Основы образовательной робототехники. Где обучиться робототехнике

В российских образовательных программах робототехника приобретает все большее значение. Учащиеся российских школ вовлечены в проектирование и программирование робототехнических устройств, с применением LEGO-роботов, промышленных роботов, специальных роботов для МЧС России

Скачать:


Предварительный просмотр:

Робототехника в образовании

Мерзликина Н.В.

Современную жизнь очень сложно представить без использования информационных технологий. Интенсивный переход к информатизации общества обуславливает все более глубокое внедрение информационных технологий в различные области человеческой деятельности. В ноябре 2015 года состоялось заседание комиссии по развитию информационного общества в Совет Федерации. Одной из рассматриваемых на заседании тем стало развитие образовательной робототехники.

В российских образовательных программах робототехника приобретает все большее значение. Учащиеся российских школ вовлечены в проектирование и программирование робототехнических устройств, с применением LEGO-роботов, промышленных роботов, специальных роботов для МЧС России.

Робототехника – это прикладная наука, занимающаяся разработкой автоматизированных технических систем. Она опирается на такие дисциплины как электроника, механика, программирование. Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта.

Образовательная робототехника – это инструмент, закладывающий прочные основы системного мышления, интеграция информатики, математики, физики, черчения, технологии, естественных наук с развитием инженерного творчества.

Внедрение технологий образовательной робототехники в учебный процесс способствует формированию личностных, регулятивных, коммуникативных и познавательных универсальных учебных действий, являющихся важной составляющей ФГОС.

На сегодняшний день существуют различные точки зрения по вопросу образовательной робототехники. Вот как это вопрос раскрывает Аркадий Семенович Ющенко - доктор технических наук, профессор, зав.кафедрой Московского государственного технического университета имени Н.Э. Баумана: «Робототехник – это тот, кто может соединить механическую, силовую, компьютерную части (и работу этих специалистов) воедино. Но когда я сталкиваюсь с робототехникой в школе, то для меня это просто вид развивающего учебного оборудования, которое используется для того, чтобы школьнику лучше усвоить знания школьной программы и получить необходимые дополнительные навыки.»

Владислав Николаевич Халамов, директор учебно-методического центра образовательной робототехники: «Робототехника – универсальный инструмент для общего образования. Робототехника идеально вписывается и в дополнительное образование, и во внеурочную деятельность, и в преподавание предметов школьной программы, причем в четком соответствии с требованиями ФГОС. Она подходит для всех возрастов – от дошкольников до студентов. А использование робототехнического оборудования на уроках – это и обучение, и техническое творчество одновременно, что способствует воспитанию активных, увлеченных своим делом людей, обладающих инженерно-конструкторским мышлением.»

До 60-х годов прошлого века к робототехнике относились исключительно как к выдумке писателей-фантастов, чему, несомненно, способствовало и то, что сам термин «робот» был придуман Карелом Чапеком и его братом Йозефом (термин был впервые использован в пьесе К. Чапека «Россумские универсальные роботы», 1921 год).

Инженерно-техническая направленность использования образовательной робототехники служит блестящей возможностью ребенку проявить свои знания в области инженерно-технической мысли путем быстрого (мобильного) создания конструкторов с использованием простых и сложных инженерных механизмов и технических решений. В настоящее время в образовании применяют различные робототехнические комплексы, например, LEGO Education, FischerTechnik, Mechatronics Control Kit, Festo Didactic и другие.

Одним из важных аспектов стимулирования детей к самостоятельному развитию творческой мыслительной деятельности и поддержанию интереса к техническому обучению является их участие в конкурсах, олимпиадах, конференциях и фестивалях технической направленности. Существует целая система соревнований по робототехнике разного уровня: региональные, межрегиональные, всероссийские, международные.

Образовательная робототехника в последнее время развивается со скоростью света, внедряется во все сферы жизни, как компьютеры в 80-е годы прошлого столетия. Сегодня образовательная робототехника дает возможность на ранних шагах выявить технические наклонности учащихся и развивать их в этом направлении. Такое понимание робототехники позволяет выстроить модель преемственного обучения для всех возрастов – от воспитанников детского сада до студентов. Одной из важных особенностей работы с образовательной робототехникой должно стать создание непрерывной системы - робототехника должна работать на развитие технического творчества, воспитание будущего инженера, начиная с детского сада и до момента получения профессии и даже выхода на производство.

Данный материал написан Халамовым Владиславом Николаевичем, по его просьбе публикую данный пост.

Уважаемые коллеги!
К вам обращается директор учебно-методического центра образовательной робототехники. Наш центр объединяет преподавателей дошкольного, общего, дополнительного, профессионального образования, руководителей ресурсных центров по робототехнике, которые ведут научно-методические разработки в области применения образовательной робототехники в предметной среде.
Как специалист, стоящий у истоков образовательной робототехники в ноябре 2015 года я был приглашен на заседание комиссии по развитию информационного общества в Совет Федерации. Одной из рассматриваемых на заседании тем стало развитие образовательной робототехники. Несмотря на популярность этого направления, оказалось много вопросов, которые еще предстоит решить. В своей статье я сделал попытку рассмотреть их с точки зрения профессионального сообщества педагогов.

Мы хотим узнать мнение педагогов, ученых и всех, кому интересна образовательная робототехника по поводу обсуждаемых на заседании комитета Совета Федерации вопросов, и приглашаем их к диалогу и обмену опытом.

С уважением, Владислав Николаевич Халамов
Тел: +79823419526

Что такое образовательная робототехника? Мнения экспертов комиссии Совета Федерации

В СоветеФедераций состоялось заседание комиссии по развитию информационного общества.
На заседание комиссии были приглашены представители регионов, вузов, Министерства образования и науки РФ, Программы «Робототехника» Фонда «Вольное дело», других заинтересованных структур.
На повестку дня были поставлены три вопроса:

Так что же такое «образовательная робототехника»?
Чем она отличается от обычной робототехники?

Этот вопрос полностью раскрыл Аркадий Семенович Ющенко - доктор технических наук, профессор, зав.кафедрой Московского государственного технического университета имени Н.Э. Баумана. Он рассказал, что робототехникой занимается много лет.

Для меня робот состоит из нескольких частей, каждую из которых обслуживают соответствующие специалисты, которых мы готовили всегда. Например, механическую часть – механики, силовую часть – электрики, компьютерную часть – электронщики и программисты. А робототехник – это тот, кто может соединить все эти части (и работу этих специалистов) воедино. Но когда я сталкиваюсь с робототехникой в школе, то для меня это просто вид развивающего учебного оборудования, которое используется для того, чтобы школьнику лучше усвоить знания школьной программы и получить необходимые дополнительные навыки.
-

Как специалист, стоящий у истоков образовательной робототехники, знающий этот вопрос изнутри, не могу не согласиться с этой точкой зрения.
От себя хочу отметить, что робототехника – это не некий абстрактный объект из категории «высочайших» технологий, доступный для понимания и освоения лишь избранным, как часто нам пытаются это представить. Напротив, это – универсальный инструмент для общего образования. Робототехника идеально вписывается и в дополнительное образование, и во внеурочную деятельность, и в преподавание предметов школьной программы, причем в четком соответствии с требованиями ФГОС. Она подходит для всех возрастов – от дошкольников до студентов.

А использование робототехнического оборудования на уроках – это и обучение, и техническое творчество одновременно, что способствует воспитанию активных, увлеченных своим делом людей, обладающих инженерно-конструкторским мышлением.

Образовательная робототехника дает возможность на ранних шагах выявить технические наклонности учащихся и развивать их в этом направлении.

Такое понимание робототехники позволяет выстроить модель преемственного обучения для всех возрастов – от воспитанников детского сада до студентов.

Подобная преемственность становится жизненно необходимой в рамках решения задач подготовки инженерных кадров. Ведь по данным педагогов и социологов, ребенок, который не познакомился с основами конструкторской деятельности до 7-8 лет – в большинстве случаев не свяжет свою будущую профессию с техникой.

Однако, реализация модели технологического образования требует соответствующих методик. И каждая из них должна соответствовать своему возрасту.

Мой многолетний опыт практической работы с коллективами профессионалов в области дошкольного, общего, профессионального и дополнительного образования позволил выстроить целостную образовательную систему, базирующуюся на принципах преемственности и развивающего обучения.

Для дошкольников – это пропедевтика, подготовка к школе с учетом требований ФГОС. Это своего рода подготовительный курс к занятиям техническим творчеством в школьном возрасте. Основа любого творчества – детская непосредственность. Взрослые знают, как нельзя, как правильно. С такими установками нет творчества. Для нас важно начинать занятия в том возрасте, в котором ребенку еще не успели объяснить почему так нельзя. Дети ощущают потребность творить гораздо острее взрослых и важно поощрять эту потребность всеми силами. Психологам и педагогам давно известно, что техническое творчество детей улучшает пространственное мышление и очень помогает в дальнейшем при освоении геометрии и инженерного дела. Не говоря уже о том, что на фоне таких интересных занятий видео игры и смартфоны теряют свою привлекательность в детских глазах.

Работа в школе направлена на формирование заинтересованности школьника в исследовании физических свойств предметов, разнообразных явлений окружающего мира, в получении технического образования.

Объединить теорию и практику возможно, если использовать образовательную робототехнику при изучении различных предметов.
В начальных классах образовательную робототехнику с успехом можно применять на уроках окружающего мира, математики, технологии, что, обеспечит существенное воздействие на развитие у учащихся речи и познавательных процессов (сенсорное развитие, развитие мышления, внимания, памяти, воображения), а также эмоциональной сферы и творческих способностей.

В средней и старшей школе учащиеся не только и не столько занимаются робототехникой, сколько используют ее, как некий интерактивный элемент, с помощью которого теоретические знания легко закрепляются на практике. Образовательную робототехнику можно использовать как на уроках математики, информатики, физики и технологии, так и химии, астрономии, биологии, экологии.

Учебно-методическим центром РАОР разработаны лабораторные практикумы по физике, информатике, технологии для учащихся 6-9 классов, которые позволят закрепить пройденный материал по естественным дисциплинам и получить дополнительные знания по определенным темам.
В лабораторный практикум входят сборник практических заданий и методические рекомендации для педагогов.

Переходя на ступень профессионального образования, школьник благодаря образовательной робототехнике, как правило, уже сделал свой профессиональный выбор. Встраивание робототехники в образовательный процесс учреждений профессионального образования помогает подростку не просто развивать в себе технические наклонности, на этом этапе происходит понимание сути выбранной профессии. Робототехника позволяет реализовать уже профессиональные знания через моделирование, конструирование и программирование, примеры подобной практики представлены на портале образовательной робототехники www.фгос-игра.рф .

Для ряда специальностей Учебно-методическим центром РАОР разработаны типовые модули: «Цифровые технологии», «Робототехника», «Радиоэлектроника».

Главной целью на ступени профессионального образования становится обеспечение взаимодействия образования, науки и производства.
Что касается организации внешкольного или, так называемого, неформального образования, то и здесь образовательная робототехника занимает достойное место. Школьники могут заниматься в творческих объединениях, на факультативах, посещать занятия на базе учреждений дополнительного образования. Формы работы могут быть разнообразными: общеразвивающие занятия для ребят начального и среднего звена; проектно-исследовательская деятельность в научных обществах для старшеклассников, и многое другое.

Организация объединений по робототехнике позволяет решить целый спектр задач, в том числе привлечение детей группы риска, создание условий для самовыражения подростка, создание для всех детей ситуации успеха, ведь робототехника - это еще и способ организации досуга детей и подростков с использованием современных информационных технологий.

Кроме того, благодаря использованию образовательных конструкторов мы можем выявить одаренных детей, стимулировать их интерес и развитие навыков практического решения актуальных образовательных задач.

Одним из важных аспектов стимулирования детей к самостоятельному развитию творческой мыслительной деятельности и поддержанию интереса к техническому творчеству является их участие в конкурсах, олимпиадах, конференциях и фестивалях технической направленности.
Существует целая система соревнований по робототехнике разного уровня: региональные, межрегиональные, всероссийские, международные.
Для ориентации детей на реальный сектор экономики, в целях воспитания будущих рабочих кадров, создана уникальная линейка соревнований ИКаР (Инженерные кадры России) для детей и подростков. Самым маленьким участникам соревнований – 4-5 лет.
Такие соревнования отличаются от других конкурсных мероприятий по нескольким параметрам:

Зрелищность: ребенок видит положительную работу своих сверстников, передовые инженерно-технические достижения, новые решения в области робототехники. Причем не достижения вообще, а связанные с конкретным производством.
Состязательность: позволяет выявить наиболее подготовленную команду, способную оперативно решить поставленную тренером (организатором) задачу.
Азартность: стремление детей к лидерству, быстрому решению поставленной задачи как нельзя лучше проявляется во время соревнований по робототехнике.

А самое главное – они не привязаны к конкретному конструктору или производителю. На наших соревнованиях можно использовать роботы, собранные из любых конструкторов или из отдельных деталей.
Заседание комиссии в Совете Федерации подтвердило, что пора ставить новые задачи, позволяющие развивать робототехнику не точечно, а системно. Только так можно воспитать подготовленные инженерные кадры, начиная от знакомства с кубиками «Лего» в детском саду до получения профессии и необходимых компетенций.

Учебно-методический центр образовательной робототехники РАОР имеет большой опыт работы в сфере развития образовательной робототехники. Центром уже сегодня подготовлены уникальные методические пособия, рассчитанные на детей разных возрастов. В них учитывается взаимосвязь детского сада и начальной школы, общего и дополнительного образования, программ средней, старшей школы и среднего и высшего профобразования.

В помощь педагогам разработан комплект учебно-методической литературы, в который вошли: программы, конспекты занятий, раздаточный материал. Педагоги охотно делятся наработанным опытом по внедрению «образовательной робототехники».
Уважаемые коллеги и единомышленники! Все, кому интересна образовательная робототехника, и обсуждаемые на заседании комитета Совета Федерации вопросы - приглашаю к обсуждению и обмену опытом. Моя личная почта.

Робототехника в школе – это отличный способ для подготовки детей к современной жизни, наполненной высокими технологиями. Это необходимо, так как наша жизнь просто изобилует различной высокотехнологичной техникой. Ее знание открывает перед подрастающим поколением массу возможностей и сделает дальнейшее развитие технологий более быстрым.

Еще в 1980 году Лого Сеймур Пейпер, который является основоположником языка программирования, в своей книге предложил применять компьютеры для обучения детей. Пейпер в своем предложении основывался на естественной любознательности детей и средствах для ее удовлетворения. Ведь каждый ребенок – это архитектор, самостоятельно строящий структуру собственного интеллекта, а как вы уже догадались, любому архитектору необходим материал, при помощи которого все возводится. И именно окружающая среда и является тем самым материалом. И чем больше этих материалов, тем больше сможет достичь ребенок.

1. Зачем нужны курсы робототехники для детей?

Стоит обратить внимание на тот факт, что в повседневной жизни дома, в школе, в общественных учреждениях детей окружают самые разнообразные технические приспособления и устройства:

  • Компьютер;
  • Телевизор;
  • Автоматическая стиральная машинка;
  • Планшетные ПК;
  • Смартфоны, телефоны и многое другое.

Для детей, как и для многих взрослых, все эти устройства являются абсолютно неизведанными объектами, то есть каждый знает для чего нужно то или иное устройство, а также как им пользоваться, но принцип работы известен лишь немногим. Отсюда выходит вопрос, а нужно ли это вообще знать? Ответ – конечно же, и в первую очередь для того, чтобы обезопасить себя, а также продлить срок действия используемого устройства.

Также у многих может возникнуть вопрос, а причем здесь робототехника? Для того чтобы получить ответ, стоит понять, что такое робот. Это автоматизированный механизм, который имеет программу для выполнения той или иной функции. Другими словами обычную стиральную машинку автомат можно назвать роботом, который запрограммирован для стирки, полоскания и выжимания белья, причем для этого предусмотрены различные режимы.

Программа робототехники в школе позволяет детям ближе узнать о принципах работы таких устройств. Это позволит сделать детей более мобильными, подготовленными к внедрению различных инноваций в повседневную жизнь. При этом они смогут быть технически более грамотными. В теоретическом аспекте данного вопроса детям помогают такие предметы как физика, математика, информатика, химия и биология. А вот синтезатором таких наук, который способен развивать технический уровень грамотности подрастающего поколения, путем научно-практических исследований и творческих проектов является рабочая программа по робототехнике в школе.

1.1. Интерес детей к обучению

Стоит отметить, что благодаря любознательности детей курсы робототехники в школах вполне способны превратиться в наиболее интересный метод познания и изучения не только цифровых технологий и программирования, но также и всего окружающего мира, и даже самого себя.

При этом особенность данного предмета заключается в том, что дети постоянно сталкиваются с различной техникой не только в школе, но и дома, а также в повседневной жизни. Это существенно усиливает интерес к получению знаний и позволяет легче и быстрее усваивать информацию.

1.2. Основные проблемы программы робототехники в школе

При введении в школьную программу курсов робототехники в учебном процессе мы сталкиваемся с двумя главными проблемами:

  • Недостаточный уровень методических материалов;
  • Высокая стоимость одной единицы робототехнического конструктора. При этом стоит отметить, что в подавляющем большинстве случаев используются иностранные разработки.

На данный момент в программах робототехники в школе могут применяться различные специальные робототехнические комплексы, такие как Mechatronics Соntrol Kit, Festo Didасtiс, LEGO Мindstоrms и так далее. Однако можно выделить комплексы, пользующиеся наибольшим распространением в России. К ним относится следующее:

  • LEGO Мindstоrms. Это специальный конструктор нового поколения, который был представлен компанией Лего в 2006 году. Мозгом робототехнического конструктора является микрокомпьютер Лего. К его портам подключаются различные датчики, а также исполнительные устройства (механизмы). В зависимости от фантазии конструктора робота можно собрать в виде человека, машины, животного и так далее. При этом построенный механизм способен выполнять различные функции. Для того чтобы задать роботу поведение необходимо написать программу. Сделать это можно как при помощи самого микрокомпьютера, на котором предусмотрены клавиши, либо по средствам специального программного обеспечения на ПК.
  • Конструктор Fischertechnik. Данный конструктор является развивающим. Он подходит как для детей, так и для подростков и студентов. Такой конструктор позволяет создавать самых разнообразных роботов и задавать им программы при помощи компьютера.
  • Scratch Board.
  • Arduino.
  • Конструкторы УМКИ. Такие модули оснащены микропроцессором, а также наборами датчиков.

Все эти модули имеют достаточно высокую стоимость, что делает их менее доступными. Однако при этом они способны активно развивать детей во всех направлениях связанных робототехникой – мышление, логика, алгоритмические и вычислительные способности, а также исследовательские навыки и, самое главное, техническую грамотность.

2. Образовательная робототехника в начальной школе

Учитывая вышеуказанные проблемы, на данный момент программа робототехники в школе доступна все еще не везде. Однако даже без использования специальной техники, конструкторов и настоящих роботов в школьных программах по информатике и ИКТ стоит начать изучение введения в робототехнику. Это позволит ближе познакомить учеников с предметом, а также поможет в дальнейших шагах в данной сфере знаний. При этом достаточно провести всего лишь два занятия, после чего дети смогут самостоятельно заниматься робототехникой.

Основы робототехники для детей в начальной школе позволит понять ученикам, что такое робот и принцип его работы. Также детям будет интересно знать, что понятие «робот» было придумано писателем фантастом Карелом Чапеком в далеком 1920 году. Это основы робототехники, позволяющие окунуться в мир полный удивительных изобретений и высоких технологий, которые моментально возбуждают в детях огромный интерес к данной науке.

Кроме этого, основы робототехники помогут детям, выбравшим путь изучения роботов, в дальнейшем обучении.

Технологии не стоят на месте, они постоянно развиваются, и вполне возможно, что именно ваш ребенок или ученик сконструирует наноробота, который сможет лечить сложнейшие заболевания. Программа робототехники в школе – это огромный шаг к технологиям будущего, к развитию и совершенству технологий.

3. Мастер-класс по робототехнике: Видео



Оглавление

1. Введение 1

II .Теоретические аспекты включения робототехники в образовательное пространство 2

1.Актуальность введения в школе межпредметного курса «Основы робототехники» 2

2.«Основы робототехники» как межпредметный курс внедрения робототехники в образовательное пространство школы. 5

III .Содержание инновационного педагогического опыта работ 9

1. Анализ исходного состояния деятельности учителя на основе

выявления противоречий. 9

2.Цель опыта. 11

3.Объект опыта. 11

4.Предмет опыта. 11

5.Сущность опыта. 11

6.Конечный практический результат опыта. 12

7.Нормативная база опыта. 12

8.Новизна опыта. 12

9.Теоретическая значимость опыта. 13

10.Практическая значимость опыта. 13

11.Перспектива внедрения опыта. 13

12.Комплекс условий,обеспечивающий распространения опыта. 14

13.Индикаторы опыта. 14

IV .Методические аспекты внедрения робототехники в образовательное пространство школы 14

1. Теоретико-методологическая основа опыта. 14

2. Место робототехники в учебном плане школы 15

3. Формы и методы организации обучения 18

4. Методы обучения 18

5. Формы организации учебных занятий 20

6.Основные этапы разработки Лего- проекта 20

7. Структура образовательной робототехники 21

V .Результаты внедрения и обобщение опыта 22

VI .Заключение 24

VII .Литература 26

VIII .Приложения 27

    Введение.

Робототехника - прикладная наука, занимающаяся разработкой автоматизированных технических систем. Робототехника опирается на такие дисциплины как электроника, механика, программирование, физика.

Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. Человечество остро нуждается в роботах, которые могут без помощи оператора тушить пожары, самостоятельно передвигаться по заранее неизвестной, реальной пересеченной местности, выполнять спасательные операции во время стихийных бедствий, аварий атомных электростанций, в борьбе с терроризмом. Кроме того, по мере развития и совершенствования робототехнических устройств возникла необходимость в мобильных роботах, предназначенных для удовлетворения каждодневных потребностей людей: роботах – сиделках, роботах – нянечках, роботах – домработницах, роботах – всевозможных детских и взрослых игрушках и т.д. И уже сейчас в современном производстве и промышленности востребованы специалисты, обладающие знаниями в этой области. Начинать готовить таких специалистов нужно школе и с самого младшего возраста. Поэтому, образовательная робототехника в школе приобретает все большую значимость и актуальность в настоящее время.

II . Теоретические аспекты включения робототехники в образовательное пространство

    Актуальность введения в школе межпредметного курса «Основы робототехники».

«Уже в школе дети должны получить возможность раскрыть свои способности, подготовиться к жизни в высокотехнологичном конкурентном мире»

Д. А. Медведев

Первый человекоподобный рыцарь был предложен Леонардо да Винчи в 1495 г., в 1738 г. французский механик Жак де Вакансон создал первого андроида, а в 1921 году чешский писатель Карел Чапек придумал слово «робот».

Бурными темпами робототехника вошла в мир в середине XX века. Это было одно из самых передовых, престижных, дорогостоящих направлений машиностроения. Основой робототехники были техническая физика, электроника, измерительная техника и многие другие технические и научные дисциплины. В начале XXI века робототехника является одним из приоритетных направлений в сфере экономики, машиностроения, здравоохранения, военного дела и других направлений деятельности человека. На сегодняшний день человек незаметно окунулся в мир автоматики и робототехники. На улицах можно видеть шагающих роботов, технология позволила создать материалы для роботов – андроидов. В быту - сенсорная автоматика и робототехника. Поэтому специалисты, обладающие знаниями в этой области, востребованы. В России существует такая проблема: недостаточная обеспеченность инженерными кадрами и низкий статус инженерного образования. Поэтому необходимо вести популяризацию профессии инженера, ведь использование роботов в быту, на производстве и поле боя требует, чтобы пользователи обладали современными знаниями в области управления роботами. Как этого достичь? С чего начинать? Школа – это первая ступень, где можно закладывать начальные знания и навыки в области робототехники, прививать интерес учащихся к робототехнике и автоматизированным системам.

"Если ученик в школе не научился сам ничего творить,

то и в жизни он всегда будет только подражать, копировать,

так как мало таких, которые бы, научившись копировать,

умели сделать самостоятельное приложение этих сведений"

Л.Н.Толстой.

Несмотря на то, что Лев Толстой сказал эти слова в прошлом веке, они актуальны сегодня. Основная задача современного образования - создать среду, облегчающую ребёнку возможность раскрытия собственного потенциала. Это позволит ему свободно действовать, познавая эту среду, а через неё и окружающий мир. Новая роль педагога состоит в том, чтобы организовать и оборудовать соответствующую образовательную среду и побуждать ребёнка к познанию и к деятельности.

Образовательная среда ЛЕГО, объединяет в себе специально скомпонованные для занятий в группе комплекты ЛЕГО, тщательно продуманную систему заданий для детей и четко сформулированную образовательную концепцию.

Что такое ЛЕГО-конструирование ? Ещё одно веянье моды или требование времени? Лего-педагогика – одна из самых известных и распространённых ныне педагогических систем, широко использующая трёхмерные модели реального мира и предметно-игровую среду обучения и развития ребёнка. «Лего» в переводе с датского языка означает «умная игра». ЛЕГО конструктор побуждает работать, в равной степени, и голову, и руки учащегося. Конструктор помогает детям воплощать в жизнь свои задумки, строить и фантазировать, увлечённо работая и видя конечный результат. Именно ЛЕГО позволяет учиться играя и обучаться в игре. Введение элементов робототехники в школьные предметы позволит заинтересовать учащихся, разнообразить учебную деятельность, использовать групповые активные методы обучения, решать задачи практической направленности. Программирование реального робота поможет увидеть законы математики не на страницах тетради или учебника, а в окружающем мире. Использование конструкторов Lego Mindstorms NXT позволяет взглянуть на школьные предметы по-новому.

В этом мы видим актуальность введения в школе межпредметного курса «Основы робототехники».

Изучение робототехники создает предпосылки для социализации личности учащихся и обеспечивает возможность ее непрерывного технического образования, а освоение с помощью лего- наборов и других роботоконструкторов компьютерных технологий – это путь школьников к современным перспективным профессиям и успешной жизни в информационном обществе. Конечно же, занятия робототехникой не приведут к тому, что все дети захотят стать программистами и роботостроителями, инженерами, исследователями. В первую очередь занятия рассчитаны на общенаучную подготовку школьников, развитие их мышления, логики, математических способностей, исследовательских навыков.

    «Основы робототехники» как межпредметный курс внедрения робототехники в образовательное пространство школы.

LEGO® MINDSTORMS® Education – новое поколение образовательной робототехники, позволяющей изучать естественные науки (информатику, физику, химию, математику и др.) а также технологии (научно – технические достижения) в процессе увлекательных практических занятий. Наш курс межпредметный.

1. Физика Использование Лего-технологий в преподавании физики может проходить по следующим направлениям:

1. демонстрации;

2. фронтальные лабораторные работы и опыты;

3. исследовательская проектная деятельность.

Деятельность в данных направлениях отвечает требованиям Примерной программы по физике для основной школы, составленной на основе Фундаментального ядра содержания общего образования и Требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте общего образования второго поколения. Внедряя Лего-технологии в обучение, учитель получает возможность достижения следующих целей изучения физики:

развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;

понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними.

Достижение этих целей обеспечивается решением следующих задач:

знакомство учащихся с методом научного познания;

приобретение учащимися знаний о физических явлениях и физических величинах, характеризующих эти явления;

формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием Лего-конструкторов;

овладение учащимися такими общенаучными понятиями, как эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки.

Личностные результаты обучения физике с использованием Лего-технологий:

сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

самостоятельность в приобретении новых знаний и практических умений;

мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты внедрения Лего-конструирования в обучение физике:

овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием новых информационных технологий для решения познавательных задач;

освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

формирование умений работать в группе.

Например, на уроке изучения скорости движения тел можно использовать робот Валли или робот- пятиминутка.

2. Информатика. В содержании базовой дисциплины ―Информатика понятийный аппарат информатики предполагается разделить на три концентра:

Понятия, связанные с описанием информационного процесса;

Понятия, раскрывающие суть информационного моделирования;

Понятия, характеризующие применение информатики в различных областях, прежде всего: технологиях, управлении, социально-экономической сфере.

Для учителя информатики помимо содержания и количества часов, выделяемых на предмет, важна информация и о новых подходах в стандартах второго поколения - это деятельностный подход . Для этого подхода главным является вопрос, какие необходимы действия, которыми должен овладеть ученик, чтобы решать любые задачи. Иначе говоря, необходимо выделить универсальные действия, овладение которыми дает возможность

решать в неопределенных жизненных ситуациях разные классы задач. Таким образом, на первый план, наряду с общей грамотностью, выступают такие качества выпускника, как, например, разработка и проверка гипотез, умение работать в проектном режиме, инициативность в принятии решений и т.п. Эти способности востребованы в постиндустриальном обществе. Они и становятся одним из значимых ожидаемых результатов образования и предметом стандартизации. Одним из методических решений , позволяющим более интенсивно осваивать информатику и формировать ключевые компетенции учащихся, является использование конструктора Лего на уроках информатики. Главная идея состоит в том, чтобы через насыщение школьного пространства новыми технологиями изменить содержание учебно-воспитательного процесса, создать новую внутришкольную коммуникационную среду, попадая в которую учащийся и учитель был бы более успешен, более компетентен, более современен. Цель внедрения конструктора Лего на уроках информатики: научить учащихся самостоятельно мыслить, находить и решать проблемы, привлекая для этого знания из разных областей, уметь прогнозировать результаты и возможные последствия разных вариантов решения. Одной из основных задач является осуществление технологической подготовки учащихся. На уроках информатики с применением Лего в основной и старшей школе учащиеся могут разрабатывать проекты по интересующей их тематике, широко используя в своей работе межпредметные связи.

Пример использования робота на уроках информатики:

Раздел информатики: Информационные основы процессов управления -Примеры систем автоматического управления, неавтоматического управления, автоматизированных систем управления на основе конструктора Лего. Например, создать сначала управляемую с помощью вращения двигателя модель машины (автоматическую), а затем автоматизировать процесс при помощи системного блока NXT (RCX).

3.Технология. Использование образовательной робототехники в преподавании Технологии является не столько модным веянием, сколько действительной необходимостью, которая делает современную школу конкурентоспособной, а урок по-настоящему эффективным и продуктивным для всех участников образовательного процесса. Лего позволяет постигать взаимосвязь между различными областями знаний на основе смоделированных руками самого ребенка уменьшенных аналогий различных механических устройств. Интересные и несложные в сборке модели Лего дают ясное представление о работе механических конструкций, о силе, движении и скорости. Принцип обучения «шаг за шагом», являющийся ключевым для Лего, обеспечивает учащемуся возможность работать в собственном темпе.

Кроме того, все школьные наборы Лего предназначены для групповой работы, в результате чего учащиеся одновременно приобретают и навыки сотрудничества, и умение справляться с индивидуальными заданиями, составляющими часть общей задачи. Конструируя и добиваясь того, чтобы созданные модели работали, испытывая полученные конструкции, учащиеся получают возможность учиться на собственном опыте. Наиболее гармонично образовательная робототехника встраивается в такие разделы Технологии как «Машины и механизмы. Графическое представление и моделирование»:

Механизмы технологических машин;

Сборка моделей технологических машин из деталей конструктора по эскизам и чертежам;

Сборка моделей механических устройств автоматики по эскизам и чертежам. Электротехнические работы. - Устройства с элементами автоматики;

Электропривод;

Простые электронные устройства.

И так, наш курс позволит через эти предметы внедрить в образовательное пространство школы основ робототехники и определить роль робототехники в учебно-воспитательном процессе.

Тема «Робототехника и компьютер- это творчество»

апрель,2013

Республиканский конкурс «Лучшая программа компьютерного лагеря»

Тема « Робототехника и компьютер- это творчество»

Диплом 2 степени

Май,2013

Мастер-класс республиканского семинара «Лагерь компьютерных технологий:от идеи до воплощения»

Благодарственное письмо от РЦИ и ОКО

2013

Районная выставка-конференция инновационной деятельности педагогических и руководящих работников.

Тема выступления « Робототехника в школе»

Диплом участника

2014,

январь

Мастер- класс на районной конференции инновационной деятельности педагогических работников «Знание.Опыт.Исследование»

Тема «Робототехника»

Диплом участника конференции

Практико-исследовательская конференция «Ступени творчества-2014» при МКОУ ДО ДДТ.

Секция «Дети и техника»

1 место.( команда в составе Коротаева Никиты и Романова Дениса).

Летний лагерь общешкольный

Грамота за проведение лагеря по робототехнике

Республиканская олимпиада по образовательной робототехнике

3 место (команда в составе Штина Кости и Овчинникова Саши, 6 класс)

Прилагаются копии дипломов, благодарностей учителю(Приложение ).

Подводя итоги внедрения курса в образовательное пространство школы можно сказать, что повлекло за собой:

    Повышение заинтересованности предметом.

    Сформированность новых моделей учебной деятельности, в том числе Лего – технологию, использующих информационные и коммуникационные технологии.

    Сформированность информационной компетентности учащихся и учителя.

    Использование проектных и исследовательских методов обучения.

    Изученность языков программирования.

    Совершенствование системы работы с одаренными детьми на основе использования возможностей новых информационных технологий.

    разработка и внедрение курса «Образовательная робототехника» в образовательное пространство школы еще не окончены. Предстоит доработка методических и дидактических материалов элективного курса и для встраивания робототехники в курс информатики и ИКТ, физики, начальной школы.

    Создание условий, которые позволяют реализовать способности и интересы учащихся.

Описанные мероприятия способствовали освоению и соблюдению норм общения, поведения, общепринятых ценностей человеческого общества, созданию положительной мотивации и стремления к успеху, творчеству.

Результаты моей работы над курсом «Образовательная робототехника» рассмотрены на школьном, районном, республиканском и федеральном уровне.

VI . Заключение.

Привлечение школьников к исследованиям в области робототехники, обмену технической информацией и начальными инженерными знаниями, развитию новых научно-технических идей позволит создать необходимые условия для высокого качества образования, за счет использования в образовательном процессе новых педагогических подходов и применение новых информационных и коммуникационных технологий. Понимание феномена технологии, знание законов техники, позволит выпускнику школы соответствовать запросам времени и найти своё место в современной жизни. Для того, чтобы сегодня у ученика формировалась учебная успешность, нужно добиться, прежде всего, чтобы школьник осознавал, что учебная деятельность, которой он занят в данный момент в школе повлечет за собой успех в его дальнейшей деятельности. Процессы обучения и воспитания не сами по себе развивают человека, а лишь тогда, когда они имеют деятельностные формы и способствуют формированию тех или иных типов деятельности.

Есть много образовательных технологий развивающих критическое мышление и умение решать задачи, однако существует очень мало привлекательных образовательных сред, вдохновляющих следующее поколение к новаторству через науку, технологию, математику, поощряющих детей думать творчески, анализировать ситуацию, критически мыслить, применять свои навыки для решения проблем реального мира.

Робототехника в школе представляет учащимся технологии 21 века, способствует развитию их коммуникативных способностей, развивает навыки взаимодействия, самостоятельности при принятии решений, раскрывает их творческий потенциал. Ученики лучше понимают, когда они что-либо самостоятельно создают или изобретают. При проведении занятий и мероприятий по робототехнике этот факт не просто учитывается, а реально используется.

Однако данный курс не является чем–то однажды написанным и далее живущим в законченном виде. Он может видоизменяться из года в год, от урока к уроку, корректироваться, дописываться, иногда исчезать целыми фрагментами. Непрерывность модификации материалов этого курса – естественный процесс. Это требования времени, ведь информационные и компьютерные технологии, все, что с ними связано, переживают взрывообразное развитие. Поэтому изменения и дополнения в эти материалы вносятся, и будут вноситься, постоянно.

Тем не менее, данный курс это задуманный, сформированный и отрабатываемый на практике в учебном процессе. Это реальный опыт и его может использовать в своей работе любой преподаватель. Его можно использовать как руководство к собственному действию, опираясь на эти разработки, самостоятельно модифицировать курс под себя, свой инструментарий, свое видение, текущий момент.

В заключении отметим, что внедрение единой системы обучения основам робототехнике в школе будет являться важным этапом развития технических навыков и умений школьников. «Основы робототехники» в школе позволят привить интерес школьников к техническому творчеству, тем самым раскрыть таланты тех учеников, которые в дальнейшем могут стать первоклассными инженерами и технологами. Именно поэтому внедрение образовательной робототехники в школу - большой шаг в сторону начального инженерного образования и начальной профориентации.

VII .Литература:

    Беспалько В.П. Основы теории педагогических систем. - Воронеж: изд-во воронежского университета, 1977 г.

    Д.Г. Копосов. Первый шаг в робототехнику. Практикум для 5-6 классов.М.Бином, 2012

    Д.Г. Копосов. Первый шаг в робототехнику. Рабочая тетрадь по робототехнике. М.Бином,2012

    Интернет – ресурс .

Сообщество увлеченных робототехникой.

    Интернет – ресурс . Техническая

поддержка для роботов NXT .

    Интернет – ресурс . Современные

модели роботов . net . ru , Развитие технологического образования школьников средствами робототехники.

Копытова О.Г.Внедрение робототехники в образовательное пространство школы.Трехгорный,2010

Руководство «ПервоРобот NXT . Введение в робототехнику»

VIII. Приложения.

        1. Фотографии.



Внедрение робототехники в образовательное пространство школы


2014

Ефремов Виктор Петрович- учитель физики, технологии высшей категории

МОУ «Колесурская СОШ

МОУ «Колесурская СОШ»

Департамент образования и науки Тюменской области

Тюменский областной государственный институт

развития регионального образования

ОБРАЗОВАТЕЛЬНАЯ

РОБОТОТЕХНИКА
Методические рекомендации

Составитель:

Бояркина Ю.А., к.п.н., доцент кафедры естественно-математического образования ТОГИРРО

Образовательная робототехника.

Методическое пособие. / Составитель Бояркина Ю.А.-

Тюмень: ТОГИРРО, 2013

Данное пособие является методической помощью специалистам и педагогам образовательных учреждений, ведущим практическую деятельность по реализации образовательных программ в области образовательной робототехники.

В пособии рассматривается круг вопросов, связанных с использованием образовательной робототехники на уроках в начальной школе, основной и старшей школе в условиях введения ФГОС. Пособие содержит апробированные материалы, обобщающие опыт внедрения образовательной робототехники учебными заведениями Тюменской области.

Методическое пособие рекомендуется педагогическим работникам, реализующим программы общего образования в условиях введения ФГОС в образовательном учреждении, методистам, курирующим реализацию направления робототехники, слушателям курсов повышения квалификации, руководителям образовательных учреждений.

ГЛАВА I

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ РЕАЛИЗАЦИИ РОБОТОТЕХНИКИ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ ШКОЛЫ

Хороший инженер должен состоять из четырёх частей: на 25% - быть теоретиком; на 25% - художником, на 25% - экспериментатором и на 25% он должен быть изобретателем

П.Л.Капица

Уже в школе дети должны получить возможность
раскрыть свои способности, подготовиться к жизни
в высокотехнологичном конкурентном мире

Д. А. Медведев


    1. ВВЕДЕНИЕ

Робототехника - прикладная наука, занимающаяся разработкой автоматизированных технических систем. Робототехника опирается на такие дисциплины, как электроника, механика, программирование.

Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. На современном этапе в условиях введения ФГОС возникает необходимость в организации урочной и внеурочной деятельности, направленной на удовлетворение потребностей ребенка, требований социума в тех направлениях, которые способствуют реализации основных задач научно-технического прогресса. К таким современным направлениям в школе можно отнести робототехнику и робототехническое конструирование. В настоящий момент во многих образовательных учреждениях России и Тюменской области осуществляется попытка встроить в учебный процесс Lego робототехнику. Проводятся соревнования по робототехнике, учащиеся участвуют в различных конкурсах, в основе которых -использование новых научно-технических идей, обмен технической информацией и инженерными знаниями.

В современном обществе идет внедрение роботов в повседневную жизнь, очень многие процессы заменяются роботами. Сферы применения роботов различны: медицина, строительство, геодезия, метеорология и т.д. Очень многие процессы в жизни человек уже и не мыслит без робототехнических устройств (мобильных роботов): робот для всевозможных детских и взрослых игрушек, робот – сиделка, робот – нянечка, робот – домработница и т.д.

Специалисты, обладающие знаниями в области инженерной робототехники, в настоящее время достаточно востребованы. Благодаря этому вопрос внедрения робототехники в учебный процесс, начиная уже с начальной школы и далее на каждой ступени образования, включая ВУЗы, достаточно актуален. Если ребенок интересуется данной сферой с самого младшего возраста, он может открыть для себя много интересного и, что немаловажно, развить те умения, которые ему понадобятся для получения профессии в будущем. Поэтому внедрение робототехники в учебный процесс и внеурочное время приобретают все большую значимость и актуальность.

Целью использования Лего-конструирования в системе дополнительного образования - явля-ется овладение навыками начального технического конструирования, развитие мелкой моторики, изучение понятий конструкции и основных свойств (жесткости, прочности, устойчивости), навык взаимодействия в группе. В распоряжение детей предоставлены конструкторы, оснащенные микро-процессором и наборами датчиков. С их помощью школьник может запрограммировать робота - умную машинку на выполнение определенных функций.

Новые стандарты обучения обладают отличительной особенностью - ориентацией на резуль-таты образования, которые рассматриваются на основе системно - деятельностного подхода. Такую стратегию обучения помогает реализовать образовательная среда Лего.


Основное оборудование, используемое при обучении детей робототехнике в школах, - это ЛЕГО-конструкторы.

Конструкторы LEGO бывают различных видов, направленные на образование детей с учетом удовлетворения возрастных особенностей и потребностей ребенка.

Рассмотрим классификацию конструкторов , используемых в образовательных учрежде-ниях.


  1. WeDo – конструктор, предназначенный для детей от 7 до 11 лет. Позволяет строить модели машин и животных, программировать их действия и поведение.

  2. E - lab «Энергия, работа, мощность» - для детей от 8 лет. Знакомит учащихся с различными источниками энергии, способами ее преобразования и сохранения.

  3. E - lab «Возобновляемые источники энергии» - для детей от 8 лет. Знакомит учащихся с тремя основными возобновляемыми источниками энергии.

  4. «Технология и физика» - для детей от 8 лет. Позволяет изучить основные законы механики и теории магнетизма.

  5. «Пневматика» - для детей от 10 лет. Позволяет конструировать системы, в которых используется поток воздуха.

  6. LEGO Mindstorms «Индустрия развлечений. Перворобот» (RCX ) - это конструктор (набор сопрягаемых деталей и электронных блоков) для детей от 8 лет. Предназначен для создания программируемых роботизированных устройств.

  7. LEGO Mindstorms «Автоматизированные устройства. Перворобот» (RCX ) - для детей от 8 лет. Позволяет создать программируемые роботизированные устройства.

  8. LEGO Mindstorms «Перворобот» (NXT ) - для детей от 8 лет. Позволяет создавать как простые, так и достаточно сложные программируемые роботизированные устройства.
Все школьные наборы на основе LEGO ® -конструктора ПервоРобот RCX, NXT предназначены для того, чтобы ученики в основном работали группами. Поэтому учащиеся одновременно приобре-тают навыки сотрудничества и умение справляться с индивидуальными заданиями, составляющими часть общей задачи. В процессе конструирования добиваться того, чтобы созданные модели работа-ли и отвечали тем задачам, которые перед ними ставятся. Учащиеся получают возможность учиться на собственном опыте, проявлять творческий подход при решении поставленной задачи. Задания разной трудности учащиеся осваивают поэтапно. Основной принцип обучения «шаг за шагом», являющийся ключевым для LEGO®, обеспечивает учащемуся возможность работать в собственном темпе.

Конструкторы ПервоРобот NXT позволяют учителю самосовершенствоваться, брать новые идеи, привлечь и удержать внимание учащихся, организовать учебную деятельность, применяя различные предметы, и проводить интегрированные занятия. Дополнительные элементы, содержа-щиеся в каждом наборе конструкторов, позволяют учащимся создавать модели собственного изоб-ретения, конструировать роботов, которые используются в жизни.

Данные конструкторы показывают учащимся взаимосвязь между различными областями зна-ний, на уроках информатики решать задачи по физике, математике и т.д. Модели конструктора ПервоРобота NXT дают представление о работе механических конструкций, о силе, движении и скорости, помогают производить математические вычисления. Данные наборы помогают изучить разделы информатики: моделирование и программирование.


    1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ИСПОЛЬЗОВАНИЯ РОБОТОТЕХНИКИ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

В рамках школьного урока и дополнительного образования робототехнические комплексы Лего могут применяться по следующим направлениям:


  • Демонстрация;

  • Фронтальные лабораторные работы и опыты;

  • Исследовательская проектная деятельность.
Эффективность обучения основам робототехники зависит и от организации занятий, проводимых с применением следующих методов:

  • Объяснительно - иллюстративный - предъявление информации различными способами (объяснение, рассказ, беседа, инструктаж, демонстрация, работа с технологическими картами и др);

  • Эвристический - метод творческой деятельности (создание творческих моделей и т.д.);

  • Проблемный - постановка проблемы и самостоятельный поиск её решения обучающимися;

  • Программированный - набор операций, которые необходимо выполнить в ходе выполнения практических работ (форма: компьютерный практикум, проектная деятельность);

  • Репродуктивный - воспроизводство знаний и способов деятельности (форма: собирание моделей и конструкций по образцу, беседа, упражнения по аналогу);

  • Частично - поисковый - решение проблемных задач с помощью педагога;

  • Поисковый – самостоятельное решение проблем;

  • Метод проблемного изложения - постановка проблемы педагогом, решение ее самим педагогом, соучастие обучающихся при решении.
Основной метод, который используется при изучении робототехники, - это метод проектов. Под методом проектов понимают технологию организации образовательных ситуаций, в которых учащийся ставит и решает собственные задачи, и технологию сопровождения самостоятельной деятельности учащегося.

Проектно-ориентированное обучение – это систематический учебный метод, вовлекающий учащихся в процесс приобретения знаний и умений с помощью широкой исследовательской деятельности, базирующейся на комплексных, реальных вопросах и тщательно проработанных заданиях.

Основные этапы разработки Лего-проекта:


  1. Обозначение темы проекта.

  2. Цель и задачи представляемого проекта. Гипотеза.

  3. Разработка механизма на основе конструктора Лего-модели NXT (RCX).

  4. Составление программы для работы механизма в среде Lego Mindstorms (RoboLab).

  5. Тестирование модели, устранение дефектов и неисправностей.

При разработке и отладке проектов учащиеся делятся опытом друг с другом, что очень эффективно влияет на развитие познавательных, творческих навыков, а также самостоятельность школьников. Таким образом, можно убедиться в том, что Лего, являясь дополнительным средством при изучении курса информатики, позволяет учащимся принимать решение самостоятельно, применимо к данной ситуации, учитывая окружающие особенности и наличие вспомогательных материалов. И, что немаловажно, – умение согласовывать свои действия с окружающими, т.е. работать в команде.

Дополнительным преимуществом изучения робототехники является создание команды и в перспективе участие в городских, региональных, общероссийских и международных олимпиадах по робототехнике, что значительно усиливает мотивацию учеников к получению знаний. Основная цель использования робототехники – это социальный заказ общества: сформировать личность, способную самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения, работать с разными источниками информации, оценивать их и на этой основе формулировать собственное мнение, суждение, оценку. То есть формирование ключевых компетентностей учащихся.

Компетентностный подход в общем и среднем образовании объективно соответствует и социальным ожиданиям в сфере образования, и интересам участников образовательного процесса. Компетентностный подход – это подход, акцентирующий внимание на результатах образования, причём в качестве результата образования рассматривается не сумма усвоенной информации, а способность действовать в различных проблемных ситуациях.

Главная задача системы общего образования – заложить основы информационной компетентности личности, т.е. помочь обучающемуся овладеть методами сбора и накопления информации, а также технологией ее осмысления, обработки и практического применения.

Более подробно возможности включения робототехники в изучение общеобразовательных предметов представлены в таблице 1.

Таблица 1

Возможности использования робототехники в образовательном процессе


НАЧАЛЬНАЯ ШКОЛА

ОСНОВНАЯ ШКОЛА

СТАРШАЯ ШКОЛА

Урочная деятельность

Образовательные конструкторы: Мир вокруг нас

Математика


Геометрия
Простейшие геометрические фигуры
Периметр
Равные фигуры
Площадь, единицы измерения площади
Симметрия

Логика и комбинаторика


Свойства предметов, классификация по признакам
Последовательности, цепочки
Пары и группы предметов. Одинаковые и разные множества. Мешки
Логические и комбинаторные задачи

Проекты DUPLO

На уроках технологии, развития речи

Буквы DUPLO

На уроках английского языка

ПервоРобот ЛЕГО

Урок окружающего мира

Раздел «Животный мир»

Показ запрограммиро-ванных роботов на уроках окружающего мира, математики (пространственные отношения).

Информатика (программирование роботов)
Технология: групповая работа с WEDO


ИНФОРМАТИКА

http://gaysinasnz.ucoz.ru/index/planirovanie_na_2011_2012_uchebnyj_god/0-35 - эл. портфолио Гайсиной И.Р., учителя информатики, г. Снежинск