Нетривиальные нули. Теория Янга - Миллса

Ответ редакции

Профессор Оксфордского, Кембриджского и Эдинбургского университетов, а также лауреат почти десятка престижных премий в области математики Майкл Фрэнсис Атья представил доказательство гипотезы Римана , одной из семи «проблем тысячелетия», которая описывает, как расположены на числовой прямой простые числа.

Доказательство Атьи небольшое, вместе с введением и списком литературы оно занимает пять страниц. Ученый утверждает, что нашел решение гипотезы, анализируя проблемы, связанные с постоянной тонкой структуры, а в качестве инструмента использовал функцию Тодда. Если научное сообщество сочтет доказательство корректным, то за него британец получит $1 млн от Института математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс).

На приз претендуют также другие ученые. В 2015 году о решении гипотезы Римана заявлял профессор математики Опиеми Энох (Opeyemi Enoch) из Нигерии, а в 2016 году свое доказательство гипотезы представил российский математик Игорь Турканов . По словам представителей Института математики, для того чтобы достижение было зафиксировано, его необходимо опубликовать в авторитетном международном журнале с последующим подтверждением доказательства научным сообществом.

В чем суть гипотезы?

Гипотезу еще в 1859 году сформулировал немецкий математик Бернхард Риман . Он определил формулу, так называемую дзета-функцию, для количества простых чисел до заданного предела. Ученый выяснил, что нет никакой закономерности, которая бы описывала, как часто в числовом ряду появляются простые числа, при этом он обнаружил, что количество простых чисел, не превосходящих x , выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Риман был уверен в правильности выведенной формулы, однако он не мог установить, от какого простого утверждения полностью зависит это распределение. В результате он выдвинул гипотезу, которая заключается в том, что все нетривиальные нули дзета-функции имеют действительную часть, равную ½, и лежат на вертикальной линии Re=0,5 комплексной плоскости.

Доказательство или опровержение гипотезы Римана очень важно для теории распределения простых чисел, говорит аспирант факультета математики Высшей школы экономики Александр Калмынин . «Гипотеза Римана — это утверждение, которое эквивалентно некоторой формуле для количества простых чисел, не превосходящих данное число x . Гипотеза, например, позволяет достаточно быстро и с большой точностью посчитать количество простых чисел, не превосходящих, к примеру, 10 млрд. Это не единственная ценность гипотезы, потому что у нее есть еще целый ряд довольно далеко идущих обобщений, которые известны как обобщенная гипотеза Римана, расширенная гипотеза Римана и большая гипотеза Римана. Они имеют еще большее значение для разных разделов математики, но в первую очередь важность гипотезы определяется теорией простых чисел», — говорит Калмынин.

По словам эксперта, при помощи гипотезы можно решать ряд классических задач теории чисел: задачи Гаусса о квадратичных полях (проблема десятого дискриминанта), задачи Эйлера об удобных числах, гипотезу Виноградова о квадратичных невычетах и т. д. В современной математике данной гипотезой пользуются для доказательства утверждений о простых числах. «Мы сразу предполагаем, что верна какая-то сильная гипотеза типа гипотезы Римана, и смотрим, что получается. Когда у нас это получается, то мы задаемся вопросом: можем ли мы это доказать без предположения гипотезы? И, хотя такое утверждение пока за пределами того, чего мы можем достигнуть, оно работает как маяк. За счет того, что есть такая гипотеза, мы можем смотреть, куда нам двигаться», — говорит Калмынин.

Доказательство гипотезы также может повлиять на совершенствование информационных технологий, поскольку процессы шифрования и кодирования сегодня зависят от эффективности разных алгоритмов. «Если мы возьмем два простых больших числа по сорок знаков и перемножим, то у нас получится большое восьмидесятизначное число. Если поставить задачу разложить это число на множители, то это будет очень сложная вычислительная задача, на основе которой как раз построены многие вопросы информационной безопасности. Все они заключаются в создании разных алгоритмов, которые завязаны на сложностях подобного рода», — говорит Калмынин.

Гипотеза Римана доказана?

Математик из Университета Пурду утверждает, что он получил доказательство гипотезы Римана, которую часто называют величайшей нерешенной математической задачей. Хотя работа этого математика еще должна пройти процедуру рецензирования.

На этой неделе профессор математики Школы естественных наук Пурду, лауреат премии Эдварда Эллиотта Луи де Бранж опубликовал 23-страничный труд со своим доказательством. Обычно математики объявляют о таких достижениях на конференциях или в научных журналах. Однако за доказательство гипотезы Римана назначен приз в $1 млн, поэтому он решил поспешить с публикацией. «Я приглашаю других математиков проверить мои выкладки, - говорит де Бранж в подготовленном заявлении. - Со временем я передам свое доказательство для официальной публикации, но ввиду обстоятельств я чувствую необходимость немедленно опубликовать свою работу в интернете».

Гипотеза относится к распределению простых чисел. Простые числа делятся только на самих себя и на единицу. В числе прочих задач простые числа используются для шифрования. В начале этого месяца было подтверждено, что обнаружено самое большое известное на сегодняшний день простое число, которое выражается двойкой в степени 24036583 за вычетом единицы и записывается 7235733 десятичными цифрами.

Как и решения многих других математических проблем, доказательство гипотезы Римана вряд ли найдет немедленное коммерческое применение, но через десятилетие его использование вполне вероятно.

Истоки гипотезы восходят к 1859 году, когда математик Бернхард Риман предложил теорию о распределении простых чисел, но в 1866 году он умер, так и не успев завершить ее доказательство. С тех пор за решение задачи брались многие. В частности, ее пытался решить Джон Нэш, математик, лауреат Нобелевской премии по экономике, история жизни которого положена в основу сюжета книги и кинофильма A Beautiful Mind («Игры разума»). В 2001 году математический институт Clay Mathematics Institute в Кембридже, штат Массачусетс, объявил за доказательство гипотезы премию в $1 млн.

Де Бранж, пожалуй, наиболее известен решением другой технической проблемы из области математики: 20 лет назад он доказал теорему Бибербаха. С тех пор ученый почти целиком посвятил себя проверке гипотезы Римана.

Предыдущие публикации:
Обсуждение и комментарии
нц
10 Jun 2004 12:21 PM
Респект человеку, по крайней мере за то, что он пытается делать.
Хохол
10 Jun 2004 12:24 PM
Да, нобелевка по математике это круто!!!
torvic
10 Jun 2004 1:06 PM
"математик, обладатель Нобелевской премии" [по экономике]
Yuri Abele
10 Jun 2004 1:17 PM
To Хохол:
Джон Нэш - это действительно один из величайших математиков современности. Велик не замороченностью каких-нибудь математических вычислений, а тем вкладом, который его работа по теории игр внесла в мировую экономику. Она практически перевернула современную экономику.
Если в двух словах, то он математически доказал, что конкурентам выгоднее, как это не парадоксально, сотрудничать а не конкурировать
Maverik
10 Jun 2004 1:37 PM
2 torvic

> Джон Наш, нобелевский лауреат по математике

Это оригинал. Я сам чуть со стула не упал! Видно, редакоторам zdnet давно зарплату не повышали. Я уж не говорю о "гепотизе", которая светит в аннотации.

Да не, тут прикол именно в том, что нобелевка по математике уже давно является бородатым историческим анекдотом.

Qrot
10 Jun 2004 1:41 PM
> *Гипотеза* Римана доказана
> доказательство *гепотизы* Римана
помнится, наша учительница по русскому языку засчитывала подобное за двойную ошибку.

> ... к 1859 году, когда математик Бернхард Риман предложил
> теорию... в 1966 году он умер
он что у вас, горец? в оригинале "but he died in 1866"

тут редактор кроме сисадмина по вызову есть вообще?

Qrot
10 Jun 2004 1:44 PM
Nobel Prize-winning mathematician != нобелевский луреат по математике. надмозги переводили?
Maverik
10 Jun 2004 1:48 PM
Насчет даты смерти я не обратил внимания. :-)

Респект!

Михаил Елашкин - imhoelashkin.com
10 Jun 2004 2:07 PM
2 Qrot
>надмозги переводили?

О, вижу внимательного читателя Гоблина. Привет собрату:)

Matros
10 Jun 2004 2:22 PM
2 Qrot: Это не надмозги, это безмозги. :)
And
10 Jun 2004 3:22 PM
2 Yuri Abele.
По-моему, совершенно очевидно, что конкурентам выгоднее сотрудничать, а не конкурировать.
По-моему, такое сотрудничество имеет даже специальные названия, типа "ценовой сговор". И с таким сотрудничеством пытаются бороться всякие антимонопольные органы.
Qrot
10 Jun 2004 4:23 PM
Михаил Елашкин: салют камраду! :)
Yuri
10 Jun 2004 6:32 PM
Ну и знайтный же бред тут понаписали! Лажа чуть ли не в каждом слове. Это специально постараться - и то не сразу такое придумаешь. Гипотеза Римана, конечно, связана с распределением простых чисел (точно так же, как и еще со множеством других интереснейших вопросов), но пытаться объяснить ее суть, начиная с понятия простого числа - это чего-то особенного:-)
А уж какое отношение к гипотезе Римана имеет обнаружение очередного простого числа, и тем более какую коммерческую выгоду можно было бы извлечь из этого доказательства, хотя бы даже и через сотни лет - это вообще загадка для пытливого ума:-)
bravomail
10 Jun 2004 7:09 PM
коммерческая выгода одна - легкость ломки современных шифров
Yuri
10 Jun 2004 7:29 PM
> коммерческая выгода одна - легкость ломки современных шифров
Она _абсолютно_ не зависит не только от того, доказана или нет гипотеза Римана, но даже и от того, верна ли она вообще.
Ks
10 Jun 2004 8:57 PM
Вообще говоря, гипотеза Римана касается нулей дзета-фнукции Римана, и уж если и используется в теории распределения простых чисел, то совсем неочевидным образом. Скажем так - постулат Бертрана доказывается с использованием этой самой дзета-функции, но вполне без этой гипотезы.
Nobody
10 Jun 2004 10:51 PM
Nobel to Lunix! Windows must die!
done
10 Jun 2004 11:24 PM
2YuriВ
что Вы толкового принести в наше сообщество??
C3Man
12 Jun 2004 4:44 AM
APOLOGY FOR THE PROOF OF THE RIEMANN HYPOTHESIS?
Алекс
13 Jun 2004 6:15 PM
Ранее де Бранжес (это профессор, который утверждает, что доказал гипотезу Римана) доказал теорему типа -- если верно некое условие, то верна и гипотеза Римана. Потом выяснилось, что его условие не верно. В том, что висит в Инете доказательства гипотезы Римана нету (а вы бы повесили в инете 1M$?), там есть его извинения перед коллегами, о том, что его доказательство может спутать им планы исследований, его путь к доказательству и то, что бы он сделал с 1M$. В свое время Гильберт сказал, что если бы он проспал 500 лет, а потом проснулся, то первым делом он бы спросил, доказана ли гипотеза Римана.
Алекс
14 Jun 2004 3:22 AM
Виноват, он действительно выложил доказательство. Только не на 24х страницах как вначале сообщалось, а на 124х. Мужику 72 года, а есть еще порох в пороховницах и ягоды в ягодицах.
Вlack ibm.*
16 Jun 2004 12:05 PM
А вообще математика хороша тем что в не "КАК много может сделать " одиночка- сиди и ковыряй.
про другие науки так не скажешь. ДАЖе теоритеическа физика где не нужны дорогостоящие эсперементы.. Сильно связана с эсперементаторами.. ТЕ ТЕОРФИЗИКИ только для эсперементаторов и работали(Ланндау ДА гений одиночка. НО достиг бы он такого релуьзата не взяы бы его Капица?) .. ну разве что особняком стоит Эейнштейн.
МОЛОДЕЦ МУЖИК.
Николай
13 Oct 2006 2:34 PM
Несколько год назад я "доказывал" Большую Теорему Ферма.Был ооочень рад,а потом...нашол ошибку!Уверен ли господин де Бранжес в том,что нашел настоящее доказательство?Я-нет!

8 августа 1900 года на 2-м Международном конгрессе математиков в Париже один из величайших математиков современности Давид Гильберт сформулировал двадцать три задачи, которые во многом предопределили развитие математики XX столетия. В 2000 году специалисты из Clay Mathematics Institute решили, что грешно входить в новое тысячелетие, не наметив новую программу развития, -тем более что от двадцати трех проблем Гильберта остались лишь две[Еще две считаются слишком расплывчатыми или нематематическими, еще одна была решена частично, а по поводу еще одной - знаменитой континуум-гипотезы - консенсус пока не достигнут ()].

В результате появился знаменитый список из семи задач, за полное решение любой из которых обещан миллион долларов из специально учрежденного фонда. Чтобы получить деньги, нужно опубликовать решение и подождать два года; если в течение двух лет никто его не опровергнет (будьте уверены - попытаются), вы получите миллион вожделенных зеленых бумажек.
Я попытаюсь изложить суть одной из этих задач, а также постараюсь (в меру своих скромных сил) объяснить ее сложность и важность. Настойчиво рекомендую зайти на официальный сайт конкурса www.claymath.org/millennium ; опубликованные там описания проблем полны и интересны, и именно они стали главным источником при написании статьи.

Гипотеза Римана

Однажды один из моих научных руководителей, выдающийся петербургский алгебраист Николай Александрович Вавилов, начал занятие своего спецкурса с формулы

1 + 2 + 3 + 4 + 5 + … = –1/12.

Нет, занятие не было посвящено гипотезе Римана, и узнал я о ней вовсе не от Николая Александровича. Но формула, тем не менее, имеет к гипотезе самое прямое отношение. И что удивительно - это кажущееся абсурдным равенство действительно верно. Точнее сказать, не совсем оно, но дьявол деталей тоже вскоре будет удовлетворен.

В 1859 году Бернард Риман (Bernhard Riemann) опубликовал статью (или, как тогда выражались, мемуар), которой была суждена очень долгая жизнь. В ней он изложил совершенно новый метод асимптотической оценки распределения простых чисел. В основе метода лежала функция, связь которой с простыми числами обнаружил еще Леонард Эйлер, но которая все же получила имя математика, продолжившего ее на всю комплексную плоскость: так называемая дзета-функция Римана. Определяется она очень просто:

ς (s) = 1/1 s + 1/2 s + 1/3 s + 1/3 s + … .

Любой студент, прослушавший курс математического анализа, тут же скажет, что этот ряд сходится для всякого вещественного s > 1. Более того, он сходится и для комплексных чисел, вещественная часть которых больше единицы. Еще более того, функция ς (s) - аналитическая в этой полуплоскости.

Рассматривать формулу для отрицательных s кажется дурной шуткой: ну какой смысл складывать, например, все положительные целые числа или, тем более, их квадраты или кубы? Однако комплексный анализ - упрямая наука, и свойства дзета-функции таковы, что ее можно продолжить на всю плоскость. Это и было одной из идей Римана, изложенных в мемуаре 1859 года. У полученной функции только одна особая точка (полюс): s = 1, а, например, в отрицательных вещественных точках функция вполне определена. Именно значение аналитически продолженной дзета-функции в точке –1 и выражает формула, с которой я начал этот раздел.

(Специально для патриотов и неравнодушных к истории науки людей отмечу в скобках, что, хотя мемуар Бернарда Римана внес в теорию чисел много свежих идей, он не был первым исследованием, в котором распределение простых чисел изучалось аналитическими методами. Впервые это сделал наш соотечественник Пафнутий Львович Чебышёв, 24 мая 1848 года прочитавший в петербургской Академии наук доклад, в котором изложил ставшие классическими асимптотические оценки количества простых чисел.)

Но вернемся к Риману. Ему удалось показать, что распределение простых чисел - а это центральная проблема теории чисел - зависит от того, где дзета-функция обращается в нуль. У нее есть так называемые тривиальные нули - в четных отрицательных числах (–2, –4, –6, …). Задача состоит в том, чтобы описать все остальные нули дзета-функции.

Этот орешек вот уже полторы сотни лет не могут разгрызть самые талантливейшие математики планеты.

Правда, мало кто сомневается в том, что гипотеза Римана верна. Во-первых, численные эксперименты более чем убедительны; о последнем из них рассказывает статья Хавьера Гурдона (Xavier Gourdon), название которой говорит само за себя: «Первые 10 13 нулей дзета-функции Римана и вычисление нулей на очень большой высоте» (вторая часть названия означает, что предложен метод вычисления не только первых нулей, но и некоторых, пусть и не всех, более далеких, вплоть до нулей с номером около 10 24). Эта работа пока венчает более чем столетнюю историю попыток проверки гипотезы Римана для некоторого количества первых нулей. Разумеется, контрпримеров к гипотезе Римана не найдено. Кроме того, строго установлено, что больше 40% нулей дзета-функции гипотезе удовлетворяют.

Второй аргумент напоминает одно из доказательств существования Бога, опровергнутых еще Иммануилом Кантом. Если Риман все же ошибся, то неверной станет очень много красивой и правдоподобной математики, построенной в предположении, что гипотеза Римана правильна. Да, этот аргумент не имеет научного веса, но все же… математика - это наука, где красота играет ключевую роль. Красивое, но неверное доказательство сплошь и рядом оказывается полезнее, чем верное, но некрасивое. Так, например, из неудачных попыток доказать великую теорему Ферма выросло не одно направление современной алгебры. И еще одно эстетическое замечание: теорема, аналогичная гипотезе Римана, была доказана в алгебраической геометрии. Получившаяся теорема Делиня (Deligne) по праву считается одним из самых сложных, красивых и важных результатов математики XX столетия.
Итак, гипотеза Римана, по всей видимости, верна - но не доказана. Кто знает, возможно, сейчас этот журнал читает человек, которому суждено войти в историю математики, доказав гипотезу Римана. В любом случае, как и со всеми остальными великими задачами, сразу предупреждаю: не пытайтесь повторить эти трюки дома. Иными словами, не пытайтесь решать великие проблемы, не поняв теории, которая их окружает. Сэкономите нервы и себе, и окружающим.

На десерт - еще немного интересного о дзета-функции. Оказывается, у нее есть и практические применения, и даже физический смысл. Более того, и гипотеза Римана (точнее говоря, ее обобщение, считающееся столь же сложным, сколь и она сама) имеет прямые практические следствия. Например, одной из важных вычислительных задач является проверка чисел на простоту (дано число, нужно сказать, простое оно или нет). Самый теоретически быстрый на данный момент алгоритм решения этой задачи - тест Миллера-Рабина (Miller-Rabin test) - работает за время O(log 4 n), где n - данное число (соответственно log n - длина входа алгоритма). Однако доказательство того, что он работает так быстро, опирается на гипотезу Римана.

Впрочем, тест на простоту - не слишком сложная проблема с точки зрения теории сложности (в 2002 году был разработан не зависящий от гипотезы Римана алгоритм, который медленнее теста Миллера-Рабина, но тоже полиномиален). Раскладывать числа на простые сомножители гораздо интереснее (и прямые криптографические приложения налицо - стойкость схемы RSA зависит от того, можно ли быстро разложить число на простые), и здесь гипотеза Римана тоже является необходимым условием для доказательства оценок времени работы некоторых быстрых алгоритмов.

Обратимся к физике. В 1948 году голландский ученый Хендрик Казимир (Hendrik Casimir) предсказал эффект, носящий теперь его имя[Эффект Казимира долгое время оставался лишь изящной теоретической идеей; однако в 1997 году Стив Ламоро (Steve K. Lamoreaux), Умар Мохидин (Umar Mohideen) и Анушри Руа (Anushri Roy) смогли провести подтверждающие предшествующую теорию эксперименты]. Оказывается, если сблизить две незаряженные металлические пластины на расстояние в несколько атомных диаметров, они притянутся друг к другу за счет флуктуаций расположенного между ними вакуума - постоянно рождающихся пар частиц и античастиц. Этот эффект чем-то напоминает притяжение подплывших слишком близко друг к другу судов в океане (еще больше он напоминает теорию Стивена Хокинга о том, что черные дыры все же излучают энергию, - впрочем, тут трудно сказать, кто кого напоминает). Расчеты физической модели этого процесса показывают, что сила, с которой притягиваются пластины, должна быть пропорциональна сумме частот стоячих волн, возникающих между пластинами. Вы уже догадались - эта сумма сводится к сумме 1+2+3+4+…. И более того - правильным значением этой суммы для расчетов эффекта Казимира является именно –1/12.

Но и это еще не все. Некоторые исследователи считают, что дзета-функция играет важную роль… в музыке! Возможно[Я пишу «возможно», потому что единственный источник, который мне удалось разыскать, это переписка в usenet-конференции sci.math . Если вы (читатели) сможете найти более авторитетные источники, мне будет очень интересно об этом услышать], максимумы дзета-функции соответствуют значениям частот, которые могут служить хорошей основой для построения музыкальной шкалы (такой, как наш нотный стан). Что ж, Герман Гессе в своей «Игре в бисер» не зря объявил Игру комбинацией математики и музыки: между ними и впрямь много общего…

pull 18 января 2018 в 13:05

Доказательство Гипотезы Римана

  • Математика

Гипотеза Римана это математическая гипотеза, выведенная в 1859 году Бернхардом Риманом. И которая до сих пор не была решена.

Гипотеза Римана звучит так:

Все нетривиальные нули дзета-функции имеют действительную часть равную 1/2.
Мне удалось доказать это утверждение. Мои выводы основываются на резултате фон Коха 1901 года.

Если Гипотеза Римана верна, то

π(x) = Li(x) + Ο(√x∙ln x)

Гипотеза Римана имеет большое значение в квантовой механике, а также в криптографии.

Формула π(x) и Li(x)

В данном разделе я представлю две формулы с помощью которых я доказал Гипотезу Римана. Это новая формула функции π(x) и новый метод интегрирования функции 1/ln(x).

Функция π(x) показывает сколько в данном числе x простых чисел. Простые числа - это числа, которые делятся только на себя и на единицу. Например: 2 3 5 7…

Формула функции π(x).:

(1.1)
Доказательство:

Эта формула исключает из данного числа x все не простые числа, по правилам решета Эратосфена. Решето Эретосфена это метод, придуманный Эратосфеном Киренским для определения последовательности простых чисел. Алгоритм таков, если взять ряд из натуральных чисел без единицы

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18…

И исключить из него все четные числа, кроме самой маленькой из них, т.е. двойки, получится:

2 3 5 7 9 11 13 15 17…

А потом из этой получившейся последовательности исключить все числа которые делятся на следующее простое число после двойки, это число 3, не считая ее самой. Получится:

2 3 5 7 11 13 17…

Если так делать до бесконечности, то останутся только простые числа. Моя формула работает по такому принципу. Сначала формула исключает единицу из данного числа x, а потом количество всех четных чисел, кроме 2. Далее количество чисел, которые делятся на 3, кроме тройки, а из данного количества исключаются четные числа, которые которые делятся на 3 и т.д.
fn(x) обозначает самое минимальное число, которое надо исключить из x, чтобы получилось то число которое делится на n без остатка.

График функции fn(x):


Рис.(1.1) График функции fn(x)

Область определения функции

Область значения

Каждое выражение в скобках содержит количество определенных не простых чисел не превосходящих x.

Рано или позно определенное выражение в скобках формулы π(x) будет равна нулю (1.1). Поэтому данная сумма не бесконечна.

Я не могу доказать математически формулу (1.1), но можно понять, что формула верна, исходя из того что ее функция напоминает решето Эретосфена. Можно сказать, что эта формула-аналитический вариант решета Эретосфена.

Формула функции Li(x):

(1.2)
Доказательство:

Все члены этой суммы это площадь прямоугольника под графиком функции 1/ln(x), бесконечное количество площадей прямоугольников сходятся к площади под графиком функции 1/ln(x), начиная с аргумента 2. А так как функция Li(x) это интеграл графика функции 1/ln(x), то формула (1.2) равна Li(x).


Рис.(1.2) Прямоугольники под графиком функции 1/ln(x)

Верхний правый угол всех прямоугольников лежат на определенной точке графика, а так как прямоугольников бесконечно много, то углы прямоугольников охватывают все точки графика от 1/ln(2) до 1/ln(x).

Доказательство

Итак, если Гипотеза Римана верна то

π(x) = Li(x) + Ο(√x∙ln x)

А если переделать это выражение то получится, что

То есть, если доказать это неравенство то получится что Гипотеза Римана верна.
Подставив подставив выведенные формулы в неравенство получим:


(1.3) Остаточный член

При условии что x>2.Преобразуем это выражение, для упрощения.

Из этого можно сделать вывод что, если неравенство


(1.5)

Верное, то и Гипотеза Римана верна. Проверем это. Если перенести все члены неравенства (1.5) в правую часть неравенства, то получится


(1.6)

Первая разность этого выражения, при x>2, всегда отрицательна. А вторая разность отрицательна приблизительно лишь при x>10, но это не страшно, так как нас интересуют только большие аргументы, выражение (1.6) все равно будет верное.

Неравенство (1.6) верное, значит и неравенство

Тоже верное.

Гипотеза Римана доказана.

Теги: Задачи тысячелетия, простые числа

Энциклопедичный YouTube

    1 / 5

    ✪ #170. ГИПОТЕЗА РИМАНА - ПРОБЛЕМА ТЫСЯЧЕЛЕТИЯ!

    ✪ Science show. Выпуск 30. Гипотеза Римана

    ✪ Гипотеза Римана. Решена проблема тысячелетия (но это не точно) | трушин ответит #031 +

    ✪ Гипотеза Римана. Решена проблема тысячелетия (но это не точно). Часть II | трушин ответит #032 +

    ✪ Что доказал Григорий Перельман?

    Субтитры

    Если натуральное число имеет только два делителя - само себя и единицу, то его называют простым. Наименьшее простое число - это два, тройка тоже делится лишь на саму себя и на единичку, а вот дважды-два - четыре, и это число составное, из пяти квадратиков можно лишь составить прямоугольник со сторонами 5 и 1, а вот шесть квадратиков можно выстроить не только в один ряд, но еще и прямоугольником 2х3. Интерес к простым числам появился еще в древности: первые записи по теме, известные нам, относятся ко второму тысячелетию до нашей эры - древние египтяне знали толк в математике. В Античные времена Евклид доказал, что простых чисел - бесконечно много, а, кроме того, у него было представление об основной теореме арифметики. Эратосфен в свою очередь придумал (или по крайней мере зафиксировал) алгоритм поиска простых чисел. Это очень крутая штука, называемая решетом Эратосфена, смотрите: сейчас мы быстро с его помощью определим в первой сотне натуральных чисел все простые. Единичка не является простым по определению, двойка - первое простое: вычеркиваем все числа кратные ей, ведь они обязательно составные. Ну вот, кандидатов уже вдвое меньше! Берем следующее простое число - три, вычеркиваем все числа, кратные трем. Заметьте, пятерка выбивает не так уж и много чисел, ведь многие уже оказались кратны двум или трем. Но что самое удивительное - наш алгоритм можно закончить на числе семь! Подумайте, почему это так! И если догадались, напишите в комментариях, на каком числе можно закончить процедуру при работе с первом десятком тысяч натуральных чисел! Итак, всего в первой сотне у нас оказалось двадцать пять простых чисел. Хм… а сколько простых чисел в первой тысяче или, скажем, миллионе? Этот вопрос потревожил самые светлые умы человечества не на шутку, никому тогда даром не нужны была практическая польза криптографии: математика - это скорее разговор с Богом или, во всяком случае, один из способов его услышать. Ну а простые числа - это как в химии атомы и как в литературе алфавит. Ладно, ближе к теме! Эстафету древнегреческих ученых спустя века принимает вся Европа: разрабатывает теорию чисел Пьер Ферма, огромный вклад вносит Леонард Эйлер, ну и, конечно, кем только не составляются огромные таблицы простых чисел. Однако закономерность появления наших особых нумеров среди составных обнаружить не удается. И только лишь в конце 18-го века Гауссом и Лежандром выдвигается предположение, что замечательнейшая функция π(x), которая подсчитывала бы количество простых чисел, меньших либо равных действительному числу x, устроена следующим образом π(x)=x/lnx. Кстати, у нас в первой сотне сколько чисел оказалось простых? Двадцать пять, правильно? Даже для таких малых значений функция выдает на выходе адекватный к истине результат. Хотя речь, скорее о пределе отношения π(x) и x/lnx: на бесконечности он равен единице. Вот это утверждение и есть теорема о распределении простых чисел. Существенный вклад в ее доказательство внес наш соотечественник Пафнутий Львович Чебышёв, а покончить с темой целиком можно было бы, сообщив вам напоследок, что эта теорема была доказана независимо Жаком Адамаром и Валле-Пуссеном еще в 1896 году. Ага…если бы не одно «но»! В своих рассуждениях они опирались на тезис одного коллеги-предшественника. И этим ученым с учетом того, что Эйнштейн еще не родился, был Бернхард Риман. Вот вам кадр с оригиналом рукописи Римана. Знаете, почему именно с этой темой он выступил: причина стара как наша образовательная система: простыми числами занимался научный руководитель Римана - Карл Фридрих Гаусс, король математики, между прочим! Вот здесь старая печатная версия доклада на немецком. Мне посчастливилось найти русский перевод, но даже стряхнув с него пыль, некоторые формулы трудно разглядеть, поэтому мы воспользуемся английским вариантом. Смотрим! Бернхард отталкивается от результатов Эйлера: справа с помощью заглавной греческой буквы сигма записана сумма всех натуральных чисел, а слева посредством заглавной и не менее греческой буквы Пи обозначено произведение, притом малая буква p пробегает все простые числа. Это очень красивое соотношение - призадумайтесь! Далее вводится дзета-функция и развиваются идеи, связанные с ней. А затем повествование посредством тернистой дороги математического анализа идет к заявленной теореме о распределении простых чисел, хотя и несколько с другого ракурса. А теперь взглянем сюда: уравнение, в котором слева - кси-функция, тесно связанная с дзетой, а справа -нолик. Риман пишет: «Вероятно все нули кси-функции действительные, во всяком случае было бы желательно найти строгое доказательство этого предложения». Затем добавляет, что после нескольких напрасных, не очень настойчивых попыток разыскать таковое, он временно от них отказался, так как для дальнейшей цели в этом надобности нет. Ну вот, так и родилась гипотеза Римана! На современный лад и со всеми уточнениями она звучит следующим образом: все нетривиальные нули дзета-функции имеют действительную часть, равную ½. Есть, конечно, и другие эквивалентные формулировки. В 1900-ом году Давид Гильберт включил гипотезу Римана в знаменитый список 23 нерешенных проблем. Кстати, вам не кажется странным, что Гильберт работал на той же кафедре Гёттингенского университета, что и Риман в свое время. Если это было проявление землячества, то с чистой совестью еще раз добавляю сюда последовательно кадры березки и Чебышёва. Отлично! Можем двигаться дальше. В 2000-ом году институт Клэя включил гипотезу Римана в список семи открытых проблем тысячелетия, и теперь за ее решение полагается 10⁶ ($). Да-а, понимаю, что вас, как настоящих математиков, деньги не сильно манят, но все-таки это хороший повод осознать суть гипотезы Римана. Поехали! Все очень легко и понятно! Во всяком случае было таковым для Римана. Вот дзета-функция в явном виде. Как и всегда, мы бы смогли увидеть нули функции, если бы нарисовали ее график. Хм… Ладно, попробуем это сделать! Если взять вместо аргумента s двоечку, получим знаменитую базельскую проблему - нужно будет вычислить сумму ряда обратных квадратов. Но это не беда, с задачай давным-давно справился Эйлер: ему сразу стало очевидно, что эта сумма равна π²/6. Хорошо, тогда возьмем s=4 - а, впрочем, Эйлер посчитал и это! Очевидно, π⁴/90. В общем, вы уже поняли, кто вычислил значения дзета-функции, в точках 6, 8, 10 и так далее. Так, а это что такое? Дзета-функция Римана от единички? Давайте посмотрим! А-а-а, так это же гармонический ряд! Итак, как вы думаете, чему равна сумма вот такого вот ряда? Слагаемые маленькие-маленькие, но все-таки побольше, чем в ряде обратных квадратов, правда? Кликните паузу, подумайте немного и дайте ваше оценочное значение. Ну сколько здесь? Два? Или, может быть, три? Барабанная дробь… гармонический ряд расходится! В бесконечность улетает эта сумма, понимаете, нет?! Вот смотрите, берем ряд, у которого каждое из слагаемых не превосходит соответствующих членов гармонического ряда. И видим: ½, затем еще ½, снова ½ и так далее до бесконечности! Это я к чему клоню? Дзета-функция от единички не определена! Ну что ж, теперь, кажется, понятно, как выглядит график дзеты. Одно только непонятно, где же нули дзета-функции? Ну покажите мне, где нетривиальные нули дзета-функции, а еще действительная часть, равная одной второй! Ведь если мы возьмем аргументом дзета-функции ½, то все члены полученного ряда будут не меньше гармонического, а значит, грусть, расходимость, бесконечность. То есть вообще при любом действительном s меньшем или равном единице, ряд расходится. И уж, конечно, при s=-1 дзета предстанет суммой всех натуральных чисел и не поравняется ни с каким конкретным числом. Ага… есть только одно «но»! Если моего смекалистого дружка попросить вычислить дзета-функцию в точке -1, то он, будучи бездушной железякой, выдаст значение -1/12. Да и вообще, дзета у него определена для любых аргументов, кроме единички, притом и нули достигаются - в четных отрицательных значениях! Да-а-а, приехали, с чем же это может быть связано? О, хорошо, что под рукой есть учебник по теории функции комплексного переменного: тут наверняка найдется ответ. Так и есть, так и есть! Оказывается, у некоторых функций есть аналитическое продолжение! Речь идет о функциях, которые дифференцируются сколь угодно много раз, в ряд Тейлора раскладываются, помните такие? Они имеют продолжение в виде некоторой другой функции, кстати говоря, единственной. И в частности нашу родную дзета-функцию для действительного аргумента, коль скоро под все условия она подходит, можно расширить на всю комплексную плоскость по принципу аналитического продолжения. И Риман с этим справился на ура! Сразу скажу, что всевозможные значения комплексного аргумента можно было бы изобразить только на плоскости. Но если аргумент пробегает точки плоскости, то как изобразить значения функции? На плоскости можно ограничиться нулями функции, а можно взять на вооружение третье измерение, хотя по-хорошему для дзеты их нужно четыре. Ну а еще можно попробовать использовать цвет. Сами смотрите! По оси абсцисс откладывается действительная часть аргумента, по оси ординат -мнимая. Ну что ж, теперь держите ухо востро: все нетривиальные нули дзета-функции имеют действительную часть, равную ½. Тут уж и сказке конец, а кто слушал - молодец! Домашнее задание - доказать или опровергнуть гипотезу Римана, и не вздумайте списывать у Атьи! Мыслите критически, занимайтесь математикой, счастливо! [Играет музыка]

Формулировка

Эквивалентные формулировки

Соображения об истинности гипотезы

Среди данных, позволяющих предполагать истинность гипотезы, можно выделить успешное доказательство сходных гипотез (в частности, гипотезы Римана о многообразиях над конечными полями ). Это наиболее сильный теоретический довод, позволяющий предположить, что условие Римана выполняется для всех дзета-функций , связанных с автоморфными отображениями (англ.) русск. , что включает классическую гипотезу Римана. Истинность аналогичной гипотезы уже доказана для дзета-функции Сельберга (англ.) русск. , в некоторых отношениях сходной с функцией Римана, и для дзета-функции Госса (англ.) русск. (аналог дзета-функции Римана для функциональных полей).

С другой стороны, некоторые из дзета-функций Эпштейна (англ.) русск. не удовлетворяют условию Римана, хотя они имеют бесконечное число нулей на критической линии. Однако эти функции не выражаются через ряды Эйлера и не связаны напрямую с автоморфными отображениями.

К «практическим» доводам в пользу истинности Римановской гипотезы относится вычислительная проверка большого числа нетривиальных нулей дзета-функции в рамках проекта ZetaGrid .

Связанные проблемы

Две гипотезы Харди-Литтлвуда

  1. Для любого ε > 0 {\displaystyle \varepsilon >0} существует T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} , такое что при и H = T 0 , 25 + ε {\displaystyle H=T^{0{,}25+\varepsilon }} интервал содержит нуль нечётного порядка функции .
  2. Для любого ε > 0 {\displaystyle \varepsilon >0} существуют такие T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} и c = c (ε) > 0 {\displaystyle c=c(\varepsilon)>0} , что при T ⩾ T 0 {\displaystyle T\geqslant T_{0}} и справедливо неравенство N 0 (T + H) − N 0 (T) ⩾ c H {\displaystyle N_{0}(T+H)-N_{0}(T)\geqslant cH} .

Гипотеза А. Сельберга

В 1942 году Атле Сельберг исследовал проблему Харди-Литтлвуда 2 и доказал, что для любого ε > 0 {\displaystyle \varepsilon >0} существуют T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} и c = c (ε) > 0 {\displaystyle c=c(\varepsilon)>0} , такие что для T ⩾ T 0 {\displaystyle T\geqslant T_{0}} и H = T 0 , 5 + ε {\displaystyle H=T^{0{,}5+\varepsilon }} справедливо неравенство N (T + H) − N (T) ⩾ c H log ⁡ T {\displaystyle N(T+H)-N(T)\geqslant cH\log T} .

В свою очередь, Атле Сельберг высказал гипотезу, что можно уменьшить показатель степени a = 0 , 5 {\displaystyle a=0{,}5} для величины H = T 0 , 5 + ε {\displaystyle H=T^{0{,}5+\varepsilon }} .

В 1984 году А. А. Карацуба доказал , что при фиксированном с условием 0 < ε < 0,001 {\displaystyle 0<\varepsilon <0{,}001} , достаточно большом T {\displaystyle T} и H = T a + ε {\displaystyle H=T^{a+\varepsilon }} , a = 27 82 = 1 3 − 1 246 {\displaystyle a={\tfrac {27}{82}}={\tfrac {1}{3}}-{\tfrac {1}{246}}} промежуток (T , T + H) {\displaystyle (T,T+H)} содержит не менее c H ln ⁡ T {\displaystyle cH\ln T} вещественных нулей дзета-функции Римана ζ (1 2 + i t) {\displaystyle \zeta {\Bigl (}{\tfrac {1}{2}}+it{\Bigr)}} . Тем самым он подтвердил гипотезу Сельберга.

Оценки А. Сельберга и А. А. Карацубы являются неулучшаемыми по порядку роста при T → + ∞ {\displaystyle T\to +\infty } .

В 1992 году А. А. Карацуба доказал, что аналог гипотезы Сельберга справедлив для «почти всех» промежутков (T , T + H ] {\displaystyle (T,T+H]} , H = T ε {\displaystyle H=T^{\varepsilon }} , где ε {\displaystyle \varepsilon } - сколь угодно малое фиксированное положительное число. Метод, разработанный Карацубой, позволяет исследовать нули дзета-функции Римана на «сверхкоротких» промежутках критической прямой, то есть на промежутках (T , T + H ] {\displaystyle (T,T+H]} , длина H {\displaystyle H} которых растёт медленнее любой, даже сколь угодно малой, степени T {\displaystyle T} . В частности, он доказал, что для любых заданных чисел ε {\displaystyle \varepsilon } , ε 1 {\displaystyle \varepsilon _{1}} с условием 0 < ε , ε 1 < 1 {\displaystyle 0<\varepsilon ,\varepsilon _{1}<1} почти все промежутки (T , T + H ] {\displaystyle (T,T+H]} при H ⩾ exp ⁡ { (ln ⁡ T) ε } {\displaystyle H\geqslant \exp {\{(\ln T)^{\varepsilon }\}}} содержат не менее H (ln ⁡ T) 1 − ε 1 {\displaystyle H(\ln T)^{1-\varepsilon _{1}}} нулей функции ζ (1 2 + i t) {\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}+it{\bigr)}} . Эта оценка весьма близка к той, что следует из гипотезы Римана.

См. также

Примечания

  1. Weisstein, Eric W. Riemann Hypothesis (англ.) на сайте Wolfram MathWorld .
  2. Rules for the Millennium Prizes
  3. Что несколько необычно, так как lim sup n → ∞ σ (n) n log ⁡ log ⁡ n = e γ . {\displaystyle \limsup _{n\rightarrow \infty }{\frac {\sigma (n)}{n\ \log \log n}}=e^{\gamma }.}
    Неравенство нарушается при n = 5040 и некоторых меньших значениях, но Гай Робин в 1984 году показал, что оно соблюдается для всех бóльших целых, тогда и только тогда, когда гипотеза Римана верна.