , лежащие на расстоянии равном фокусному, называются фокусами линзы . Фокус – это точка, в которой собираются все лучи, падающие на линзу параллельно оптической оси. Величина

(2)

называется оптической силой линзы . Единица измерения - диоптрия (дптр ). Это оптическая сила линзы с фокусным расстоянием равным . . Для собирающей линзы оптическая сила , для рассеивающей линзы - . Плоскости, проходящие через фокусы перпендикулярно главной оптической оси, называются фокальными . С учетом определения фокусного расстояния, формула тонкой линзы примет вид:

Отношение линейных размеров изображения и объекта называется линейным увеличением линзы .

Построение изображений .

Для построения изображений с использованием тонкой линзы применяются три замечательных луча. Они представлены на рисунке.

Ось ОО – оптическая ось. Луч 1 проходит через оптический центр линзы без изменения. Луч 2 идет параллельно оптической оси и после прохождения линзы он идет через фокус. Луч 3 проходит через фокус линзы, а после линзы он идет параллельно оптической оси. Кроме того, если на тонкую линзу под углом к её плоскости падает параллельный пучок, то он пересечет фокальную плоскость в одной точке.

Волновая оптика

Световые волны. Монохроматичность. Интерференция света .

Свет – это электромагнитные волны (ЭМВ). ЭМВ не заполняют все пространство. Атомы и молекулы испускают и поглощают волны порциями. Поэтому световая волна ограничена во времени и пространстве. Вводится понятие монохроматической волны – это неограниченная в пространстве волна одной постоянной частоты. Т.О. ЭМВ не являются строго монохроматическими волнами. Время испускания . За это время волна проходит расстояние . Эта волна называется фотон . Поскольку фотон ограничен в пространстве, его невозможно представить в виде монохроматической волны. Это набор (суперпозиция) волн, имеющие разные частоты. Совокупность таких волн образует волной цуг . В цуге можно выделить колебания с основной частотой. Эту волну можно приближенно рассматривать как монохроматическую в пределах пространства, занимаемого цугом в данный момент времени. Это приближение накладывает определенные ограничения на сложение колебаний. Рассмотрим две световые волны частоты . В определенной точке пространства это соответствует колебаниям или .

Амплитуда результирующего колебания

Интенсивность волны пропорциональна амплитуде в квадрате , тогда

Рассмотрим случай, когда разность фаз постоянная. Эта ситуация соответствует когерентности двух волн (или согласованному во времени и пространстве протеканию двух и более волновых процессов). В зависимости от разности фаз будем иметь разные результаты от сложения двух волн.

, ; и , ;

Т.о. при наложении двух когерентных световых волн происходит пространственное перераспределение светового потока. В результате возникает чередование максимумов и минимумов интенсивности. Это явление называется интерференцией света . Чтобы наблюдать это явление необходимо иметь две когерентные световые волны. Для этого применяют следующий прием: исходящую волну разделяют на две, каждая из которых проходит свой путь до точки встречи. Причем каждая волна может двигаться в своей среде и проходит своё расстояние. Пусть первый луч прошел путь в среде с показателем преломления , второй луч прошел путь в среде с показателем преломления . Если в исходной точке , где волна разделяется, фаза колебаний равна , то в точке встречи, , первая волна удовлетворяет уравнению