В глубинах вселенной. Реферат: В глубинах Вселенной Вселенная

Аннотация

Вы приступаете к изучению одной из древнейших наук – астрономии. Астрономия изучалась в академии Платона в IV в. до н. э. В античные времена её приравняли к одному из видов искусств, и богиня Урания покровительствовала ей. В Средние века астрономию включили в число предметов факультета свободных искусств всех университетов. В эпоху Просвещения энциклопедисты XVIII в. включили астрономию в число обязательных наук, которые должны изучать молодые люди – будущие члены общества.

Пример из учебника

В настоящее время развитие цивилизации определяется астрономическими исследованиями, так как они позволяют нам прикоснуться к тайнам Вселенной. А «ощущение тайны:– самое прекрасное из доступных нам переживаний. Именно это чувство стоит у колыбели истинного искусства и настоящей науки … » (А. Эйнштейн).
В предлагаемом учебнике астрономии вы познакомитесь с описанием вида звёздного неба, с природой планет и звёзд, строением Солнечной системы, Млечного Пути, галактик, их распределением в пространстве и строением Вселенной в целом. Изучите, как астрономы определяют расстояние до звёзд и галактик, их размеры, массу, температуру, химический состав. Познаете, как небесные тела возникают, живут и умирают, как эволюционирует Вселенная во времени. Вы познакомитесь с новейшими достижениями астрономии, современными крупными наземными и космическими телескопами, которые используют для наблюдений самых далёких и необычных небесных тел: квазаров, пульсаров, нейтронных звёзд и чёрных дыр. Узнаете о возникновении и развитии совершенно новых методов астрономических наблюдений – нейтринной и грави­тационно-волновой астрономии. Увидите, как астрономы на основе законов небесной механики рассчитывают орбиты космических аппаратов, искусственных спутников Земли и планет.
Вы сможете почувствовать, как современная астрономия делает фундаментальные открытия, которые существенно меняют наши представления об окружающем мире. К таким открытиям, несомненно, относится открытие ускоренного расширения Вселенной, наличия тёмной материи, тёмной энергии и всемирной силы отталкивания, природа которых пока не понятна.
В материале учебника рассматриваются наблюдения и эксперименты, связанные с одной из важнейших мировоззренческих проблем существования жизни во Вселенной и связи с внеземными цивилизациями.
Основной метод исследования в астрономии – наблюдение. Если в вашем распоряжении окажется бинокль или телескоп, проводите самостоятельные наблюдения. Это поможет вам заглянуть в космические дали и увидеть недоступные небесные тела.

Введение 5
Работаем с учебником 6
Глава 1. Введение в астрономию.
1. Структура и масштабы Вселенной 8
2. Далёкие глубины Вселенной 12
Подведём итоги 14
Глава 2. Астронометрия.
3. Звёздное небо 16
4. Небесные координаты 20
5. Видимое движение планет и Солнца 22
6. Движение Луны и затмения 24
7. Время и календарь 28
Подведём итоги 32
Глава 3. Небесная механика.
8. Система мира 34
9. Законы движения планет 40
10. Космические скорости 44
11. Межпланетные полёты 46
Подведём итоги 48
Глава 4. Строение солнечной системы.
12. Современные представления о Солнечной системе 50
13. Планета Земля 52
14. Луна и её влияние на Землю 56
15. Планеты земной группы 60
16. Планеты-гиганты. Планеты-карлики 64
17. Малые тела Солнечной системы 68
18. Современные представления о происхождении Солнечной системы 72
Подведём итоги 74
Глава 5. Астрофизика и звездная астрономия.
19. Методы астрофизических исследований 76
20. Солнце 80
21. Внутреннее строение и источник энергии Солнца 86
22. Основные характеристики звёзд 91
23. Внутреннее строение звёзд 94
24. Белые карлики, нейтронные звёзды, пульсары и чёрные дыры 95
25. Двойные, кратные и переменные звёзды 98
26. Новые и сверхновые звёзды 100
27. Эволюция звёзд 103
Подведём итоги 106
Глава 6. Млечный путь – наша галактика
28. Газ и пыль в галактике 108
29. Рассеянные и шаровые звёздные скопления 110
30. Сверхмассивная чёрная дыра в центре Галактики 112
Подведём итоги 114
Глава 7. Галактики.
31. Классификация галактик 116
32. Активные галактики и квазары 120
33. Скопления галактик 122
Подведём итоги 124
Глава 8. Строение и эволюция Вселенной.
34. Конечность и бесконечность Вселенной - парадоксы классической космологии 126
35. Расширяющаяся Вселенная 128
36. Модель горячей Вселенной и реликтовое излучение 132
Подведём итоги 134
Глава 9. Современные проблемы астрономии.
37. Ускоренное расширение Вселенной и тёмная энергия 136
38. Обнаружение планет около других звёзд 138
39. Поиск жизни и разума во Вселенной 140
Подведём итоги 142
Ответы и решения 143

Вместе с этим также читают:

Математика Арифметика Геометрия 5 класс – Бунимович Е.А., Дорофеев Г.В., Суворова С.Б.

Глава1.

Введение в астрономию

Внутри доступной наблюдениям части Вселенной содержится несколько десятков миллиардов крупных галактик различной формы.

Газ и пыль собраны в газопылевые облака, которые наблюдаются в виде диффузных светящихся туманностей и отражательных туманностей возле звёзд.

Наблюдаются рассеянные и шаровые звёздные скопления.

Средняя плотность вещества во Вселенной в виде звёзд, газа, пыли и галактик составляет всего около1,2 × 10 –26 кг/м 3 .

Самыми плотными объектами являются нейтронные звёзды.

Наблюдаются остатки взрывов сверхновых звёзд, в которых вещество разлетается со скоростью в тысячи километров в секунду, в результате чего образуются релятивистские частицы.

В центре Млечного Пути находится сверхмассивная чёрная дыра.

Для изучения самых далёких небесных тел астрономы строят гигантские телескопы, чтобы различить как можно меньшие детали небесных тел.

Чтобы избавиться от влияния атмосферы и изучать излучение небесных тел в рентгеновских, γ- и инфракрасных лучах, запускают космические телескопы.

Структура и масштабы Вселенной

Наука о небесных телах получила название астрономия (от древнегреческих слов «астрон» - звезда и «номос» - закон). Она изучает их видимые и действительные движения и законы, определяющие эти движения; формы, размеры, массы и рельеф поверхности; природу и физическое состояние небесных тел; взаимодействие между ними, их эволюцию - вероятную прошлую историю и будущее развитие. Объект исследований астрономов - вся Вселенная в целом.

Внутри доступной наблюдениям части Вселенной имеются несколько десятков миллиардов галактик. Каждая галактика содержит десятки и сотни миллиардов звёзд. Полное число звёзд в наблюдаемой части Вселенной составляет порядка 1022.

При фотографировании неба в самые мощные телескопы удаётся зафиксировать до 10 миллиардов звёзд. Практически все они принадлежат нашей Галактике, которой ещё в древности дали название Млечный Путь .

Астрономы измерили расстояния до многих звёзд. Расстояние до ближайшей к нам звезды Проксимы Центавра составляет 4,2 св. г. Значение «несколько световых лет» характеризует среднее расстояние между звёздами в Млечном Пути.

Наряду со звёздами и планетами, во Вселенной имеются газ и пыль. Масса газа и пыли в галактиках почти в сто раз меньше, чем масса, заключённая в звёздах

Самые разреженные области Вселенной - это пространство между галактиками, а самые плотные - ядра звёзд. Если средняя плотность Солнца составляет около 1400 кг/м3, почти как плотность воды, то в центре Солнца уже около 150 000 кг/м3.

Астрономам удалось измерить и рассчитать температуры различных небесных тел и областей космоса. Так, самыми холодными оказались плотные облака газа и пыли, удалённые на большие расстояния от звёзд, - в них температура составляет всего несколько Кельвинов. Именно в этих областях образуются новые звёзды.

На поверхности Солнца температура равна примерно 6000 К, а в его центре - около 15 000 000 К. В некоторых звёздах температура в центре достигает миллиардов Кельвинов. Благодаря высоким температурам в них протекают термоядерные реакции и образуются все, в том числе тяжёлые химические элементы.

Последние наблюдения показали, что Вселенная расширяется с ускорением. По наблюдениям ускоренного удаления галактик не так давно была открыта новая сила Всемирного отталкивания . Природа этой силы пока не ясна. Кроме этого, было установлено, что основную часть Вселенной занимают тёмная материя и тёмная энергия , а обычное вещество составляет всего несколько процентов.

Далёкие глубины Вселенной

Современная астрономия нацелена на изучение самых далёких областей Вселенной и детальной структуры небесных тел. В последние десятилетия были построены несколько обсерваторий с гигантскими телескопами.

Следует отметить южную международную астрономическую обсерваторию в Чили на высоте около 5000 метров. Очень Большой Телескоп, состоящий из четырёх телескопов с диаметрами 8,2 м каждый. С помощью компьютерных технологий они могут работать вместе как гигантский интерферометр, с угловым разрешением в несколько миллисекунд дуги.

Хороший астрономический климат в обсерватории и чувствительные инфракрасные приёмники света, позволил проникнуть в центр Млечного Пути через облака газа и пыли, которые непрозрачны для видимого света, изучить движение отдельных звёзд в центре и обнаружить сверхмассивную черную дыру в нём.

Чтобы исключить влияние атмосферы на результаты наблюдений, астрономы запускают телескопы за пределы земной атмосферы.

Используя длительные экспозиции, впервые были получены изображения протогалактик, первых сгустков материи, которые сформировались менее чем через миллиард лет после Большого взрыва.

В настоящее время в космическом пространстве работает российская космическая обсерватория «Радиоастрон». Телескоп двигается по очень вытянутой орбите с апогеем до 360 000 км. Радиоастрон позволяет получить информацию о структуре галактических и внегалактических радиоисточников на угловых масштабах до 8 микросекунд дуги (8 × 106″).

Сейчас в космическом пространстве вокруг Земли вращается гамма телескоп имени Ферми. Так как гамма излучение образуется при высокоэнергичных процессах, рождения и аннигиляции частиц и античастиц, при ядерных реакциях, то телескоп позволяет исследовать эти процессы в небесных телах. Многие астрономы склонны думать, что в гамма излучении себя проявляют необычные свойства тёмной материи.

Большое развитие получила нейтринная астрономия. Её методами удалось заглянуть внутрь Солнца и в ядра взрывающихся сверхновых звёзд. Совершенно новое направление представляет гравитационно-волновая астрономия. Её первые успехи связывают с прямым наблюдением гравитационного излучения, которое, по-видимому, образовалось при слиянии двух чёрных дыр.

Подведём итоги

ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ:

Объект с каким минимальным линейным размером мы сможем различить в галактике Туманность Андромеды, расстояние до которой 2,5 млн св. лет, с помощью «РадиоАстрона»?

Скорость волокон в Крабовидной туманности составляет 1500 км/с. Расстояние до неё 6500 св. лет. Через сколько лет мы сможем заметить это перемещение в телескоп с диаметром 86 м с пространственным разрешением 0,004′′?

Чем отличаются исследования в области астрономии от исследований в области физики и биологии?

Справочник







©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-31


С помощью приемника MUSE, установленного на Очень Большом Телескопе ESO VLT, астрономы осуществили лучшее на сегодняшний день трехмерное глубокое зондирование дальней Вселенной. Наблюдения площадки Hubble Deep Field South, продолжавшиеся в общей сложности 27 часов, позволили измерить расстояния, собственные движения и другие параметры у значительно большего числа галактик, чем было известно прежде в этом маленьком участке неба. Ученым удалось заглянуть за пределы расстояния, доступного для телескопа Хаббла, и выявить прежде не наблюдавшиеся объекты.

Путем фотографирования определенных участков неба с очень длинными экспозициями астрономы получили множество так называемых глубоких полей , изучая которые, удалось многое узнать о ранней Вселенной. Самой знаменитой из этих площадок стало поле Hubble Deep Field, изображение которого было получено с Космическим телескопом Хаббла NASA/ESA в течение нескольких дней в конце 1995 года. Этот великолепный снимок резко изменил наше представление о том, какой была Вселенная на раннем этапе своего развития. Спустя два года было получено изображение аналогичной площадки на южном небе - Hubble Deep Field South .


Эти снимки, однако, не могли ответить на все вопросы: чтобы получить подробную информацию о галактиках в глубоких полях астрономам необходимо тщательно изучить каждую из них при помощи разнообразных инструментов, а это трудная и требующая больших затрат времени задача. И вот теперь новому приемнику MUSE впервые удалось одновременно получить изображение глубокого поля и детально исследовать находящиеся в нем объекты, и к тому же выполнить обе эти работы гораздо быстрее, чем это было возможно прежде.


Одной из первых наблюдательных программ с использованием приемника MUSE после того, как он успешно прошел тестирование на телескопе VLT в 2014 г., были именно длительные и трудоемкие исследования площадки Hubble Deep Field South (HDF-S). Результаты этой работы превзошли все ожидания.


Уже через несколько часов наблюдений мы быстро просмотрели полученные данные и обнаружили большое количество галактик. Это было очень обнадеживающе. Когда мы вернулись в Европу, мы начали исследовать эти данные более детально. Это было похоже на глубоководную рыбалку . Каждая новая находка вызывала всплеск восторга и споров ”, --говорит Ролан Бекон (Roland Bacon) из Лионского центра астрофизических исследований (Франция , CNRS), научный руководитель проекта MUSE и глава комиссии по приемке инструмента в эксплуатацию.


Элементом изображения HDF-S, получаемого приемником MUSE, является не только пиксель полевого изображения, но еще и спектр, то есть информацию об интенсивности излучения в этой точке в различных цветовых полосах. В целом в поле приемника оказывается около 90 000 спектров . Используя эту информацию, можно определить расстояние, химический состав и внутренние движения сотен удаленных галактик, а также зарегистрировать небольшое количество очень слабых звезд, принадлежащих Млечному Пути.


Несмотря на то, что общее время экспозиции с MUSE было гораздо меньше, чем у снимков, полученных с телескопом Хаббла, полученные данные позволили выявить на HDF-S более двадцати очень слабых объектов, которых Космический телескоп не зарегистрировал .


Самый волнующий момент был, когда мы обнаружили на нашем снимке очень слабые галактики, которых на самых глубоких изображениях, полученных с телескопом Хаббла, вообще не было. После стольких лет напряженной работы по созданию этого приемника я увидел, как наши мечты становятся явью. Это был незабываемый момент ”, -- признается Ролан Бекон.


Тщательно исследовав все спектры, полученные при наблюдениях площадки HDF-S с инструментом MUSE, группа измерила расстояния до 189 галактик. Среди них есть несколько относительно близких, но некоторые из них видны такими, какими они были, когда Вселенной было менее одного миллиарда лет. В целом, благодаря MUSE количество объектов, до которых удалось измерить расстояния, выросло более, чем в десять раз.


Для близких галактик MUSE может даже измерить распределение физических параметров по различным частям галактики. Так можно, например, детально исследовать особенности вращения галактики. Эти измерения помогают понять, как галактики эволюционируют в космической шкале времени.


Теперь, когда нам удалось продемонстрировать уникальные качества приемника MUSE для изучения дальней Вселенной, мы собираемся заняться и другими глубокими полями, например, Hubble Ultra Deep field . Мы сможем исследовать тысячи галактик и открыть новые крайне слабые и исключительно удаленные объекты. Эти маленькие новорожденные галактики, которые мы видим, проникая в прошлое более, чем на 10 миллиардов лет, постепенно вырастут и станут такими, как наша галактика Млечного Пути, какой мы видим ее сегодня ”, -- заключает Ролан Бекон.

Примечания

Каждый такой спектр покрывает интервал длин волн излучения от 375 до 930 нанометров, т.е. от голубых лучей до ближней инфракрасной области.


MUSE особенно чувствителен к объектам, которые излучают большую часть энергии на нескольких отдельных длинах волн. Именно такие спектры обычно присущи галактикам ранней Вселенной, так как они содержат водород, светящийся в определенных эмиссионных линиях под воздействием ультрафиолетового излучения молодых горячих звезд.

Узнать больше

Результаты исследования представлены в статье “The MUSE 3D view of the Hubble Deep Field South”, R. Bacon и др., которая выходит в журнале Astronomy & Astrophysics 26 февраля 2015 г.


Состав группы исследователей: R. Bacon (Observatoire de Lyon, CNRS, Université Lyon, Saint Genis Laval, France ), J. Brinchmann (Leiden Observatory, Leiden University, Leiden, The Netherlands ), J. Richard (Lyon), T. Contini (Institut de Recherche en Astrophysique et Planétologie, CNRS, Toulouse, France; Université de Toulouse, France ), A. Drake (Lyon), M. Franx (Leiden), S. Tacchella (ETH Zurich, Institute of Astronomy, Zurich, Switzerland ), J. Vernet (ESO, Garching, Germany), L. Wisotzki (Leibniz-Institut für Astrophysik Potsdam, Potsdam, Germany ), J. Blaizot (Lyon), N. Bouché (IRAP), R. Bouwens (Leiden), S. Cantalupo (ETH), C.M. Carollo (ETH), D. Carton (Leiden), J. Caruana (AIP), B. Clément (Lyon), S. Dreizler (Institut für Astrophysik, Universität Göttingen, Göttingen, Germany ), B. Epinat (IRAP; Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, Marseille, France), B. Guiderdoni (Lyon), C. Herenz (AIP), T.-O. Husser (AIG), S. Kamann (AIG), J. Kerutt (AIP), W. Kollatschny (AIG), D. Krajnovic (AIP), S. Lilly (ETH), T. Martinsson (Leiden), L. Michel-Dansac (Lyon), V. Patricio (Lyon), J. Schaye (Leiden), M. Shirazi (ETH), K. Soto (ETH), G. Soucail (IRAP), M. Steinmetz (AIP), T. Urrutia (AIP), P. Weilbacher (AIP) и T. de Zeeuw (ESO, Garching, Germany; Leiden).

Ссылки

Перевод пресс-релиза ESO eso1507
В глубинах Вселенной

Вселенная

В безлунные ночи на небе хорошо видна туманная полоса Млечного Пути. Но это не скопление туманных масс, а множество звезд – наша звездная система Галактика. В Галактике по современным оценкам около 200 миллиардов звезд. Чтобы пересечь её из конца в конец световой луч при скорости 300 тысяч километров в секунду должен затратить около 100 тысяч лет1.

Однако, несмотря на столь грандиозные размеры, наша Галактика лишь один из множества подобных звездных островов Вселенной. У неё есть спутники. Самые крупные из них – Большое и Малое Магеллановы Облака. Вместе с нашей Галактикой они обращаются вокруг общего центра масс. Наша Галактика, Магеллановы Облака и еще несколько звездных систем, в том числе знаменитая туманность Андромеды, образуют так называемую Местную Группу Галактик.

Современным телескопам и радиотелескопам, а также другим средствам астрономических исследований доступна колоссальная область пространства. Её радиус 10-12 миллиардов световых лет. В этой области расположены миллиарды галактик. Это – Метагалактика.

^ В расширяющейся метагалактике

Одной из самых ошеломляющих астрономических теорий, появившейся на свет в текущем столетии, бесспорно, можно считать теорию «расширяющейся Вселенной» или, точнее говоря, расширяющейся Метагалактики.

Главная идея этой теории состоит в том, что Метагалактика возникла около 15-20 миллиардов2 лет назад в результате грандиозного космического взрыва компактного сгустка сверхплотной материи.

^ Несколько слов о том, как родилась эта теория

Одним из самых эффективных методов изучения Вселенной является построение различных теоретических моделей, т. е. упрощенных теоретических схем мироздания. Длительное время в космологии изучались так называемые однородные изотропные модели. Что это значит?

Вообразим, что мы разбили Вселенную на множество «элементарных» областей и что каждая из них содержит большое количество галактик. Тогда однородность и изотропия означают, что свойства и поведение Вселенной в каждую эпоху одинаковы во всех достаточно больших областях и по всем направлениям.

Первую модель однородной изотропной Вселенной предложил А. Эйнштейн. Она описывала так называемую стационарную Вселенную, т. е. такую Вселенную, которая с течением времени не меняется в общих чертах, но в которой вообще нет каких-либо движений достаточно крупного масштаба.

Однако в 1922 г. талантливый ленинградский ученый А. А. Фридман показал, что уравнения Эйнштейна допускают также множество нестационарных, а именно расширяющихся и сжимающихся, однородных изотропных моделей. Позднее выяснилось, что, и статическая модель Эйнштейна неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная обязательно должна либо расширяться, либо сжиматься.

Еще до этого американский астроном Слайфер обнаружил красное смещение спектральных линий в спектрах галактик. Подобное явление, известное в физике под названием эффекта Доплера, наблюдается в тех случаях, когда расстояние между источником света и приемником увеличивается.

^ Вселенная в гамма-лучах

Как известно, на протяжении весьма длительного времени астрономия была чисто «оптической»1 наукой. Человек изучал на небе то, что он видел – сперва невооружённым глазом, а затем с помощью телескопов. С развитием радиотехники родилась радиоастрономия, значительно расширившая наши знания о Вселенной. Наконец, в последние годы в результате появления космических средств исследования возникла возможность изучения и других электромагнитных вестников Вселенной – инфракрасных, ультрафиолетовых, рентгеновских и гамма-излучений. Астрономия превратилась во всеволновую науку.

Одним из новых методов исследования космических объектов является рентгеновская астрономия. Несмотря на то, что этот метод сравнительно молод, в настоящее время Вселенную уже невозможно представить себе без тех данных, которые получены благодаря наблюдениям в рентгеновском диапазоне.

Пожалуй, ещё более многообещающим источником космической информации являются гамма-излучения. Дело в том, что энергия гамма-квантов может в сотни тысяч и миллионы раз превосходить энергию фотонов видимого света. Для таких гамма-квантов Вселенная фактически прозрачна. Они распространяются практически прямолинейно, приходят к нам от весьма удалённых объектов и могут сообщить чрезвычайно ценные сведения о многих физических процессах, протекающих в космосе.

Особенно важную информацию гамма-кванты способны принести о необычайных, экстремальных состояниях материи во Вселенной, а именно такие состояния интересуют современных астрофизиков в первую очередь. Так, например, гамма-излучение возникает при взаимодействии вещества и антивещества, а также там, где происходит рождение космических лучей – потоков частиц высоких энергий.

Главная трудность гамма-наблюдений Вселенной заключается в том, что хотя энергия космических гамма-квантов и очень велика, но число этих квантов в околоземном пространстве ничтожно мало. Современные гамма-телескопы даже от самых ярких гамма-источников регистрируют примерно один квант за несколько минут.

Значительные трудности возникают и вследствие того, что первичное космическое излучение приходится изучать на фоне многочисленных помех. Под действием заряжённых частиц космических лучей, приходящих на Землю, – протонов и электронов, начинают ярко «светиться» в гамма-диапазоне и земная атмосфера, и конструкции космического аппарата, на борту которого установлена регистрирующая аппаратура.

Как же выглядит Вселенная в гамма-лучах? Представьте себе на минуту, что ваши глаза чувствительны не к видимому свету, а к гамма-квантам. Какая картина предстала перед нами? Взглянув на небо, мы не увидели бы ни Солнца, ни привычных созвездий, а Млечный Путь выглядел бы узкой светящейся полосой. Кстати, подобное распределение галактического гамма-излучения подтвердило предположение, высказанное в своё время известным советским физиком академиком В. Л. Гинзбургом о том, что космические лучи имеют в основном галактическое, а не внегалактическое происхождение.

В настоящее время с помощью гамма-телескопов, установленных на космических аппаратах, зарегистрировано несколько десятков источников космического гамма-излучения. Пока ещё нельзя точно сказать, что они собой представляют, – звёзды ли это или другие компактные объекты, или, может быть, протяжённые образования. Есть основания предполагать, что гамма-излучение возникает при нестационарных, взрывных явлениях. К числу таких явлений относятся, например, вспышки сверхновых звёзд. Однако при обследовании 88 известных остатков сверхновых было обнаружено только два источника гамма-излучения.

^ Судьба одной гипотезы

У планеты Марс есть два маленьких спутника – Фобос и Деймос. Деймос обращается по орбите, удаленной от планеты примерно на 23 тыс. км, а Фобос движется на расстоянии всего около 9 тыс. км от Марса. Вспомним, что Луна удалена от нас на 385 тыс. км, т.е. находится в 40 с лишним раз дальше от Земли, чем Фобос от Марса.

Вся история изучения Фобоса и Деймоса полна удивительных событий и увлекательных загадок. Судите сами: первое напоминание о наличии у Марса двух небольших спутников появилось не в научных трудах, а на страницах знаменитых «Путешествий Гулливера», написанных Джонатаном Свифтом в начале 18 столетия.

По ходу событий Гулливер оказывается на летучем острове Лапуте. И местные астрономы рассказывают ему, что им удалось открыть два маленьких спутника, обращающихся вокруг Марса.

В действительности же марсианские луны были открыты А.Холлом лишь спустя полтора столетия после выхода романа в свет, во время великого противостояния Марса 1877 г. И открыты при исключительно благоприятных атмосферных условиях после упорных многодневных наблюдений, на пределе возможностей инструмента и человеческих глаз.

Сейчас можно только гадать, что побудило Свифта предсказать существование двух спутников Марса. Во всяком случае, не телескопические наблюдения. Скорее всего, Свифт предполагал, что число спутников у планет должно возрастать по мере удаления от Солнца. В то время было известно, что у Венеры спутников нет, вокруг Земли обращается один спутник – Луна, а вокруг Юпитера – четыре, они были открыты Галилеем в 1610 г. Получалось «очевидная» геометрическая прогрессия, в которую на свободное место, соответствующее Марсу, казалось, сама собой просилась двойка.

Впрочем, Свифт предсказал не только существование Фобоса и Деймоса, но и то, что радиус орбиты ближайшего спутника Марса равен трем поперечником планеты, а внешнего – пяти. Три поперечника – это около20 тысяч км. Примерно на таком расстоянии расположена орбита Деймоса. Правда, не внутреннего спутника, как утверждал Свифт, а внешнего – но все равно совпадение впечатляет. Разумеется, именно совпадение

В очередной раз очередной раз внимание к марсианским лунам было привлечено во второй половине текущего столетия. Сравнивая результаты наблюдений, проведенных в разные годы, астрономы пришли к выводу, что ближайший спутник Марса Фобос испытывает торможение, благодаря которому постепенно приближается к поверхности планеты. Явление выглядело загадочно. Во всяком случае, никакими эффектами небесной механики наблюдаемое торможение объяснить не удалось.

^ Черные дыры во вселенной

В последние годы большую популярность в астрофизике приобрела гипотеза так называемых черных дыр.

Двадцатый век принес с собой целый ряд удивительных открытий в физике и астрономии. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений, еще более поразительных. Таков закономерный путь развития естествознания.

Один из самых диковинных, правда, пока еще «теоретических» космических объектов, который в последние годы привлекает особое внимание физиков и астрофизиков, – черные дыры. Одно название чего стоит: дыры во Вселенной да еще черные!

Согласно общей теории относительности Эйнштейна, силы тяготения непосредственно связаны со свойствами пространства. Любое тело не просто существует в пространстве само по себе, но определяет его геометрию. Однажды какой-то предприимчивый репортер обратился к Эйнштейну с просьбой изложить суть его теории в одной фразе и так, чтобы это было понятно широкой публике. «Раньше полагали, – ответил на это Эйнштейн, – что если бы из Вселенной исчезла вся материя, то пространство и время сохранилось бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время».

Любые массы искривляют окружающее пространство. В повседневной жизни мы этой искривленности практически не ощущаем, поскольку нам обычно приходится иметь дело со сравнительно небольшими массами. Однако в очень сильных полях тяготения этот эффект может приобретать существенное значение.

За последние годы во Вселенной обнаружен целый ряд явлений, которые свидетельствуют о возможности концентрации огромных масс в сравнительно небольших областях пространства.

Если некоторая масса вещества окажется в малом объеме, критическом для данной массы, то под действием собственного тяготения это вещество начинает сжиматься. Наступает своеобразная гравитационная катастрофа – гравитационный коллапс.

1 Эти данные получены

2 Это основная идея

1 Это известно далеко не всем




Россия отмечает День космонавтики! 12 апреля года исполняется 50 лет со дня полета первого человека в космос. На корабле "Восток" стартовал первопроходец Вселенной Юрий Гагарин Мы будем помнить В знак признанья Первопроходцев мирозданья – Тех, кто ушел дорогой млечной. Но в нашей памяти навечно! Анатолий Щербаков




КОНСТАНТИН ЭДУАРДОВИЧ ЦИОЛКОВСКИЙ () КОНСТАНТИН ЭДУАРДОВИЧ ЦИОЛКОВСКИЙ () «Ракета для меня только способ, только метод проникновения в глубину космоса, но отнюдь не самоцель... Будет иной способ передвижения в космосе, приму и его… Вся суть в переселении с Земли и в заселении космоса». Из этого высказывания К. Э. Циолковского следует важный вывод «Вселенная принадлежит человеку!» Из этого высказывания К. Э. Циолковского следует важный вывод «Вселенная принадлежит человеку!»


Планета есть колыбель разума, но нельзя вечно жить в колыбели. (Циолковский К.Э.) Планета есть колыбель разума, но нельзя вечно жить в колыбели. (Циолковский К.Э.) После своего первого в мире триумфального полета в космос Ю. А.Гагарин сказал: «Для нас, космонавтов, пророческие слова Циолковского об освоении космоса всегда будут программными, всегда будут звать вперед...» Памятник К.Э.Циолковскому – у обелиска "Космос" возле ВВЦ-1964г.


«Главный конструктор» (С.П. Королев) и «Главный теоретик» (М.В. Келдыш) М.В.Келдыш () С.П.Королев()


Спутником называли первый космический аппарат, который был выведен на околоземную орбиту 4 октября 1957 года.. Спутником называли первый космический аппарат, который был выведен на околоземную орбиту 4 октября 1957 года.. Первый искусственный спутник Земли представлял собой шар, диаметром 58 см и массой 83,6 кг, с установленными на нем антеннами (их было 4, длиной 2,4 м и 2,9 м).




Первый ИСЗ с животным ("Спутник-2" с собакой Лайкой). Памятник первой собаке, полетевшей в космос.


В начале марта 1960 года были определены 20 космонавтов из 250 кандидатов: летчиков – истребителей. Юрий Гагарин будет вспоминать о тех, кому суждено было войти в отряд космонавтов: "Славные подобрались у нас ребята... Есть одно, что роднит всех - это стремление стать настоящим летчиком, космонавтом. Космос зовет всех! И будет звать. Как вечный зов ". Юрий Гагарин будет вспоминать о тех, кому суждено было войти в отряд космонавтов: "Славные подобрались у нас ребята... Есть одно, что роднит всех - это стремление стать настоящим летчиком, космонавтом. Космос зовет всех! И будет звать. Как вечный зов ".




Порядковый номер: 1 Количество полетов: 1 Позывной: «Кедр» Налет: 000 суток, 01 час, 48 минут -108минут Космический корабль "ВОСТОК" Ю.Гагарин ()


Обращаясь ко всем жителям Земли перед стартом 12 апреля 1961 года Юрий Алексеевич Гагарин сказал: «Дорогие друзья, близкие и незнакомые, соотечественники, люди всех стран и континентов! Через несколько минут могучий космический корабль унесет меня в далекие просторы Вселенной....Вся моя жизнь кажется мне сейчас одним прекрасным мгновением. …Быть первым в космосе, вступить один на один в небывалый поединок с природой - можно ли мечтать о большем! Но вслед за этим я подумал о той колоссальной ответственности, которая легла на меня. Первым совершить то, о чем мечтали поколения людей, первым проложить дорогу человечеству в космос. Счастлив ли я, отправляясь в космический полет! Конечно, счастлив. Ведь во все времена и эпохи для людей было высшим счастьем участвовать в новых открытиях!»


Ему было всего 34 года... Ему было всего 34 года... Трагически погиб 27 марта Трагически погиб 27 марта 1968 года в авиационной катастрофе вблизи деревни Новоселово Киржачского района Владимирской области при выполнении тренировочного полета на самолете. Похоронен У Кремлевской стены на Красной площади в Москве.



«... Не вечен человек. Но память о нем может стать вечной, если он жил для людей. Память благодарность живых». (В. Гагарина из кн. «108 минут и вся жизнь») Пророчески звучат слова Алексея Суркова: Пророчески звучат слова Алексея Суркова: И навсегда останется нетленной Среди племен, живущих на Земле. Среди племен, живущих на Земле. Любовь к тому, кто на простор Вселенной Любовь к тому, кто на простор Вселенной Ушел с Земли на первом корабле. Ушел с Земли на первом корабле.


Полет, поразивший мир Герман Титов 6-7 августа 1961 года совершил первый длительный полет в космос. «Подвиг Юрия Алексеевича Гагарина сравним с подвигом Колумба. Подвиг Титова не сравним ни с чем, что до сего знала история человечества.» /Мстислав Келдыш, академик/






Новые корабли«Союз» Корабли «Восток» и «Восход» выполняли ограниченный круг научно- технических задач, главным образом экспериментально- исследовательских. Новые космические корабли серии «Союз» были предназначены для относительно длительных полетов, маневрирования, сближения и стыковки на околоземных орбитах. Новые космические корабли серии «Союз» были предназначены для относительно длительных полетов, маневрирования, сближения и стыковки на околоземных орбитах.




С танци я «Мир» была запущена 19 февраля (станция сведена с орбиты) Станция «Мир» и пристыкованный к ней «Шаттл»-1995г.









Космонавтика жизненно необходима всему человечеству Космонавтика нужна науке - она грандиозный и могучий инструмент изучения Вселенной, Земли, самого человека. С каждым днем все более расширяется сфера прикладного использования космонавтики. Служба погоды, навигация, спасение людей и спасение лесов, всемирное телевидение, всеобъемлющая связь, сверхчистые лекарства и полупроводники с орбиты, самая передовая технология - это уже и сегодняшний день, и очень близкий завтрашний день космонавтики. А впереди - электростанции в космосе, удаление вредных производств с поверхности планеты, заводы на околоземной орбите и Луне. И многое- многое другое. По сути дела, изучая Космос, изучая строение звезд и планет, мы ищем ответ на извечный вопрос, волнующий человечество не одно столетие: «Кто мы и откуда?» Возможно, что ответ действительно скрыт от нас где-то в недрах Вселенной. И однажды случится чудо. Кто-нибудь и когда-нибудь прочтет эти таинственные знаки Бытия.








1. Что означает слово "космос "? Вселенная Небо Небо Планета Планета