Схема солнечной радиации. Измерение солнечной радиации

Солнце является источником корпускуляр­ного и электромагнитного излучений. Корпус­кулярное излучение не проникает в атмосфе­ру ниже 90 км, тогда как электромагнитное достигает земной поверхности. В метеороло­гии его называют солнечной радиацией или просто радиацией. Она составляет одну двух­миллиардную долю от всей энергии Солнца и проходит путь от Солнца до Земли за 8,3 мин. Солнечная радиация - источник энергии поч­ти всех процессов, совершающихся в атмо­сфере и на земной поверхности. Она в основ­ном коротковолновая и состоит из невидимой ультрафиолетовой радиации - 9 %, видимой световой - 47 % и невидимой инфракрасной - 44 %. Поскольку почти половина солнечной радиации представляет собой видимый свет, Солнце служит источником не только тепла, но и света - тоже необходимого условия для жизни на Земле.

Радиацию, приходящую к Земле непосред­ственно от солнечного диска, называют пря­мой солнечной радиацией. Ввиду того что расстояние от Солнца до Земли велико, а Зем­ля мала, радиация падает на любую ее по­верхность в виде пучка параллельных лучей.

Солнечная радиация обладает определен­ной плотностью потока на единицу площади в единицу времени. За единицу измерения ин­тенсивности радиации принято количество энергии (в джоулях или калориях 1), которые получает 1 см 2 поверхности в минуту при пер­пендикулярном падении солнечных лучей. На верхней границе атмосферы при среднем рас­стоянии от Земли до Солнца она составляет 8,3 Дж/см 2 в мин, или 1,98 кал/см 2 в мин. Эта величина принята в качестве международ­ного стандарта и называется солнечной по­стоянной (S 0). Ее периодические колебания в течение года незначительны (+ 3,3 %) и обус­ловлены изменением расстояния от Земли до

1 1 кал=4,19 Дж, 1 ккал=41,9 МДж.

2 Полуденная высота Солнца зависит от географиче­ской широты и склонения Солнца.


Солнца. Непериодические колебания вызваны различной излучательной способностью Солн­ца. Климат на верхней границе атмосферы на­зывают радиационным или солярным. Он рас­считывается теоретически, исходя из угла на­клона солнечных лучей на горизонтальную поверхность.

В общих чертах солярный климат находит отражение на земной поверхности. В то же время реальная радиация и температура на Земле существенно отличаются от солярного климата за счет различных земных факторов. Главный из них - ослабление радиации в ат­мосфере за счет отражения, поглощения и рассеяния, а также в результате отражения радиации от земной поверхности.

На верхнюю границу атмосферы вся ради­ация приходит в виде прямой радиации. По данным С. П. Хромова и М. А. Петросянца, 21 % ее отражается от облаков и воздуха на­зад в космическое пространство. Остальная радиация поступает в атмосферу, где прямая радиация частично поглощается и рассеивает­ся. Оставшаяся прямая радиация (24 %) до­стигает земной поверхности, однако при этом ослабляется. Закономерности ослабления ее в атмосфере выражаются законом Бугера: S=S 0 ·p m (Дж, или кал/см 2 , в мин), где S - количество прямой солнечной радиации, дос­тигшей земной поверхности, на единицу пло­щади (см 2), расположенной перпендикулярно солнечным лучам, S 0 - солнечная постоян­ная, р - коэффициент прозрачности в долях от единицы, показывающий, какая часть ра­диации достигала земной поверхности, т - длина пути луча в атмосфере.


Реально же солнечные лучи падают на зем­ную поверхность и на любой другой уровень атмосферы под углом менее 90°. Поток пря­мой солнечной радиации на горизонтальную поверхность называют инсоляцией (5,). Она вычисляется по формуле S 1 =S·sin h ☼ (Дж, или кал/см 2 , в мин), где h ☼ - высота Солнца 2 . На единицу горизонтальной поверхности, ес­тественно, приходится меньшее количество

энергии, чем на единицу площади, располо­женной перпендикулярно солнечным лучам (рис. 22).

В атмосфере поглощается около 23 % и рассеивается около 32 % прямой солнечной радиации, входящей в атмосферу, причем 26 % рассеянной радиации приходит затем к земной поверхности, а 6 % уходит в Космос.

Солнечная радиация подвергается в атмо­сфере не только количественным, но и каче­ственным изменениям, поскольку газы возду­ха и аэрозоли поглощают и рассеивают сол­нечные лучи избирательно. Основными поглотителями радиации являются водяной пар, облака и аэрозоли, а также озон, кото­рый сильно поглощает ультрафиолетовую ра­диацию. В рассеянии радиации участвуют мо­лекулы разных газов и аэрозоли. Рассеяние - отклонение световых лучей во все стороны от первоначального направления, так что рассе­янная радиация приходит к земной поверх­ности не от солнечного диска, а от всего не­бесного свода. Рассеяние зависит от длины волн: по закону Рэлея, чем короче длина вол­ны, тем интенсивнее рассеяние. Поэтому боль­ше всех остальных рассеиваются ультрафио­летовые лучи, а из видимых - фиолетовые и синие. Отсюда голубой цвет воздуха и соот­ветственно неба в ясную погоду. Прямая же радиация оказывается в основном желтой, по­этому солнечный диск видится желтоватым. При восходе и заходе Солнца, когда путь луча в атмосфере длиннее и рассеяние боль­ше, поверхности достигают только красные лу­чи, отчего Солнце кажется красным. Рассеян­ная радиация обусловливает свет днем при пасмурной погоде и в тени при ясной погоде, с нею связано явление сумерек и белых но­чей. На Луне, где нет атмосферы и соответ­ственно рассеянной радиации, предметы, по­падающие в тень, становятся полностью не­видимыми.

С высотой, по мере уменьшения плотнос­ти воздуха и соответственно количества рас­сеивающих частиц, цвет неба становится тем­нее, переходит сначала в густо-синий, потом в сине-фиолетовый, что хорошо видно в го­рах и отражено на гималайских пейзажах Н. Рериха. В стратосфере цвет воздуха чер­но-фиолетовый. По свидетельству космонав­тов, на высоте 300 км цвет неба черный.

При наличии в атмосфере крупных аэро­золей, капель и кристаллов наблюдается уже не рассеяние, но диффузное отражение, а по­скольку диффузно отраженная радиация пред­ставляет собой белый свет, то цвет неба ста­новится белесым.

Прямая и рассеянная солнечная радиация имеют определенный суточный и годовой ход, который зависит прежде всего от высоты Солн-


Рис. 22. Приток солнечной радиации на поверхность АВ, перпендикулярную к лучам, и на горизонтальную поверх­ность АС (по С. П. Хромову)

ца над горизонтом, от прозрачности воздуха и облачности.

Поток прямой радиации в течение дня от восхода Солнца до полудня нарастает и потом убывает до захода Солнца в связи с измене­нием высоты Солнца и пути луча в атмосфе­ре. Однако, поскольку около полудня умень­шается прозрачность атмосферы за счет уве­личения водяного пара в воздухе и пыли и возрастает конвективная облачность, макси­мальные значения радиации смещены на пред-полуденные часы. Такая закономерность при­суща экваториально-тропическим широтам весь год, умеренным широтам летом. Зимой в умеренных широтах максимум радиации при­ходится на полдень.

Годовой ход среднемесячных значений пря­мой радиации зависит от широты. На эквато­ре годовой ход прямой радиации имеет вид двойной волны: максимумы в периоды весен­него и осеннего равноденствия, минимумы в периоды летнего и зимнего солнцестояния. В умеренных широтах максимальные значения прямой радиации приходятся на весенние (ап­рель в северном полушарии), а не на летние месяцы, так как воздух в это время прозрач­нее из-за меньшего содержания водяного па­ра и пыли, а также незначительной облачно­сти. Минимум радиации наблюдается в декаб­ре, когда наименьшая высота Солнца, короткий световой день, и это самый пасмурный месяц в году.

Суточный и годовой ход рассеянной ра­диации определяется изменением высоты Солнца над горизонтом и продолжительностью дня, а также прозрачностью атмосферы. Мак­симум рассеянной радиации в течение суток наблюдается днем при возрастании радиации в целом, хотя доля ее в утренние и вечерние часы больше, чем прямой, а днем, наоборот, прямая радиация преобладает над рассеянной. Годовой ход рассеянной радиации на экваторе в общем повторяет ход прямой. В остальных широтах она больше летом, чем зимой, из-за увеличения летом общего притока солнечной радиации.

Соотношение между прямой и рассеянной радиацией меняется в зависимости от высо­ты Солнца, прозрачности атмосферы и облач­ности.

Пропорции между прямой и рассеянной радиацией на разных широтах неодинаковы. В полярных и субполярных областях рассеян­ная радиация составляет 70 % от всего пото­ка радиации. На ее величину, кроме низкого положения Солнца и облачности, влияет так­же многократное отражение солнечной ради­ации от снежной поверхности. Начиная с уме­ренных широт и почти до экватора, прямая радиация преобладает над рассеянной. Осо­бенно велико ее абсолютное и относительное значение во внутриконтинентальных тропиче­ских пустынях (Сахара, Аравия), отличающих­ся минимальной облачностью и прозрачным сухим воздухом. Вдоль экватора рассеянная радиация вновь доминирует над прямой в свя­зи с большой влажностью воздуха и наличи­ем кучевых облаков, хорошо рассеивающих солнечную радиацию.

С возрастанием высоты места над уров­нем моря значительно увеличиваются абсолют-Рис. 23. Годовое количество суммарной солнечной ради­ации [МДж/(м 2 xгод)]


ная и относительная величины прямой радиа­ции и уменьшается рассеянная, так как становится тоньше слой атмосферы. На вы­соте 50-60 км поток прямой радиации при­ближается к солнечной постоянной.

Вся солнечная радиация - прямая и рассеянная, приходящая на земную поверх­ность, называется суммарной радиацией: (Q=S ·sinh ¤ +D где Q - суммарная радиация, S - прямая, D- рассеянная, h ¤ - высота Солнца над горизонтом. Суммарная радиация составляет около 50 % от солнечной радиации, приходящей на верхнюю границу атмосферы.

При безоблачном небе суммарная радиа­ция значительна и имеет суточный ход с мак­симумом около полудня и годовой ход с мак­симумом летом. Облачность уменьшает ради­ацию, поэтому летом приход ее в дополуденные часы в среднем больше, чем в послеполуден­ные. По той же причине в первую половину года она больше, чем во вторую.

В распределении суммарной радиации на земной поверхности наблюдается ряд законо­мерностей.

Главная закономерность заключается в том, что суммарная радиация распределяется зонально, убывая от экваториально-тропи-



ческих широт к полюсам в соответствии с уменьшением угла падения солнечных лучей (рис. 23). Отклонения от зонального распре­деления объясняются различной облачностью и прозрачностью атмосферы. Наибольшие го­довые величины суммарной радиации 7200 - 7500 МДж/м 2 в год (около 200 ккал/см 2 в год) приходятся на тропические широты, где малая облачность и небольшая влажность воз­духа. Во внутриконтинентальных тропических пустынях (Сахара, Аравия), где обилие пря­мой радиации и почти нет облаков, суммар­ная солнечная радиация достигает даже более 8000 МДж/м 2 в год (до 220 ккал/см 2 в год). Вблизи экватора величины суммарной радиа­ции снижаются до 5600 - 6500 МДж/м в год (140-160 ккал/см 2 в год) из-за значитель­ной облачности, большой влажности и мень­шей прозрачности воздуха. В умеренных ши­ротах суммарная радиация составляет 5000 - 3500 МДж/м 2 в год (≈ 120 - 80 ккал/см 2 в год), в приполярных - 2500 МДж/м в год (≈60 ккал/см 2 в год). Причем в Антарктиде она в 1,5-2 раза больше, чем в Арктике, прежде всего из-за большей абсолютной вы­соты материка (более 3 км) и потому малой плотности воздуха, его сухости и прозрачнос­ти, а также малооблачной погоды. Зональ­ность суммарной радиации лучше выражена над океанами, чем над континентами.

Вторая важная закономерность суммар­ной радиации заключается в том, что мате­рики получают ее больше, чем океаны, бла­годаря меньшей (на 15-30 %) облачности над


континентами. Исключение составляют лишь приэкваториальные широты, поскольку днем над океаном конвективная облачность мень­ше, чем над сушей.

Третья особенность состоит в том, что в северном, более материковом полушарии суммарная радиация в целом больше, не­жели в южном океаническом.

В июне наибольшие месячные суммы сол­нечной радиации получает северное полуша­рие, особенно внутриконтинентальные тропи­ческие и субтропические области. В умерен­ных и полярных широтах количество радиации по широтам изменяется незначительно, так как уменьшение угла падения лучей компенсиру­ется продолжительностью солнечного сияния, вплоть до полярного дня за Северным поляр­ным кругом. В южном полушарии с увеличе­нием широты радиация быстро убывает и за Южным полярным кругом равна нулю.

В декабре южное полушарие получает боль­ше радиации, чем северное. В это время наи­большие месячные суммы солнечного тепла приходятся на пустыни Австралии и Калаха­ри; далее в умеренных широтах радиация по­степенно уменьшается, но в Антарктиде вновь растет и достигает таких же значений, как в тропиках. В северном полушарии с увеличе­нием широты она быстро убывает и за Се­верным полярным кругом отсутствует.

В целом наибольшая годовая амплитуда суммарной радиации наблюдается за полярны­ми кругами, особенно в Антарктиде, наимень­шая - в экваториальной зоне.

Под прямой солнечной радиацией, которую нередко называют просто солнечной радиацией, понимают радиацию, доходящую до места наблюдения в виде пучка па­раллельных лучей непосредственно от Солнца.

Потоки солнечной радиации на перпендикулярную лучам (I ) и горизонтальную ( = I sin h ) поверхности зависят от следующих факторов: а) солнечной постоянной; б) расстояния между Землей и Солнцем (поток I 0 ) на верхней границе атмосферы в январе примерно на 3,5 % больше, а в июле на 3,5 % меньше, чем I * 0 ); в) физического состояния атмосферы над пунктом наблюдения (содержания поглощающих газов и твердых атмосферных примесей, наличия облаков и туманов); г) высоты Солнца.

В зависимости от указанных факторов потоки I к I ΄ изменяются в широких пре­делах. В каждом пункте они имеют отчетливо выраженный суточный и годовой ход (максимумы I и I ΄ течение суток наблюдаются в местный полдень). Хотя высота Солнца (от которой зависит т .) и оказывает большое влияние на потоки солнечной радиации, но не меньшее влияние оказывает и замутненность атмосферы. Это под­тверждают максимальные (из полуденных) значения потока I , которые когда-либо наблюдались в различных пунктах (табл. 6.3 и 6.4). Из приведенных в табл. 6.3 дан­ных следует, что несмотря на большое различие в широте станций и, следовательно, в максимальной высоте Солнца, различие I макс на них невелико. Более того, на о. Диксон значение I макс больше, чем в пунктах, расположенных южнее. Объясняет­ся это тем, что атмосфера в низких широтах содержит больше водяного пара и при­месей, чем в высоких.

6.5. Рассеянная радиация

Рассеянная радиация представляет собой солнечную радиацию, претерпевшую рассеяние в атмосфере. Количество рассеянной радиации, поступающей на единич­ную горизонтальную поверхность в единицу времени, носит название потока рассе­янной радиации; поток рассеянной радиации будем обозначать через i . Поскольку первоисточником рассеянной радиации служит прямая солнечная радиация, поток i должен зависеть от факторов, которые определяют I , а именно: а) высоты Солнца h (чем больше h , тем больше i ); б) прозрачности атмосферы (чем больше р , тем меньше i ; в) облачности.

6.6. Суммарная радиация

Потоком суммарной радиации Q называется сумма потоков прямой (I΄) и рассе­янной (i ) солнечной радиации, поступающих на горизонтальную поверхность. Путем решения приближенных уравнений переноса радиации К. Я. Кондратьев и др. по­лучили следующую формулу для потока суммарной радиации при безоблачных усло­виях:

Здесь τ - оптическая толщина для интегрального потока, которую, как показано О. А. Авасте, можно полагать равной τ 0,55 - оптической толщине для монохромати­ческого потока с λ = 0,55 мкм; ε - множитель, принимающий при разных высотах Солнца следующие значения:

6.7. Альбедо

Альбедо, или отражательной способностью какой-либо поверхности, как уже указывалось, называют отношение потока отраженной данной поверхностью радиа­ции к потоку падающей радиации, выраженное в долях единицы или в процентах.

Наблюдения показывают, что альбедо различных поверхностей изменяется в сравнительно узких пределах (10-30 %); исключение составляют снег и вода. .

Необходимые приборы и принадлежности : термоэлектрический актинометр М-3, пиранометр универсальный М-80М, альбедометр походный, балансомер термоэлектрический М-10М, гелиограф универсальный модели ГУ–1, люксметр Ю-16.

Основным источником энергии, поступающей на Землю, является лучистая энергия, поступающая от Солнца. Поток электромагнитных волн, излучаемый Солнцем, принято называть солнечной радиацией. Эта радиация является практически единственным источником энергии для всех процессов, протекающих в атмосфере и на земной поверхности, в том числе и для всех процессов, происходящих в живых организмах.

Солнечная радиация обеспечивает растения энергией, которую они используют в процессе фотосинтеза для создания органического вещества, влияет на процессы роста и развития, на расположение и строение листьев, продолжительность вегетации и др. Количественно солнечную радиацию можно характеризовать потоком радиации.

Поток радиации – это количество лучистой энергии, которое поступает в единицу времени на единицу поверхности.

В системе единиц СИ поток радиации измеряется в ваттах на 1м 2 (Вт/м 2) или киловаттах на 1м 2 (кВт/м 2). Ранее она измерялась в калориях на 1 см 2 в минуту (кал/(см 2 ·мин)).

1кал/(см 2 ·мин) = 698 Вт/м 2 или 0.698 кВт/м 2

Плотность потока солнечной радиации на верхней границе атмосферы при среднем расстоянии от Земли до Солнца называют солнечной постоянной S 0 . По международному соглашению 1981 г. S 0 = 1.37 кВт/м 2 (1.96 1кал/(см 2 ·мин)).

Если Солнце не в зените, то количество солнечной энергии, падающей на горизонтальную поверхность, будет меньше, чем на поверхность, расположенную перпендикулярно лучам Солнца. Это количество зависит от угла падения лучей на горизонтальную поверхность. Для определения количества тепла, получаемого горизонтальной поверхностью в минуту, служит формула:

S′ = S sinh ©

где S′ - количество тепла, получаемое в минуту горизонтальной поверхностью; S – количество тепла, получаемое перпендикулярной к лучу поверхностью; h © – угол, образованный солнечным лучом с горизонтальной поверхностью (угол h называется высотой солнца).

Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями. Ослабление потока солнечной радиации зависит от длины пути, проходимого лучом в атмосфере, и от прозрачности атмосферы на этом пути. Длина пути луча в атмосфере зависит от высоты солнца. При положении солнца в зените солнечные лучи проходят самый короткий путь. В этом случае масса атмосферы, проходимая солнечными лучами, т.е. масса вертикального столба воздуха с основанием 1 см 2 , принимается за одну условную единицу (m = 1). По мере опускания солнца к горизонту путь лучей в атмосфере увеличивается, а следовательно, увеличивается и число проходимых масс (m> 1). Когда солнце находится у горизонта, лучи проходят в атмосфере наибольший путь. Как показывают расчеты, при этом m в 34,4 раза больше, чем при положении Солнца в зените. Ослабление потока прямой солнечной радиации в атмосфере описывается формулой Буге. Коэффициент прозрачности p показывает, какая доля солнечной радиации, поступающей на верхнюю границу атмосферы, доходит до земной поверхности при m = 1.

S m = S 0 p m ,

где S m – поток прямой солнечной радиации, дошедший до Земли; S 0 – солнечная постоянная; p – коэффициент прозрачности; m – масса атмосферы.

Коэффициент прозрачности зависит от содержания в атмосферы водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одном и том же числе проходимых масс. Коэффициент прозрачности колеблется в пределах от 0,60 до 0,85.

Виды солнечной радиации

Прямая солнечная радиация (S′) – радиация, поступающая к земной поверхность непосредственно от Солнца в виде пучка параллельных лучей.

Прямая солнечная радиация зависит от высоты солнца над горизонтом, прозрачности воздуха, облачности, высоты места над уровнем моря и расстояния между Землей и Солнцем.

Рассеянная солнечная радиация (D) часть радиации, рассеянной земной атмосферой и облаками и поступающая на земную поверхность от небесного свода. Интенсивность рассеянной радиации зависит от высоты солнца над горизонтом, облачности, прозрачности воздуха, высоты места над уровнем моря, снежный покров. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счёт рассеивания и отражения падающей на них прямой и рассеянной радиации и повторного рассеивания их в атмосфере могут в несколько раз увеличить поток рассеянной радиации.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность.

Суммарная радиация (Q) – сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность:

До восхода, днем и после захода Солнца при сплошной облачности суммарная радиация поступает на землю полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации, в составе суммарной, быстро возрастает и в дневные часы поток многократно превышает поток рассеянной радиации.

Большая часть потока суммарной радиации, поступающего на земную поверхность, поглощается верхним слоем почвы, воды и растительностью. При этом лучистая энергия превращается в тепло, нагревая поглощающие слои. Остальная часть потока суммарной радиации отражается земной поверхностью, образуя отражённую радиацию (R). Почти весь поток отражённой радиации проходит атмосферу насквозь и уходит в мировое пространство, однако некоторая доля его рассеивается в атмосфере и частично возвращается на земную поверхность, усиливая рассеянную радиацию, а, следовательно, и суммарную радиацию.

Отражательная способность различных поверхностей называется альбедо . Оно представляет собой отношение потока отраженной радиации ко всему потоку суммарной радиации, падающему на данную поверхность:

Выражается альбедо в долях единицы или в процентах. Таким образом, земной поверхностью отражается часть потока суммарной радиации, равная QА, а поглощается и превращается в тепло – Q(1-А). Последняя величина называется поглощенной радиацией .

Альбедо различных поверхностей суши зависит главным образом от цвета и шероховатости этих поверхностей. Темные и шероховатые поверхности имеют меньшие альбедо, чем светлые и гладкие. Альбедо почв уменьшается с возрастанием влажности, так как цвет их при этом становится более темным. Значения альбедо для некоторых естественных поверхностей приведены в таблице 1.

Таблица 1 – Альбедо различных естественных поверхностей

Очень велика отражательная способность верхней поверхности облаков, особенно при большой их мощности. В среднем альбедо облаков около 50-60%, в отдельных случаях – более 80-85%.

Фотосинтетически активная радиация (ФАР) – часть потока суммарной радиации, которая может использоваться зелёными растения при фотосинтезе. Поток ФАР можно рассчитать по формуле:

ФАР = 0,43S′ + 0,57D,

где S′ - прямая солнечная радиация, поступающая на горизонтальную поверхность; D – рассеянная солнечная радиация.

Поток ФАР, падающий на лист, большей частью поглощается им, значительно меньшие доли этого потока отражаются поверхностью и пропускаются листом насквозь. Листья большинства древесных пород поглощают примерно 80%, отражают и пропускают до 10-12% от всего потока ФАР. Из поглощенной листьями части потока ФАР лишь несколько процентов лучистой энергии используется растениями непосредственно на фотосинтез и преобразуется в химическую энергию органических веществ, синтезированных листьями. Остальные, более 95% лучистой энергии, превращается в тепло и расходуется в основном на транспирацию, нагрев самих листьев и теплообмен их с окружающим воздухом.

Длинноволновое излучение Земли и атмосферы.

Радиационный баланс земной поверхности

Большая часть солнечной энергии, поступающей на Землю, поглощается её поверхностью и атмосферой, некоторая её часть излучается. Излучение земной поверхностью происходит круглосуточно.

Часть лучей, излучаемых земной поверхностью, поглощается атмосферой и таким образом способствует нагреванию атмосферы. Атмосфера в свою очередь посылает лучи обратно к поверхности земли, а также в космическое пространство. Это свойство атмосферы сохранять тепло, излучаемое земной поверхностью, называют оранжерейным эффектом . Разность между приходом тепла в виде встречного излучения атмосферы и расходом его в виде излучения деятельного слоя называется эффективным излучением деятельного слоя. Особенно большим эффективное излучение бывает ночью, когда потеря тепла земной поверхностью значительно превышает приток тепла, излучаемого атмосферой. Днём же, когда к излучению атмосферы добавляется суммарная солнечная радиация, получается избыток тепла, который идёт на нагревание почвы и воздуха, испарение воды и т.п.

Разность между поглощенной суммарной радиацией и эффективным излучением деятельного слоя называют радиационным балансом деятельного слоя.

Приходную часть радиационного баланса составляют прямая и рассеянная солнечная радиация, а также встречное излучение атмосферы. Расходную часть составляют отраженная солнечная радиация и длинноволновое излучение земной поверхности.

Радиационный баланс представляет собой фактический приход лучистой энергии на поверхность Земли, от которого зависит, будет происходить её нагревание или охлаждение.

Если приход лучистой энергии больше её расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то баланс отрицателен и поверхность охлаждается. Радиационный баланс земной поверхности является одним из основных климатообразующих факторов. Он зависит от высоты Солнца, продолжительности солнечного сияния, характера и состояния земной поверхности, замутнённости атмосферы, содержания в ней водяного пара, наличия облаков и др.

Приборы для измерения солнечной радиации

Термоэлектрический актинометр М-3 (Рис.3) предназначен для измерения интенсивности прямой солнечной радиации на перпендикулярную к лучам солнца поверхность.

Приемником актинометра является термобатарея из чередующихся пластинок манганина и константана, выполненная в виде звездочки. Внутренние спаи термобатареи через изоляционную прокладку подклеены к диску из серебряной фольги, обращённая к солнцу сторона диска зачернена. Внешние спаи через изоляционную прокладку подклеены к массивному медному кольцу. От нагрева радиацией оно защищено хромированным колпачком. Термобатарея расположена на дне металлической трубки, которая при измерениях направляется на солнце. Внутренняя поверхность трубки зачернена, и в трубке устроены 7 диафрагм (кольцеобразных сужений), чтобы предотвратить попадание рассеянной радиации на приемник актинометра.

Для наблюдений стрелку на основании прибора 11 (рис. 2) ориентируют на север и для облегчения слежения за солнцем устанавливают актинометр по широте места наблюдений (по сектору 9 и риске в верхней части стойки прибора 10 ). Наводка на солнце производится с помощью винта 3 и рукоятки 6 , расположенных в верхней части прибора. Винт позволяет поворачивать трубку в вертикальной плоскости, при вращении рукоятки обеспечивается ведение трубки за солнцем. Для точной наводки на Солнце в наружной диафрагме сделано небольшое отверстие. Против этого отверстия в нижней части прибора имеется белый экран 5 . При правильной установке прибора солнечный луч, проникающий через это отверстие должен дать светлое пятно (зайчик) в центре экрана.

Рис. 3 Актинометр термоэлектрический М-3: 1 – крышка; 2, 3 – винты; 4 – ось; 5 – экран; 6 – рукоятка; 7 – трубка; 8 – ось; 9 – сектор широт; 10 – стойка; 11 – основание.

Пиранометр универсальный М-80М (Рис. 4) предназначен для измерения суммарной (Q) и рассеянной (D) радиации. Зная их, можно вычислить интенсивность прямой солнечной радиации на горизонтальную поверхность S′. Пиранометр М-80М имеет устройство, для опрокидывания стойки прибора приемником вниз, что позволяет измерить интенсивность отражённой радиации и определить альбедо подстилающей поверхности.

Приёмником пиранометра 1 является термоэлектрическая батарея, устроенная в форме квадрата. Приёмная поверхность ее окрашена в чёрный и белый цвета в виде шахматной доски. Половина спаев термобатареи находится под белыми, другая половина – под черными клеточками. Сверху приёмник закрыт полусферическим стеклом для защиты от ветра и осадков. Для измерения интенсивности рассеянной радиации приемник затеняется специальным экраном 3 . Во время измерений приёмник прибора устанавливается строго горизонтально, для этого пиранометр снабжён круглым уровнем 7 и установочными винтами 4. В нижней части приёмника размещена стеклянная сушилка, заполненная водопоглощающим веществом, которая предотвращает конденсацию влаги на приёмнике и стекле. В нерабочем состоянии приёмник пиранометра закрывается металлическим колпаком.

Рис. 4 Пиранометр универсальный М–80М: 1 – головка пиранометра; 2 – стопорная пружина; 3 – шарнир затенителя; 4 – установочный винт; 5 – основание; 6 – шарнир откидного штатива; 7 – уровень; 8 – винт; 9 – стойка с осушителем внутри; 10 – приёмная поверхность термобатареи.

Альбедометр походный (рис. 5) предназначен для измерения интенсивностей суммарной, рассеянной и отражательной радиаций в полевых условиях. Приемником является головка пиранометра 1 , установленная на самоуравновешивающийся карданный подвес 3 . Этот подвес позволяет установить прибор в двух положениях – приемником вверх и вниз, причем горизонтальность приемников обеспечивается автоматически. При положении приемной поверхности прибора вверх определяется суммарная радиация Q. Затем для измерения отраженной радиации R рукоятку альбедометра поворачивают на 180 0 . Зная эти величины можно определить альбедо.

Балансомер термоэлектрический М-10М (рис. 6) предназначен для измерения полного радиационного баланса подстилающей поверхности. Приемником балансомера является термобатарея квадратной формы состоящая, из множества медных брусков 5 , обмотанных константановой лентой 10 . Половина каждого винта ленты гальваническим путем посеребрена, начало и конец серебряного слоя 9 являются термоспаями. Половина спаев подклеивается к верхней, другая половина – к нижней приемным поверхностям, в качестве которых используются медные пластинки 2 , окрашенные в черный цвет. Приемник балансомера помещен в круглую металлическую оправу 1 . При измерениях он располагается строго горизонтально с помощью специального накладного уровня. Для этого приемник балансомера крепится на шаровом шарнире 15 . Для повышения точности измерений приемник балансомера может защищаться от прямой солнечной радиации круглым экраном 12 . Интенсивность прямой солнечной радиации измеряется в этом случае актинометром или пиранометром.

Рис. 5 Альбедометр походный: 1 – головка пиранометра; 2 – трубка; 3 – карданный подвес; 4 – рукоятка

Рис. 6 Балансомер термоэлектрический М-10М: а) – схематическое поперечное сечение: б) – отдельная термобатарея; в) – внешний вид; 1 – оправа приемника; 2 – приемная пластинка; 3, 4 – спаи; 5 – медный брусок; 6, 7 – изоляция; 8 – термобатарея; 9 – серебряный слой; 10 – константановая лента; 11 – рукоятка; 12 – теневой экран; 13, 15 – шарниры; 14 – планка; 16 – винт; 17 - чехол

Приборы для измерения продолжительности солнечного

сияния и освещённости

Продолжительность солнечного сияния есть время, в течение которого прямая солнечная радиация равна или больше 0,1 кВт/м 2 . Выражается в часах за сутки.

Метод определения продолжительности солнечного сияния основан на регистрации времени, в течение которого интенсивность прямой солнечной радиации достаточна для получения прожога на специальной ленте, укреплённой в оптическом фокусе шаровой стеклянной линзы, и составляет не менее 0,1 кВт/м 2 .

Продолжительность солнечного сияния измеряется прибором гелиографом (рис. 7).

Гелиограф универсальный модели ГУ–1 (рис. 7). Основанием прибора является плоская металлическая плита с двумя стойками 1 . Между стойками на горизонтальной оси 2 укреплена подвижная часть прибора, состоящая из колонки 3 с лимбом 4 и нижним упором 7 , скобы 6 с чашкой 5 и верхним упором 15 и стеклянного шара 8 , который является сферической линзой. На одном конце горизонтальной оси закреплён сектор 9 со шкалой широт. При перемещении горизонтальной оси 2 прибора с запада на восток и повороте верхней части прибора вокруг неё, ось колонки 3 устанавливается параллельно оси вращения Земли (оси мира). Для закрепления установленного угла наклона оси колонки служит винт 11 .

Верхняя часть прибора может поворачиваться вокруг оси колонки 3 и фиксироваться в четырех определенных положениях. Для этого используется специальный штифт 12 , который вставляется через отверстие лимба 4 в одно из четырёх отверстий диска 13 , закреплённого на оси 2 . Совпадение отверстий лимба 4 и диска 13 определяется по совпадению меток А, Б, В и Г на лимбе 4 с индексом 14 на диске.

Рис. 7 Гелиограф универсальный модели ГУ–1.

1 – стойка; 2 – горизонтальная ось; 3 – колонка; 4 – лимб; 5 – чашка; 6 – скоба; 7 – упор; 8 – стеклянный шар; 9 – сектор; 10 – указатель широты; 11 – винт для закрепления угла наклона оси; 12 – штифт; 13 – диск; 14 – индекс на диске; 15 – верхний упор.

На метеорологической площадке гелиограф устанавливается на бетонном или деревянном столбе высотой 2 м, на верхней части которого закреплена площадка из досок толщиной не менее 50 мм, так, чтобы при любом положении Солнца относительно сторон горизонта отдельные постройки, деревья и случайные предметы не затеняли его. Он устанавливается строго горизонтально и ориентирован по географическому меридиану и широте метеорологической станции; ось гелиографа должна быть строго параллельна оси мира.

Шар гелиографа должен содержаться в чистоте, так как наличие пыли, следов осадков, отложение росы, инея, изморози и гололёда на шаре ослабляет и искажает прожог на ленте гелиографа.

В зависимости от возможной продолжительности солнечного сияния запись за одни сутки должна производиться на одной, двух или трёх лентах. В зависимости от сезона должны применяться прямые или изогнутые ленты, которые следует закладывать в верхний, средний или нижний пазы чашки. Ленты для закладки в течение месяца должны подбираться одного цвета.

Для удобства работы с гелиографом к югу от подставки (столба) с прибором устанавливается лесенка с площадкой. Лесенка не должна касаться столба и должна быть достаточно удобной.

Люксметр Ю-16 (рис. 8) применяется для измерения освещённости, создаваемой светом или искусственными источниками света.

Рис. 8 Люксметр Ю–16. 1 – фотоэлемент; 2 – провод; 3 – измеритель; 4 – поглотитель; 5 – клеммы; 6 – переключатель пределов измерения; 7 – корректор.

Прибор состоит из селенового фотоэлемента 1 , соединённого проводом 2 с измерителем 3 , и поглотителя 4 . Фотоэлемент заключён в пластмассовый корпус с металлической оправой, для увеличения пределов измерения в 100 раз на корпус надевается поглотитель из молочного стекла. Измерителем люксметра является магнитоэлектрический стрелочный прибор, смонтированный в пластмассовом корпусе с окном для шкалы. В нижней части корпуса находится корректор 7 для установки стрелки на нуль, в верхней части – клеммы 5 для присоединения проводов от фотоэлемента и ручки переключения пределов измерения 6 .

Шкала измерителя разбита на 50 делений и имеет 3 ряда цифр соответственно трём пределам измерения - до 25, 100 и 500 люкс (лк). При использовании поглотителя пределы увеличиваются до 2500, 10000 и 50000 лк.

Во время работы с люксметром необходимо тщательно следить за чистотой фотоэлемента и поглотителя, при загрязнении их протирают ваткой, смоченной в спирте.

Фотоэлемент при измерениях располагается горизонтально. Корректором устанавливают стрелку измерителя на нулевое деление. Присоединяют фотоэлемент к измерителю и через 4-5 с проводят измерения. Для уменьшения перегрузок начинают с большего предела измерений, затем переходят на меньшие пределы, пока стрелка не окажется в рабочей части шкалы. Отсчёт снимают в делениях шкалы. При малых отклонениях стрелки для повышения точности измерений рекомендуется переключить измеритель на меньший предел. Для предупреждения усталости селенового фотоэлемента через каждые 5-10 мин работы прибора необходимо затенять фотоэлемент на 3-5 мин.

Освещенность определяется умножением отсчёта на цену деления шкал и на поправочный коэффициент (для естественного света он равен 0.8, для ламп накаливания -1). Цена деления шкалы равна пределу измерения, делённому на 50. При использовании одного или двух поглотителей полученную величину умножают, соответственно, на 100 или 10000.

1 Ознакомиться с устройством термоэлектрических приборов (актинометр, пиранометр, альбедометр, балансомер).

2 Ознакомиться с устройством гелиографа универсального, со способами его установки в различное время года.

3 Ознакомиться с устройством люксметра, измерить в аудитории освещенность естественную и искусственную.

Записи оформить в тетрадь.

Если бы атмосфера пропускала к поверхности земли все солнечные лучи, то климат любого пункта Земли зависел бы только от географической широты. Так и полагали в древности. Однако при прохождении солнечных лучей через земную атмосферу происходит, как мы уже видели, их ослабление вследствие одновременных процессов поглощения и рассеивания. Особенно много поглощают и рассеивают капли воды и кристаллы льда, из которых состоят облака.

Та часть солнечной радиации, которая поступает на поверхность земли после рассеяния ее атмосферой и облаками, называется рассеянной радиацией. Та часть солнечной радиации, которая проходит через атмосферу не рассеиваясь, называется прямой радиацией.

Радиация рассеивается не только облаками, но и при ясном небе - молекулами, газов и частицами пыли. Соотношение между прямой и рассеянной радиацией изменяется в широких пределах. Если при ясном небе и вертикальном падении солнечных лучей доля рассеянной радиации составляет 0,1% прямой, то


при пасмурном небе рассеянная радиация может быть больше прямой.

В тех частях земли, где преобладает ясная погода, например в Средней Азии, основным источником нагревания земной поверхности является прямая солнечная радиация. Там же, где преобладает облачная погода, как, например, на севере и северо-западе Европейской территории СССР, существенное значение приобретает рассеянная солнечная радиация. Бухта Тихая, расположенная на севере, получает рассеянной радиации почти в полтора раза больше, чем прямой (табл. 5). В Ташкенте, наоборот, рассеянная радиация составляет менее 1 / 3 прямой радиации. Прямая солнечная радиация в Якутске больше, чем в Ленинграде. Объясняется это тем, что в Ленинграде больше пасмурных дней и меньше прозрачность воздуха.

Альбедо земной поверхности. Земная поверхность обладает способностью отражать падающие на нее лучи. Количество поглощенной и отраженной радиации зависит от свойств поверхности земли. Отношение количества отраженной от поверхности тела лучистой энергии к количеству падающей лучистой энергии называется альбедо. Альбедо характеризует отражательную способность поверхности тела. Когда, например, говорят, что альбедо свежевыпавшего снега равно 80-85%, это означает, что 80-85% всей падающей на снежную поверхность радиации отражается от нее.

Альбедо снега и льда зависит от их чистоты. В промышленных городах в связи с осаждением на снег различных примесей, преимущественно копоти, альбедо меньше. Наоборот, в арктических областях альбедо снега иногда достигает 94%. Так как альбедо снега по сравнению с альбедо других видов поверхности земли наиболее высокое, то при снежном покрове прогревание земной поверхности происходит слабо. Альбедо травяной растительности и песка значительно меньше. Альбедо травяной растительности равно 26%, а песка 30%. Это означает, что трава поглощает 74% солнечной энергии, а пески - 70%. Поглощенная радиация идет на испарение, рост растений и нагревание.

Наибольшей поглощательной способностью обладает вода. Моря и океаны поглощают около 95% поступающей на их поверхность солнечной энергии, т. е. альбедо воды равно 5% (рис. 9). Правда, альбедо воды находится в зависимости от угла падения солнечных лучей (В. В. Шулейкин). При отвесном падении лучей от поверхности чистой воды отражается лишь 2% радиации, а при низком стоянии солнца - почти вся.

Солнечная радиация (солнечное излучение) – это вся совокупность солнечной материи и энергии, поступающей на Землю. Солнечная радиация состоит из следующих двух основных частей: во-первых, тепловой и световой радиации, представляющей собой совокупность электромагнитных волн; во-вторых, корпускулярной радиации.

На Солнце тепловая энергия ядерных реакций переходит в лучистую энергию. При падении солнечных лучей на земную поверхность лучистая энергия снова превращается в тепловую энергию. Солнечная радиация, таким образом, несет свет и тепло.

Интенсивность солнечной радиации. Солнечная постоянная. Солнечная радиация – это важнейший источник тепла для географической оболочки. Вторым источником тепла для географической оболочки является тепло, идущее от внутренних сфер и слоев нашей планеты.

В связи с тем, что в географической оболочке один вид энергии (лучистая энергия ) эквивалентно переходит в другой вид (тепловая энергия ), то лучистую энергию солнечной радиации можно выражать в единицах тепловой энергии – джоулях (Дж).

Интенсивность солнечной радиации необходимо измерять в первую очередь за пределами атмосферы, т. к. при прохождении через воздушную сферу она преобразуется и ослабевает. Интенсивность солнечной радиации выражается солнечной постоянной.

Солнечная постоянная – это поток солнечной энергии за 1 минуту на площадь сечением в 1 см 2 , перпендикулярную солнечным лучам и расположенную вне атмосферы. Солнечная постоянная может быть также определена как количество тепла, которое получает в 1 минуту на верхней границе атмосферы 1 см 2 черной поверхности, перпендикулярной солнечным лучам.

Солнечная постоянная равна 1, 98 кал / (см 2 х мин), или 1, 352 кВт/ м 2 х мин .

Поскольку верхняя атмосфера поглощает значительную часть радиации, то важно знать величину ее на верхней границе географической оболочки, т. е. в нижней стратосфере. Солнечная радиация на верхней границе географической оболочки выражается условной солнечной постоянной . Величина условной солнечной постоянной равна 1, 90 – 1, 92 кал / (см 2 х мин), или 1,32 – 1, 34 кВт / (м 2 х мин).

Солнечная постоянная, вопреки своему названию, не остается постоянной. Она изменяется в связи с изменением расстояния от Солнца до Земли в процессе движения Земли по орбите. Как бы ни были малы эти колебания, они всегда сказываются на погоде и климате.

В среднем каждый квадратный километр тропосферы получает в год 10,8 х 10 15 Дж. (2,6 х 10 15 кал). Такое количество тепла может быть получено при сжигании 400 000 т каменного угля. Вся Земля за год получает такое количество тепла, которое определяется величиной 5, 74 х 10 24 Дж. (1, 37 х 10 24 кал).



Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере. Знание распределения солнечной радиации до ее вступления в атмосферу, или так называемого солярного (солнечного) климата , важно для определения роли и доли участия самой воздушной оболочки Земли (атмосферы) в распределении тепла по земной поверхности и в формировании ее теплового режима.

Количество солнечного тепла и света, поступающее на единицу площади, определяется, во-первых, углом падения лучей, зависящим от высоты Солнца над горизонтом, во-вторых, продолжительностью дня.

Распределение радиации у верхней границы географической оболочки, обусловленное только астрономическими факторами, более равномерно, чем ее реальное распределение у земной поверхности.

При условии отсутствия атмосферы годовая сумма радиации в экваториальных широтах составляла бы 13 480 МДж/см 2 (322 ккал/см 2), а на полюсах 5 560 МДж/м 2 (133 ккал/см 2). В полярные широты Солнце посылает тепла немного меньше половины (около 42 %) того количества, которое поступает на экватор.

Казалось бы, солнечное облучение Земли симметрично относительно плоскости экватора. Но это происходит только два раза в год, в дни весеннего и осеннего равноденствия. Наклон оси вращения и годовое движение Земли обусловливают ассиметричное ее облучение Солнцем. В январскую часть года больше тепла получает южное полушарие, в июльскую – северное. Именно в этом заключается главная причина сезонной ритмики в географической оболочке.

Разница между экватором и полюсом летнего полушария невелика: на экватор поступает 6 740 МДж/м 2 (161 ккал/см 2), а на полюс около 5 560 МДж/м 2 (133 ккал/см 2 в полугодие). Зато полярные страны зимнего полушария в это же время вовсе лишены солнечного тепла и света.

В день солнцестояния полюс получает тепла даже больше, чем экватор - 46,0 МДж/м 2 (1,1 ккал/см 2) и 33.9 МДж/м 2 (0,81 ккал/см 2).

В целом солярный климат на полюсах в годовом выводе в 2,4 раза холоднее, чем на экваторе. Однако надо иметь в виду, что зимой полюсы вообще не нагреваются Солнцем.

Реальный климат всех широт во многом обязан земным факторам. Важнейшими из этих факторов являются: во-первых, ослабление радиации в атмосфере, во-вторых, разная интенсивность усвоения солнечной радиации земной поверхностью в различных географических условиях.

Изменение солнечной радиации при прохождении через атмосферу. Прямые солнечные лучи, пронизывающие атмосферу при безоблачном небе, называются прямой солнечной радиацией . Максимальная ее величина при высокой прозрачности атмосферы на перпендикулярной лучам поверхности в тропическом поясе равна около 1,05 – 1, 19 кВт/м 2 (1,5 – 1,7 кал/см 2 х мин. В средних широтах напряжение полуденной радиации обычно составляет около 0,70 – 0,98 кВт /м 2 х мин (1,0 – 1,4 кал/см 2 х мин). В горах эта величина существенно увеличивается.

Часть солнечных лучей от соприкосновения с молекулами газов и аэрозолями рассеивается и переходит в рассеянную радиацию . На земную поверхность рассеянная радиация поступает уже не от солнечного диска, а от всего небосвода и создает повсеместную дневную освещенность. От нее в солнечные дни светло и там, куда не проникают прямые лучи, например под пологом леса. Наряду с прямой радиацией рассеянная радиация также служит источником тепла и света.

Абсолютная величина рассеянной радиации тем больше, чем интенсивнее прямая. Относительное значение рассеянной радиации возрастает с уменьшением роли прямой: в средних широтах летом она составляет 41%, а зимой 73% общего прихода радиации. Удельный вес рассеянной радиации в общей величине суммарной радиации зависит и от высоты Солнца. В высоких широтах на рассеянную радиацию приходится около 30%, а в полярных - примерно 70% от всей радиации.

В целом же на рассеянную радиацию приходится около 25 % всего потока солнечных лучей, приходящих на нашу планету.

На земную поверхность, таким образом, поступает прямая и рассеянная радиация. В совокупности прямая и рассеянная радиация образуют суммарную радиацию , которая определяет тепловой режим тропосферы .

Поглощая и рассеивая радиацию, атмосфера значительно ее ослабляет. Величина ослабления зависит от коэффициента прозрачности, показывающего, какая доля радиации доходит до земной поверхности. Если бы тропосфера состояла только из газов, то коэффициент прозрачности был бы равен 0,9, т. е. она пропускала бы около 90% идущей к Земле радиации. Однако в воздухе всегда присутствуют аэрозоли, снижающие коэффициент прозрачности до 0,7 – 0,8. Прозрачность атмосферы изменяется вместе с изменением погоды.

Так как плотность воздуха падает с высотой, то слой газа, пронизываемого лучами, не следует выражать в км толщины атмосферы. В качестве единицы измерения принята оптическая масса, равная мощности слоя воздуха при вертикальном падении лучей.

Ослабление радиации в тропосфере легко наблюдать в течение суток. Когда Солнце находится около горизонта, то его лучи пронизывают несколько оптических масс. Их интенсивность при этом так ослабевает, что на Солнце можно смотреть незащищенным глазом. С поднятием Солнца уменьшается число оптических масс, которые проходят его лучи, что приводит к увеличению радиации.

Степень ослабления солнечной радиации в атмосфере выражается формулой Ламберта :

I i = I 0 p m , где

I i – радиация, достигшая земной поверхности,

I 0 – солнечная постоянная,

p – коэффициент прозрачности,

m – число оптических масс.

Солнечная радиация у земной поверхности. Количество лучистой энергии, приходящее на единицу земной поверхности, зависит, прежде всего, от угла падения солнечных лучей. На одинаковые площади на экваторе, в средних и высоких широтах приходится различное количество радиации.

Солнечная инсоляция (освещение) сильно ослабляется облачностью. Большая облачность экваториальных и умеренных широт и малая облачность тропических широт вносят значительные коррективы в зональное распределение лучистой энергии Солнца.

Распределение солнечного тепла по земной поверхности изображается на картах суммарной солнечной радиации. Как показывают эти карты, наибольшее количество солнечного тепла – от 7 530 до 9 200 МДж/м 2 (180-220 ккал/см 2) получают тропические широты. Экваториальные широты из-за большой облачности получают тепла несколько меньше: 4 185 – 5 860 МДж/м 2 (100-140 ккал/см 2).

От тропических широт к умеренным радиация уменьшается. На островах Арктики она составляет не более 2 510 МДж/м 2 (60 ккал/см 2) в год. Распределение радиации по земной поверхности имеет зонально-региональный характер. Каждая зона распадается на отдельные районы (регионы), несколько отличающиеся друг от друга.

Сезонные колебания суммарной радиации.

В экваториальных и тропических широтах высота Солнца и угол падения солнечных лучей по месяцам изменяются незначительно. Суммарная радиация во все месяцы характеризуется большими величинами, сезонная смена тепловых условий или отсутствует, или весьма незначительна. В экваториальном поясе слабо намечаются два максимума, соответствующие зенитальному положению Солнца.

В умеренном поясе в годовом ходе радиации резко выражен летний максимум, в котором месячная величина суммарной радиации не меньше тропической. Число теплых месяцев уменьшается с широтой.

В полярных поясах радиационный режим резко изменяется. Здесь в зависимости от широты от нескольких суток до нескольких месяцев прекращается не только нагревание, но и освещение. Летом же освещение здесь непрерывно, что существенно повышает сумму месячной радиации.

Усвоение радиации земной поверхностью. Альбедо . Суммарная радиация, достигшая земной поверхности, частично поглощается почвой и водоемами и переходит в тепло. На океанах и морях суммарная радиация расходуется на испарение. Часть суммарной радиации отражается в атмосферу (отраженная радиация).